canergen commited on
Commit
0bd1b75
verified
1 Parent(s): fb4a6a3

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +173 -33
README.md CHANGED
@@ -1,13 +1,13 @@
1
  ---
2
- license: cc-by-4.0
3
  library_name: scvi-tools
 
4
  tags:
5
  - biology
6
  - genomics
7
  - single-cell
8
  - model_cls_name:SCANVI
9
- - scvi_version:1.1.3
10
- - anndata_version:0.10.7
11
  - modality:rna
12
  - tissue:nose
13
  - tissue:respiratory airway
@@ -15,15 +15,140 @@ tags:
15
  - annotated:True
16
  ---
17
 
18
- # Description
19
 
20
- The integrated Human Lung Cell Atlas (HLCA) represents the first large-scale, integrated single-cell reference atlas of the human lung.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
 
22
- # Model properties
 
23
 
24
- Many model properties are in the model tags. Some more are listed below.
25
 
26
- **model_init_params**:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
  ```json
28
  {
29
  "n_hidden": 128,
@@ -40,7 +165,12 @@ Many model properties are in the model tags. Some more are listed below.
40
  }
41
  ```
42
 
43
- **model_setup_anndata_args**:
 
 
 
 
 
44
  ```json
45
  {
46
  "labels_key": "scanvi_label",
@@ -49,11 +179,34 @@ Many model properties are in the model tags. Some more are listed below.
49
  "batch_key": "dataset",
50
  "size_factor_key": null,
51
  "categorical_covariate_keys": null,
52
- "continuous_covariate_keys": null
 
53
  }
54
  ```
55
 
56
- **model_summary_stats**:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57
  | Summary Stat Key | Value |
58
  |--------------------------|--------|
59
  | n_batch | 14 |
@@ -65,38 +218,25 @@ Many model properties are in the model tags. Some more are listed below.
65
  | n_latent_qzv | 30 |
66
  | n_vars | 2000 |
67
 
68
- **model_data_registry**:
69
- | Registry Key | scvi-tools Location |
70
- |-------------------|----------------------------------------|
71
- | X | adata.X |
72
- | batch | adata.obs['_scvi_batch'] |
73
- | labels | adata.obs['_scvi_labels'] |
74
- | latent_qzm | adata.obsm['_scanvi_latent_qzm'] |
75
- | latent_qzv | adata.obsm['_scanvi_latent_qzv'] |
76
- | minify_type | adata.uns['_scvi_adata_minify_type'] |
77
- | observed_lib_size | adata.obs['_scanvi_observed_lib_size'] |
78
-
79
- **model_parent_module**: scvi.model
80
-
81
- **data_is_minified**: True
82
 
83
- # Training data
84
 
85
- This is an optional link to where the training data is stored if it is too large
86
- to host on the huggingface Model hub.
87
 
88
  <!-- If your model is not uploaded with any data (e.g., minified data) on the Model Hub, then make
89
  sure to provide this field if you want users to be able to access your training data. See the
90
  scvi-tools documentation for details. -->
 
91
 
92
- Training data url: https://cellxgene.cziscience.com/collections/6f6d381a-7701-4781-935c-db10d30de293
 
