Upload README.md with huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,319 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: scvi-tools
|
3 |
+
license: cc-by-4.0
|
4 |
+
tags:
|
5 |
+
- biology
|
6 |
+
- genomics
|
7 |
+
- single-cell
|
8 |
+
- model_cls_name:TOTALVI
|
9 |
+
- scvi_version:1.2.0
|
10 |
+
- anndata_version:0.11.1
|
11 |
+
- modality:rna
|
12 |
+
- modality:protein
|
13 |
+
- tissue:thymus
|
14 |
+
- annotated:True
|
15 |
+
---
|
16 |
+
|
17 |
+
|
18 |
+
TotalVI is a variational inference model for single-cell RNA-seq as well as protein data that can
|
19 |
+
learn an underlying latent space, integrate technical batches, impute dropouts,
|
20 |
+
and predict protein expression given gene expression or missing protein data given gene expression
|
21 |
+
and protein data for a subset of proteins.
|
22 |
+
The learned low-dimensional latent representation of the data can be used for visualization and
|
23 |
+
clustering.
|
24 |
+
|
25 |
+
TotalVI takes as input a scRNA-seq gene expression and protein expression matrix with cells and
|
26 |
+
genes.
|
27 |
+
We provide an extensive [user guide](https://docs.scvi-tools.org/en/1.2.0/user_guide/models/totalvi.html).
|
28 |
+
|
29 |
+
- See our original manuscript for further details of the model:
|
30 |
+
[TotalVI manuscript](https://www.nature.com/articles/s41592-020-01050-x).
|
31 |
+
- See our manuscript on [scvi-hub](https://www.biorxiv.org/content/10.1101/2024.03.01.582887v2)
|
32 |
+
how to leverage pre-trained models.
|
33 |
+
|
34 |
+
This model can be used for fine tuning on new data using our Arches framework:
|
35 |
+
[Arches tutorial](https://docs.scvi-tools.org/en/1.0.0/tutorials/notebooks/scarches_scvi_tools.html).
|
36 |
+
|
37 |
+
|
38 |
+
# Model Description
|
39 |
+
|
40 |
+
CITE-seq to measure RNA and surface proteins in thymocytes from wild-type and T cell lineage-restricted mice to generate a comprehensive timeline of cell state for each T cell lineage.
|
41 |
+
|
42 |
+
# Metrics
|
43 |
+
|
44 |
+
We provide here key performance metrics for the uploaded model, if provided by the data uploader.
|
45 |
+
|
46 |
+
<details>
|
47 |
+
<summary><strong>Coefficient of variation</strong></summary>
|
48 |
+
|
49 |
+
The cell-wise coefficient of variation summarizes how well variation between different cells is
|
50 |
+
preserved by the generated model expression. Below a squared Pearson correlation coefficient of 0.4
|
51 |
+
, we would recommend not to use generated data for downstream analysis, while the generated latent
|
52 |
+
space might still be useful for analysis.
|
53 |
+
|
54 |
+
**Cell-wise Coefficient of Variation**:
|
55 |
+
|
56 |
+
Modality: rna
|
57 |
+
|
58 |
+
| Metric | Training Value | Validation Value |
|
59 |
+
|-------------------------|----------------|------------------|
|
60 |
+
| Mean Absolute Error | 0.57 | 0.57 |
|
61 |
+
| Pearson Correlation | 0.76 | 0.75 |
|
62 |
+
| Spearman Correlation | 0.83 | 0.83 |
|
63 |
+
| R² (R-Squared) | -0.10 | -0.09 |
|
64 |
+
|
65 |
+
Modality: protein
|
66 |
+
|
67 |
+
| Metric | Training Value | Validation Value |
|
68 |
+
|-------------------------|----------------|------------------|
|
69 |
+
| Mean Absolute Error | 0.32 | 0.32 |
|
70 |
+
| Pearson Correlation | 0.53 | 0.53 |
|
71 |
+
| Spearman Correlation | 0.78 | 0.78 |
|
72 |
+
| R² (R-Squared) | -1.45 | -1.43 |
|
73 |
+
|
74 |
+
|
75 |
+
|
76 |
+
The gene-wise coefficient of variation summarizes how well variation between different genes is
|
77 |
+
preserved by the generated model expression. This value is usually quite high.
