canergen commited on
Commit
85047a3
1 Parent(s): 45dfedb

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +104 -28
README.md CHANGED
@@ -1,32 +1,99 @@
1
  ---
2
- license: cc-by-4.0
3
  library_name: scvi-tools
 
4
  tags:
5
  - biology
6
  - genomics
7
  - single-cell
8
  - model_cls_name:RNAStereoscope
9
- - scvi_version:1.1.0
10
- - anndata_version:0.10.3
11
  - modality:rna
12
- - tissue:Bone_Marrow
13
  - annotated:True
14
  ---
15
 
16
- # Description
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
 
18
  Tabula Sapiens is a benchmark, first-draft human cell atlas of nearly 500,000 cells from 24 organs of 15 normal human subjects.
19
 
20
- # Model properties
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
 
22
- Many model properties are in the model tags. Some more are listed below.
23
 
24
- **model_init_params**:
 
 
 
 
 
 
 
 
 
25
  ```json
26
  {}
27
  ```
28
 
29
- **model_setup_anndata_args**:
 
 
 
 
 
30
  ```json
31
  {
32
  "labels_key": "cell_ontology_class",
@@ -34,40 +101,49 @@ Many model properties are in the model tags. Some more are listed below.
34
  }
35
  ```
36
 
37
- **model_summary_stats**:
38
- | Summary Stat Key | Value |
39
- |------------------|-------|
40
- | n_cells | 12293 |
41
- | n_labels | 14 |
42
- | n_vars | 4000 |
43
 
44
- **model_data_registry**:
45
  | Registry Key | scvi-tools Location |
46
  |--------------|---------------------------|
47
  | X | adata.X |
48
  | labels | adata.obs['_scvi_labels'] |
49
 
50
- **model_parent_module**: scvi.model
 
 
 
 
 
 
 
 
 
 
 
51
 
52
- **data_is_minified**: False
53
 
54
- # Training data
55
 
56
- This is an optional link to where the training data is stored if it is too large
57
- to host on the huggingface Model hub.
58
 
59
  <!-- If your model is not uploaded with any data (e.g., minified data) on the Model Hub, then make
60
- sure to provide this field if you want users to be able to access your training data. See the scvi-tools
61
- documentation for details. -->
 
62
 
63
- Training data url: https://zenodo.org/records/7608635/files/Bone_Marrow_training_data.h5ad
 
64
 
65
- # Training code
66
 
67
- This is an optional link to the code used to train the model.
68
 
69
- Training code url: N/A
70
 
71
  # References
72
 
73
- The Tabula Sapiens Consortium. The Tabula Sapiens: A multiple-organ, single-cell transcriptomic atlas of humans. Science, May 2022. doi:10.1126/science.abl4896
 
1
  ---
 
2
  library_name: scvi-tools
3
+ license: cc-by-4.0
4
  tags:
5
  - biology
6
  - genomics
7
  - single-cell
8
  - model_cls_name:RNAStereoscope
9
+ - scvi_version:1.2.0
10
+ - anndata_version:0.11.1
11
  - modality:rna
12
+ - tissue:various
13
  - annotated:True
14
  ---
15
 
16
+
17
+ Stereoscope is a variational inference model for single-cell RNA-seq data that can learn a
18
+ cell-type specific rate of gene expression. The predictions of the model are meant to be afterward
19
+ used for deconvolution of a second spatial transcriptomics dataset in Stereoscope. Stereoscope
20
+ predicts the cell-type proportions in the spatial data.
21
+
22
+ Stereoscope takes as input a scRNA-seq gene expression matrix with cells and genes as well as a
23
+ cell-type annotation for all cells.
24
+ We provide an extensive for DestVI including a description of CondSCVI
25
+ [user guide](https://docs.scvi-tools.org/en/1.2.0/user_guide/models/destvi.html).
26
+
27
+ - See our original manuscript for further details of the model:
28
+ [Stereoscope manuscript](https://www.nature.com/articles/s42003-020-01247-y) as well as the
29
+ [scvi-tools manuscript](https://www.nature.com/articles/s41587-021-01206-w) about implementation
30
+ details.
31
+ - See our manuscript on [scvi-hub](https://www.biorxiv.org/content/10.1101/2024.03.01.582887v2)
32
+ how to leverage pre-trained models.
33
+
34
+
35
+ # Model Description
36
 