93
 
94
- # Training code
95
 
96
- This is an optional link to the code used to train the model.
97
 
98
- Training code url: https://github.com/LungCellAtlas/HLCA_reproducibility
99
 
100
  # References
101
 
102
- Lisa Sikkema, Ciro Ram铆rez-Su谩stegui, Daniel C. Strobl, Tessa E. Gillett, Luke Zappia, Elo Madissoon, Nikolay S. Markov, Laure-Emmanuelle Zaragosi, Yuge Ji, Meshal Ansari, Marie-Jeanne Arguel, Leonie Apperloo, Martin Banchero, Christophe B茅cavin, Marijn Berg, Evgeny Chichelnitskiy, Mei-i Chung, Antoine Collin, Aurore C. A. Gay, Janine Gote-Schniering, Baharak Hooshiar Kashani, Kemal Inecik, Manu Jain, Theodore S. Kapellos, Tessa M. Kole, Sylvie Leroy, Christoph H. Mayr, Amanda J. Oliver, Michael von Papen, Lance Peter, Chase J. Taylor, Thomas Walzthoeni, Chuan Xu, Linh T. Bui, Carlo De Donno, Leander Dony, Alen Faiz, Minzhe Guo, Austin J. Gutierrez, Lukas Heumos, Ni Huang, Ignacio L. Ibarra, Nathan D. Jackson, Preetish Kadur Lakshminarasimha Murthy, Mohammad Lotfollahi, Tracy Tabib, Carlos Talavera-L贸pez, Kyle J. Travaglini, Anna Wilbrey-Clark, Kaylee B. Worlock, Masahiro Yoshida, Lung Biological Network Consortium, Maarten van den Berge, Yohan Boss茅, Tushar J. Desai, Oliver Eickelberg, Naftali Kaminski, Mark A. Krasnow, Robert Lafyatis, Marko Z. Nikolic, Joseph E. Powell, Jayaraj Rajagopal, Mauricio Rojas, Orit Rozenblatt-Rosen, Max A. Seibold, Dean Sheppard, Douglas P. Shepherd, Don D. Sin, Wim Timens, Alexander M. Tsankov, Jeffrey Whitsett, Yan Xu, Nicholas E. Banovich, Pascal Barbry, Thu Elizabeth Duong, Christine S. Falk, Kerstin B. Meyer, Jonathan A. Kropski, Dana Pe鈥檈r, Herbert B. Schiller, Purushothama Rao Tata, Joachim L. Schultze, Sara A. Teichmann, Alexander V. Misharin, Martijn C. Nawijn, Malte D. Luecken, and Fabian J. Theis. An integrated cell atlas of the lung in health and disease. Nature Medicine, June 2023. doi:10.1038/s41591-023-02327-2.
 
1
  ---
 
2
  library_name: scvi-tools
3
+ license: cc-by-4.0
4
  tags:
5
  - biology
6
  - genomics
7
  - single-cell
8
  - model_cls_name:SCANVI
9
+ - scvi_version:1.2.0
10
+ - anndata_version:0.11.1
11
  - modality:rna
12
  - tissue:nose
13
  - tissue:respiratory airway
 
15
  - annotated:True
16
  ---
17
 
 
18
 
19
+ ScANVI is a variational inference model for single-cell RNA-seq data that can learn an underlying
20
+ latent space, integrate technical batches and impute dropouts.
21
+ In addition, to scVI, ScANVI is a semi-supervised model that can leverage labeled data to learn a
22
+ cell-type classifier in the latent space and afterward predict cell types of new data.
23
+ The learned low-dimensional latent representation of the data can be used for visualization and
24
+ clustering.
25
+
26
+ scANVI takes as input a scRNA-seq gene expression matrix with cells and genes as well as a
27
+ cell-type annotation for a subset of cells.
28
+ We provide an extensive [user guide](https://docs.scvi-tools.org/en/1.2.0/user_guide/models/scanvi.html).
29
+
30
+ - See our original manuscript for further details of the model:
31
+ [scANVI manuscript](https://www.embopress.org/doi/full/10.15252/msb.20209620).
32
+ - See our manuscript on [scvi-hub](https://www.biorxiv.org/content/10.1101/2024.03.01.582887v2)
33
+ how to leverage pre-trained models.
34
 
35
+ This model can be used for fine tuning on new data using our Arches framework:
36
+ [Arches tutorial](https://docs.scvi-tools.org/en/1.0.0/tutorials/notebooks/scarches_scvi_tools.html).
37
 