|
78 |
+
|
79 |
+
**Gene-wise Coefficient of Variation**:
|
80 |
+
|
81 |
+
Modality: rna
|
82 |
+
|
83 |
+
| Metric | Training Value |
|
84 |
+
|-------------------------|----------------|
|
85 |
+
| Mean Absolute Error | 26.96 |
|
86 |
+
| Pearson Correlation | 0.95 |
|
87 |
+
| Spearman Correlation | 0.99 |
|
88 |
+
| R² (R-Squared) | -0.25 |
|
89 |
+
|
90 |
+
Modality: protein
|
91 |
+
|
92 |
+
| Metric | Training Value |
|
93 |
+
|-------------------------|----------------|
|
94 |
+
| Mean Absolute Error | 4.29 |
|
95 |
+
| Pearson Correlation | 0.42 |
|
96 |
+
| Spearman Correlation | 0.73 |
|
97 |
+
| R² (R-Squared) | -6.32 |
|
98 |
+
|
99 |
+
|
100 |
+
|
101 |
+
</details>
|
102 |
+
|
103 |
+
<details>
|
104 |
+
<summary><strong>Differential expression metric</strong></summary>
|
105 |
+
|
106 |
+
The differential expression metric provides a summary of the differential expression analysis
|
107 |
+
between cell types or input clusters. We provide here the F1-score, Pearson Correlation
|
108 |
+
Coefficient of Log-Foldchanges, Spearman Correlation Coefficient, and Area Under the Precision
|
109 |
+
Recall Curve (AUPRC) for the differential expression analysis using Wilcoxon Rank Sum test for each
|
110 |
+
cell-type.
|
111 |
+
|
112 |
+
**Differential expression**:
|
113 |
+
|
114 |
+
Modality: rna
|
115 |
+
|
116 |
+
| Index | gene_f1 | lfc_mae | lfc_pearson | lfc_spearman | roc_auc | pr_auc | n_cells |
|
117 |
+
| --- | --- | --- | --- | --- | --- | --- | --- |
|
118 |
+
| CD14-positive monocyte | 0.94 | 2.13 | 0.59 | 0.91 | 0.09 | 0.02 | 120843.00 |
|
119 |
+
| CD16-positive, CD56-dim natural killer cell, human | 0.95 | 2.34 | 0.46 | 0.83 | 0.09 | 0.02 | 92848.00 |
|
120 |
+
| naive thymus-derived CD4-positive, alpha-beta T cell | 0.90 | 2.75 | 0.39 | 0.76 | 0.09 | 0.02 | 63096.00 |
|
121 |
+
| effector CD8-positive, alpha-beta T cell | 0.87 | 3.49 | 0.39 | 0.73 | 0.07 | 0.02 | 53534.00 |
|
122 |
+
| central memory CD4-positive, alpha-beta T cell | 0.94 | 2.52 | 0.38 | 0.75 | 0.06 | 0.02 | 49904.00 |
|
123 |
+
| naive B cell | 0.93 | 3.21 | 0.43 | 0.73 | 0.08 | 0.02 | 44136.00 |
|
124 |
+
| naive thymus-derived CD8-positive, alpha-beta T cell | 0.92 | 3.47 | 0.39 | 0.65 | 0.06 | 0.02 | 31175.00 |