37
  Tabula Sapiens is a benchmark, first-draft human cell atlas of nearly 500,000 cells from 24 organs of 15 normal human subjects.
38
 
39
+ # Metrics
40
+
41
+ We provide here key performance metrics for the uploaded model, if provided by the data uploader.
42
+
43
+ <details>
44
+ <summary><strong>Coefficient of variation</strong></summary>
45
+
46
+ The cell-wise coefficient of variation summarizes how well variation between different cells is
47
+ preserved by the generated model expression. Below a squared Pearson correlation coefficient of 0.4
48
+ , we would recommend not to use generated data for downstream analysis, while the generated latent
49
+ space might still be useful for analysis.
50
+
51
+ **Cell-wise Coefficient of Variation**:
52
+
53
+ Not provided by uploader
54
+
55
+ The gene-wise coefficient of variation summarizes how well variation between different genes is
56
+ preserved by the generated model expression. This value is usually quite high.
57
+
58
+ **Gene-wise Coefficient of Variation**:
59
+
60
+ Not provided by uploader
61
+
62
+ </details>
63
+
64
+ <details>
65
+ <summary><strong>Differential expression metric</strong></summary>
66
+
67
+ The differential expression metric provides a summary of the differential expression analysis
68
+ between cell types or input clusters. We provide here the F1-score, Pearson Correlation
69
+ Coefficient of Log-Foldchanges, Spearman Correlation Coefficient, and Area Under the Precision
70
+ Recall Curve (AUPRC) for the differential expression analysis using Wilcoxon Rank Sum test for each
71
+ cell-type.
72
+
73
+ **Differential expression**:
74
 
75
+ Not provided by uploader
76
 
77
+ </details>
78
+
79
+ # Model Properties
80
+
81
+ We provide here key parameters used to setup and train the model.
82
+
83
+ <details>
84
+ <summary><strong>Model Parameters</strong></summary>
85
+
86
+ These provide the settings to setup the original model:
87
  ```json
88
  {}
89
  ```
90
 
91
+ </details>
92
+
93
+ <details>
94
+ <summary><strong>Setup Data Arguments</strong></summary>
95
+
96
+ Arguments passed to setup_anndata of the original model:
97
  ```json
98
  {
99
  "labels_key": "cell_ontology_class",
 
101
  }
102
  ```
103
 
104
+ </details>
105
+
106
+ <details>
107
+ <summary><strong>Data Registry</strong></summary>
 
 
108
 
109
+ Registry elements for AnnData manager:
110
  | Registry Key | scvi-tools Location |
111
  |--------------|---------------------------|
112
  | X | adata.X |
113
  | labels | adata.obs['_scvi_labels'] |
114
 
115
+ - **Data is Minified**: False
116
+
117
+ </details>
118
+
119
+ <details>
120
+ <summary><strong>Summary Statistics</strong></summary>
121
+
122
+ | Summary Stat Key | Value |
123
+ |------------------|-------|
124
+ | n_cells | 12293 |
125
+ | n_labels | 14 |
126
+ | n_vars | 3000 |
127
 
128
+ </details>
129
 
 
130
 
131
+ <details>
132
+ <summary><strong>Training</strong></summary>
133
 
134
  <!-- If your model is not uploaded with any data (e.g., minified data) on the Model Hub, then make
135
+ sure to provide this field if you want users to be able to access your training data. See the
136
+ scvi-tools documentation for details. -->
137
+ **Training data url**: Not provided by uploader
138
 
139
+ If provided by the original uploader, for those interested in understanding or replicating the
140
+ training process, the code is available at the link below.
141
 
142
+ **Training Code URL**: https://github.com/YosefLab/scvi-hub-models/blob/main/src/scvi_hub_models/TS_train_all_tissues.ipynb
143
 
144
+ </details>
145
 
 
146
 
147
  # References
148
 
149
+ The Tabula Sapiens Consortium. The Tabula Sapiens: A multiple-organ, single-cell transcriptomic atlas of humans. Science, May 2022. doi:10.1126/science.abl4896