 
38
 
39
+ # Model Description
40
+
41
+ The integrated Human Lung Cell Atlas (HLCA) represents the first large-scale, integrated single-cell reference atlas of the human lung.
42
+
43
+ # Metrics
44
+
45
+ We provide here key performance metrics for the uploaded model, if provided by the data uploader.
46
+
47
+ <details>
48
+ <summary><strong>Coefficient of variation</strong></summary>
49
+
50
+ The cell-wise coefficient of variation summarizes how well variation between different cells is
51
+ preserved by the generated model expression. Below a squared Pearson correlation coefficient of 0.4
52
+ , we would recommend not to use generated data for downstream analysis, while the generated latent
53
+ space might still be useful for analysis.
54
+
55
+ **Cell-wise Coefficient of Variation**:
56
+
57
+ | Metric | Training Value |
58
+ |-------------------------|----------------|
59
+ | Mean Absolute Error | 1.43 |
60
+ | Pearson Correlation | 0.93 |
61
+ | Spearman Correlation | 0.85 |
62
+ | R虏 (R-Squared) | 0.85 |
63
+
64
+ The gene-wise coefficient of variation summarizes how well variation between different genes is
65
+ preserved by the generated model expression. This value is usually quite high.
66
+
67
+ **Gene-wise Coefficient of Variation**:
68
+
69
+ | Metric | Training Value |
70
+ |-------------------------|----------------|
71
+ | Mean Absolute Error | 6.58 |
72
+ | Pearson Correlation | 0.86 |
73
+ | Spearman Correlation | 0.98 |
74
+ | R虏 (R-Squared) | 0.61 |
75
+
76
+ </details>
77
+
78
+ <details>
79
+ <summary><strong>Differential expression metric</strong></summary>
80
+
81
+ The differential expression metric provides a summary of the differential expression analysis
82
+ between cell types or input clusters. We provide here the F1-score, Pearson Correlation
83
+ Coefficient of Log-Foldchanges, Spearman Correlation Coefficient, and Area Under the Precision
84
+ Recall Curve (AUPRC) for the differential expression analysis using Wilcoxon Rank Sum test for each
85
+ cell-type.
86
+
87
+ **Differential expression**:
88
+
89
+ | Index | gene_f1 | lfc_mae | lfc_pearson | lfc_spearman | roc_auc | pr_auc | n_cells |
90
+ | --- | --- | --- | --- | --- | --- | --- | --- |
91
+ | respiratory basal cell | 0.98 | 0.29 | 0.91 | 0.99 | 0.28 | 0.98 | 80113.00 |
92
+ | alveolar macrophage | 0.98 | 0.23 | 0.95 | 0.99 | 0.27 | 0.98 | 78816.00 |
93
+ | type II pneumocyte | 0.96 | 0.24 | 0.94 | 0.98 | 0.20 | 0.99 | 62405.00 |
94
+ | club cell | 0.94 | 0.61 | 0.80 | 0.97 | 0.18 | 0.97 | 36023.00 |
95
+ | nasal mucosa goblet cell | 0.97 | 0.66 | 0.81 | 0.98 | 0.21 | 0.98 | 35833.00 |
96
+ | ciliated columnar cell of tracheobronchial tree | 0.96 | 0.25 | 0.95 | 0.99 | 0.26 | 0.98 | 35225.00 |
97
+ | CD8-positive, alpha-beta T cell | 0.96 | 0.32 | 0.91 | 0.98 | 0.30 | 0.97 | 29074.00 |
98
+ | elicited macrophage | 0.96 | 0.46 | 0.86 | 0.98 | 0.30 | 0.97 | 28223.00 |
99
+ | capillary endothelial cell | 0.98 | 0.73 | 0.81 | 0.97 | 0.27 | 0.98 | 23205.00 |
100
+ | CD4-positive, alpha-beta T cell | 0.95 | 0.49 | 0.84 | 0.96 | 0.30 | 0.97 | 21285.00 |
101
+ | classical monocyte | 0.95 | 0.41 | 0.88 | 0.98 | 0.27 | 0.96 | 17695.00 |
102
+ | natural killer cell | 0.96 | 0.65 | 0.82 | 0.97 | 0.28 | 0.97 | 16978.00 |
103
+ | vein endothelial cell | 0.95 | 0.70 | 0.79 | 0.95 | 0.26 | 0.96 | 12975.00 |
104
+ | alveolar type 2 fibroblast cell | 0.92 | 0.65 | 0.83 | 0.97 | 0.27 | 0.97 | 10321.00 |