|
125 |
+
| mature NK T cell | 0.91 | 3.70 | 0.42 | 0.63 | 0.04 | 0.01 | 21673.00 |
|
126 |
+
| effector memory CD8-positive, alpha-beta T cell | 0.83 | 4.48 | 0.36 | 0.55 | 0.07 | 0.02 | 18917.00 |
|
127 |
+
| T-helper 22 cell | 0.90 | 3.98 | 0.42 | 0.61 | 0.06 | 0.02 | 18379.00 |
|
128 |
+
| gamma-delta T cell | 0.86 | 4.59 | 0.38 | 0.50 | 0.05 | 0.01 | 15942.00 |
|
129 |
+
| platelet | 0.89 | 4.43 | 0.51 | 0.66 | 0.06 | 0.02 | 15847.00 |
|
130 |
+
| T follicular helper cell | 0.93 | 4.43 | 0.42 | 0.54 | 0.06 | 0.02 | 13608.00 |
|
131 |
+
| mucosal invariant T cell | 0.87 | 5.03 | 0.40 | 0.45 | 0.05 | 0.02 | 10992.00 |
|
132 |
+
| CD16-negative, CD56-bright natural killer cell, human | 0.85 | 5.21 | 0.40 | 0.46 | 0.05 | 0.02 | 10442.00 |
|
133 |
+
| class switched memory B cell | 0.89 | 5.24 | 0.44 | 0.49 | 0.08 | 0.02 | 7244.00 |
|
134 |
+
| immature B cell | 0.89 | 5.50 | 0.46 | 0.46 | 0.09 | 0.02 | 5238.00 |
|
135 |
+
| natural killer cell | 0.89 | 5.36 | 0.44 | 0.43 | 0.09 | 0.02 | 4963.00 |
|
136 |
+
| plasmacytoid dendritic cell | 0.91 | 5.18 | 0.46 | 0.46 | 0.05 | 0.02 | 4612.00 |
|
137 |
+
| CD14-low, CD16-positive monocyte | 0.91 | 4.32 | 0.58 | 0.59 | 0.10 | 0.02 | 4140.00 |
|
138 |
+
| plasmablast | 0.82 | 5.05 | 0.51 | 0.54 | 0.10 | 0.02 | 4121.00 |
|
139 |
+
| IgG plasma cell | 0.69 | 5.20 | 0.49 | 0.51 | 0.14 | 0.01 | 3527.00 |
|
140 |
+
| dendritic cell, human | 0.84 | 5.18 | 0.43 | 0.43 | 0.62 | 0.20 | 3357.00 |
|
141 |
+
| unswitched memory B cell | 0.92 | 5.41 | 0.46 | 0.43 | 0.18 | 0.02 | 3285.00 |
|
142 |
+
| myeloid dendritic cell | 0.82 | 5.29 | 0.49 | 0.47 | 0.14 | 0.02 | 3243.00 |
|
143 |
+
| B cell | 0.86 | 5.34 | 0.48 | 0.44 | 0.20 | 0.02 | 3024.00 |
|
144 |
+
| IgA plasma cell | 0.70 | 5.21 | 0.50 | 0.49 | 0.13 | 0.02 | 2699.00 |
|
145 |
+
| effector memory CD4-positive, alpha-beta T cell | 0.89 | 5.33 | 0.46 | 0.38 | 0.13 | 0.02 | 2634.00 |
|
146 |
+
| malignant cell | 0.93 | 5.74 | 0.44 | 0.40 | 0.32 | 0.02 | 2291.00 |
|
147 |
+
| CD34-positive, CD38-negative hematopoietic stem cell | 0.78 | 5.51 | 0.48 | 0.49 | 0.11 | 0.02 | 2238.00 |
|
148 |
+
| erythrocyte | 0.79 | 5.67 | 0.40 | 0.25 | 0.62 | 0.33 | 2232.00 |
|
149 |
+
| CD8-positive, alpha-beta T cell | 0.84 | 5.01 | 0.51 | 0.43 | 0.35 | 0.03 | 1355.00 |
|
150 |
+
| IgM plasma cell | 0.78 | 4.62 | 0.54 | 0.51 | 0.28 | 0.02 | 1163.00 |
|
151 |
+
| ILC1, human | 0.81 | 4.58 | 0.52 | 0.45 | 0.39 | 0.03 | 776.00 |
|
152 |
+
| erythroid progenitor cell, mammalian | 0.71 | 5.58 | 0.50 | 0.46 | 0.34 | 0.02 | 773.00 |
|
153 |
+
| monocyte | 0.88 | 4.17 | 0.57 | 0.51 | 0.37 | 0.02 | 649.00 |
|
154 |
+
| CD4-positive, alpha-beta T cell | 0.82 | 4.63 | 0.54 | 0.49 | 0.33 | 0.02 | 624.00 |
|
155 |
+
| dendritic cell | 0.76 | 5.16 | 0.50 | 0.42 | 0.45 | 0.03 | 585.00 |
|
156 |
+
| T-helper 1 cell | 0.83 | 3.91 | 0.58 | 0.54 | 0.29 | 0.02 | 481.00 |
|
157 |
+
| regulatory T cell | 0.76 | 3.91 | 0.56 | 0.53 | 0.32 | 0.02 | 329.00 |
|
158 |
+
| hematopoietic precursor cell | 0.70 | 4.55 | 0.58 | 0.54 | 0.26 | 0.02 | 180.00 |
|
159 |
+
| group 2 innate lymphoid cell, human | 0.65 | 3.00 | 0.59 | 0.63 | 0.27 | 0.02 | 93.00 |
|
160 |
+
| T-helper 2 cell | 0.67 | 2.79 | 0.61 | 0.67 | 0.19 | 0.02 | 55.00 |
|
161 |
+
| myeloid lineage restricted progenitor cell | 0.53 | 3.95 | 0.52 | 0.56 | 0.32 | 0.02 | 53.00 |
|
162 |
+
| megakaryocyte | 0.70 | 3.62 | 0.62 | 0.61 | 0.30 | 0.02 | 53.00 |
|
163 |
+
| T-helper 17 cell | 0.48 | 2.54 | 0.53 | 0.69 | 0.21 | 0.02 | 13.00 |
|
164 |
+
|
165 |
+
Modality: protein
|
166 |
+
|
167 |
+
| Index | gene_f1 | lfc_mae | lfc_pearson | lfc_spearman | roc_auc | pr_auc | n_cells |
|
168 |
+
| --- | --- | --- | --- | --- | --- | --- | --- |
|
169 |
+
| CD14-positive monocyte | 0.95 | 0.07 | 1.00 | 0.99 | 0.26 | 0.12 | 120843.00 |
|
170 |
+
| CD16-positive, CD56-dim natural killer cell, human | 0.95 | 0.06 | 0.99 | 0.98 | 0.22 | 0.12 | 92848.00 |
|
171 |
+
| naive thymus-derived CD4-positive, alpha-beta T cell | 0.84 | 0.06 | 0.99 | 0.98 | 0.37 | 0.13 | 63096.00 |
|
172 |
+
| effector CD8-positive, alpha-beta T cell | 0.95 | 0.05 | 0.99 | 0.97 | 0.17 | 0.09 | 53534.00 |
|
173 |
+
| central memory CD4-positive, alpha-beta T cell | 1.00 | 0.06 | 1.00 | 0.99 | 0.33 | 0.12 | 49904.00 |
|
174 |
+
| naive B cell | 1.00 | 0.08 | 1.00 | 0.96 | 0.20 | 0.12 | 44136.00 |
|
175 |
+
| naive thymus-derived CD8-positive, alpha-beta T cell | 0.95 | 0.07 | 0.99 | 0.95 | 0.13 | 0.08 | 31175.00 |
|
176 |
+