105
+ | CD1c-positive myeloid dendritic cell | 0.92 | 0.67 | 0.68 | 0.96 | 0.33 | 0.96 | 9133.00 |
106
+ | non-classical monocyte | 0.93 | 0.75 | 0.79 | 0.96 | 0.32 | 0.97 | 8834.00 |
107
+ | type I pneumocyte | 0.95 | 1.31 | 0.67 | 0.88 | 0.18 | 0.95 | 7937.00 |
108
+ | pulmonary artery endothelial cell | 0.95 | 1.17 | 0.72 | 0.93 | 0.29 | 0.97 | 7391.00 |
109
+ | mast cell | 0.94 | 0.67 | 0.78 | 0.95 | 0.22 | 0.95 | 6623.00 |
110
+ | multi-ciliated epithelial cell | 0.90 | 1.40 | 0.74 | 0.94 | 0.30 | 0.97 | 5873.00 |
111
+ | alveolar type 1 fibroblast cell | 0.96 | 1.44 | 0.71 | 0.93 | 0.28 | 0.96 | 5182.00 |
112
+ | lung macrophage | 0.94 | 1.41 | 0.70 | 0.93 | 0.31 | 0.95 | 4805.00 |
113
+ | respiratory hillock cell | 0.92 | 1.31 | 0.77 | 0.95 | 0.28 | 0.96 | 4600.00 |
114
+ | endothelial cell of lymphatic vessel | 0.93 | 1.04 | 0.67 | 0.93 | 0.23 | 0.95 | 4595.00 |
115
+ | B cell | 0.93 | 1.47 | 0.59 | 0.89 | 0.27 | 0.96 | 4511.00 |
116
+ | epithelial cell of lower respiratory tract | 0.94 | 1.07 | 0.63 | 0.90 | 0.15 | 0.95 | 4393.00 |
117
+ | lung pericyte | 0.93 | 2.60 | 0.65 | 0.87 | 0.23 | 0.94 | 3032.00 |
118
+ | tracheobronchial smooth muscle cell | 0.92 | 1.57 | 0.68 | 0.89 | 0.25 | 0.93 | 2996.00 |
119
+ | plasma cell | 0.82 | 1.41 | 0.58 | 0.84 | 0.17 | 0.94 | 1773.00 |
120
+ | bronchial goblet cell | 0.93 | 1.45 | 0.75 | 0.93 | 0.19 | 0.93 | 1670.00 |
121
+ | bronchus fibroblast of lung | 0.90 | 1.93 | 0.71 | 0.89 | 0.28 | 0.93 | 1573.00 |
122
+ | serous secreting cell | 0.89 | 5.09 | 0.58 | 0.70 | 0.15 | 0.98 | 1472.00 |
123
+ | epithelial cell of alveolus of lung | 0.94 | 2.33 | 0.56 | 0.84 | 0.21 | 0.91 | 1440.00 |
124
+ | tracheobronchial serous cell | 0.80 | 3.41 | 0.57 | 0.70 | 0.11 | 0.96 | 1417.00 |
125
+ | acinar cell | 0.88 | 1.97 | 0.69 | 0.91 | 0.22 | 0.93 | 1274.00 |
126
+ | tracheobronchial goblet cell | 0.88 | 4.27 | 0.58 | 0.73 | 0.14 | 0.97 | 968.00 |
127
+ | myofibroblast cell | 0.80 | 3.86 | 0.61 | 0.82 | 0.31 | 0.92 | 716.00 |
128
+ | ionocyte | 0.87 | 3.51 | 0.61 | 0.78 | 0.31 | 0.87 | 561.00 |
129
+ | smooth muscle cell | 0.87 | 3.03 | 0.65 | 0.86 | 0.33 | 0.91 | 556.00 |
130
+ | plasmacytoid dendritic cell | 0.89 | 4.15 | 0.53 | 0.72 | 0.30 | 0.90 | 552.00 |
131
+ | mucus secreting cell | 0.86 | 4.68 | 0.56 | 0.68 | 0.22 | 0.94 | 537.00 |
132
+ | T cell | 0.89 | 2.83 | 0.57 | 0.84 | 0.40 | 0.93 | 500.00 |
133
+ | stromal cell | 0.82 | 5.60 | 0.57 | 0.70 | 0.24 | 0.91 | 335.00 |
134
+ | conventional dendritic cell | 0.73 | 4.19 | 0.52 | 0.73 | 0.37 | 0.90 | 322.00 |
135
+ | dendritic cell | 0.75 | 4.16 | 0.55 | 0.75 | 0.35 | 0.85 | 312.00 |
136
+ | fibroblast | 0.77 | 3.68 | 0.63 | 0.81 | 0.39 | 0.90 | 276.00 |
137
+ | mesothelial cell | 0.78 | 4.12 | 0.57 | 0.72 | 0.39 | 0.87 | 230.00 |
138
+ | brush cell of trachebronchial tree | 0.55 | 4.98 | 0.59 | 0.74 | 0.35 | 0.83 | 165.00 |
139
+ | lung neuroendocrine cell | 0.74 | 4.34 | 0.57 | 0.71 | 0.39 | 0.86 | 159.00 |
140
+ | hematopoietic stem cell | 0.37 | 6.88 | 0.50 | 0.57 | 0.38 | 0.75 | 60.00 |
141
+
142
+ </details>
143
+
144
+ # Model Properties
145
+
146
+ We provide here key parameters used to setup and train the model.
147
+
148
+ <details>
149
+ <summary><strong>Model Parameters</strong></summary>
150
+
151
+ These provide the settings to setup the original model:
152
  ```json
153
  {
154
  "n_hidden": 128,
 
165
  }
166
  ```
167
 
168
+ </details>
169
+
170
+ <details>
171
+ <summary><strong>Setup Data Arguments</strong></summary>
172
+
173
+ Arguments passed to setup_anndata of the original model:
174
  ```json
175
  {
176
  "labels_key": "scanvi_label",
 
179
  "batch_key": "dataset",
180
  "size_factor_key": null,
181
  "categorical_covariate_keys": null,
182
+ "continuous_covariate_keys": null,
183
+ "use_minified": true
184
  }
185
  ```
186
 
187
+ </details>
188
+
189
+ <details>
190
+ <summary><strong>Data Registry</strong></summary>
191
+
192
+ Registry elements for AnnData manager:
193
+ | Registry Key | scvi-tools Location |
194
+ |-------------------|--------------------------------------|
195
+ | X | adata.X |
196
+ | batch | adata.obs['_scvi_batch'] |
197
+ | labels | adata.obs['_scvi_labels'] |
198
+ | latent_qzm | adata.obsm['scanvi_latent_qzm'] |
199
+ | latent_qzv | adata.obsm['scanvi_latent_qzv'] |
200
+ | minify_type | adata.uns['_scvi_adata_minify_type'] |
201
+ | observed_lib_size | adata.obs['observed_lib_size'] |
202
+
203
+ - **Data is Minified**: False
204
+
205
+ </details>
206
+
207
+ <details>
208
+ <summary><strong>Summary Statistics</strong></summary>
209
+
210
  | Summary Stat Key | Value |
211
  |--------------------------|--------|
212
  | n_batch | 14 |
 
218
  | n_latent_qzv | 30 |
219
  | n_vars | 2000 |
220
 
221
+ </details>
 
 
 
 
 
 
 
 
 
 
 
 
 
222
 
 
223
 
224
+ <details>
225
+ <summary><strong>Training</strong></summary>
226
 
227
  <!-- If your model is not uploaded with any data (e.g., minified data) on the Model Hub, then make
228
  sure to provide this field if you want users to be able to access your training data. See the
229
  scvi-tools documentation for details. -->
230
+ **Training data url**: Not provided by uploader
231
 
232
+ If provided by the original uploader, for those interested in understanding or replicating the
233
+ training process, the code is available at the link below.
234
 
235
+ **Training Code URL**: https://github.com/LungCellAtlas/HLCA_reproducibility
236
 
237
+ </details>
238
 
 
239
 
240
  # References
241
 
242
+ Lisa Sikkema, Ciro Ram铆rez-Su谩stegui, Daniel C. Strobl, Tessa E. Gillett, Luke Zappia, Elo Madissoon, Nikolay S. Markov, Laure-Emmanuelle Zaragosi, Yuge Ji, Meshal Ansari, Marie-Jeanne Arguel, Leonie Apperloo, Martin Banchero, Christophe B茅cavin, Marijn Berg, Evgeny Chichelnitskiy, Mei-i Chung, Antoine Collin, Aurore C. A. Gay, Janine Gote-Schniering, Baharak Hooshiar Kashani, Kemal Inecik, Manu Jain, Theodore S. Kapellos, Tessa M. Kole, Sylvie Leroy, Christoph H. Mayr, Amanda J. Oliver, Michael von Papen, Lance Peter, Chase J. Taylor, Thomas Walzthoeni, Chuan Xu, Linh T. Bui, Carlo De Donno, Leander Dony, Alen Faiz, Minzhe Guo, Austin J. Gutierrez, Lukas Heumos, Ni Huang, Ignacio L. Ibarra, Nathan D. Jackson, Preetish Kadur Lakshminarasimha Murthy, Mohammad Lotfollahi, Tracy Tabib, Carlos Talavera-L贸pez, Kyle J. Travaglini, Anna Wilbrey-Clark, Kaylee B. Worlock, Masahiro Yoshida, Lung Biological Network Consortium, Maarten van den Berge, Yohan Boss茅, Tushar J. Desai, Oliver Eickelberg, Naftali Kaminski, Mark A. Krasnow, Robert Lafyatis, Marko Z. Nikolic, Joseph E. Powell, Jayaraj Rajagopal, Mauricio Rojas, Orit Rozenblatt-Rosen, Max A. Seibold, Dean Sheppard, Douglas P. Shepherd, Don D. Sin, Wim Timens, Alexander M. Tsankov, Jeffrey Whitsett, Yan Xu, Nicholas E. Banovich, Pascal Barbry, Thu Elizabeth Duong, Christine S. Falk, Kerstin B. Meyer, Jonathan A. Kropski, Dana Pe鈥檈r, Herbert B. Schiller, Purushothama Rao Tata, Joachim L. Schultze, Sara A. Teichmann, Alexander V. Misharin, Martijn C. Nawijn, Malte D. Luecken, and Fabian J. Theis. An integrated cell atlas of the lung in health and disease. Nature Medicine, June 2023. doi:10.1038/s41591-023-02327-2.