| mature NK T cell | 0.89 | 0.06 | 0.99 | 0.98 | 0.21 | 0.10 | 21673.00 |
|
177 |
+
| effector memory CD8-positive, alpha-beta T cell | 0.84 | 0.05 | 0.99 | 0.98 | 0.06 | 0.11 | 18917.00 |
|
178 |
+
| T-helper 22 cell | 0.95 | 0.06 | 0.99 | 0.98 | 0.11 | 0.08 | 18379.00 |
|
179 |
+
| gamma-delta T cell | 0.89 | 0.07 | 0.97 | 0.94 | 0.26 | 0.18 | 15942.00 |
|
180 |
+
| platelet | 0.79 | 0.10 | 0.97 | 0.94 | 0.21 | 0.11 | 15847.00 |
|
181 |
+
| T follicular helper cell | 1.00 | 0.07 | 0.99 | 0.98 | 0.24 | 0.12 | 13608.00 |
|
182 |
+
| mucosal invariant T cell | 0.89 | 0.08 | 0.97 | 0.95 | 0.15 | 0.09 | 10992.00 |
|
183 |
+
| CD16-negative, CD56-bright natural killer cell, human | 0.95 | 0.08 | 0.98 | 0.95 | 0.45 | 0.47 | 10442.00 |
|
184 |
+
| class switched memory B cell | 0.89 | 0.09 | 0.99 | 0.96 | 0.11 | 0.12 | 7244.00 |
|
185 |
+
| immature B cell | 0.89 | 0.12 | 0.98 | 0.94 | 0.26 | 0.14 | 5238.00 |
|
186 |
+
| natural killer cell | 0.74 | 0.06 | 0.99 | 0.98 | 0.68 | 0.68 | 4963.00 |
|
187 |
+
| plasmacytoid dendritic cell | 0.84 | 0.09 | 0.98 | 0.96 | 0.54 | 0.56 | 4612.00 |
|
188 |
+
| CD14-low, CD16-positive monocyte | 0.84 | 0.08 | 0.99 | 0.98 | 0.58 | 0.23 | 4140.00 |
|
189 |
+
| plasmablast | 0.79 | 0.08 | 0.99 | 0.97 | 0.47 | 0.49 | 4121.00 |
|
190 |
+
| IgG plasma cell | 0.89 | 0.09 | 0.98 | 0.94 | 0.47 | 0.51 | 3527.00 |
|
191 |
+
| dendritic cell, human | 0.79 | 0.10 | 0.98 | 0.90 | 0.94 | 0.90 | 3357.00 |
|
192 |
+
| unswitched memory B cell | 0.95 | 0.10 | 0.99 | 0.96 | 0.63 | 0.61 | 3285.00 |
|
193 |
+
| myeloid dendritic cell | 0.89 | 0.11 | 0.97 | 0.94 | 0.74 | 0.74 | 3243.00 |
|
194 |
+
| B cell | 0.89 | 0.10 | 0.98 | 0.93 | 0.58 | 0.59 | 3024.00 |
|
195 |
+
| IgA plasma cell | 0.89 | 0.10 | 0.97 | 0.91 | 0.47 | 0.48 | 2699.00 |
|
196 |
+
| effector memory CD4-positive, alpha-beta T cell | 0.95 | 0.08 | 0.99 | 0.95 | 0.79 | 0.79 | 2634.00 |
|
197 |
+
| malignant cell | 0.89 | 0.09 | 0.99 | 0.98 | 0.17 | 0.08 | 2291.00 |
|
198 |
+
| CD34-positive, CD38-negative hematopoietic stem cell | 0.74 | 0.10 | 0.96 | 0.93 | 0.37 | 0.36 | 2238.00 |
|
199 |
+
| erythrocyte | 0.84 | 0.08 | 0.99 | 0.98 | 0.21 | 0.25 | 2232.00 |
|
200 |
+
| CD8-positive, alpha-beta T cell | 0.68 | 0.09 | 0.87 | 0.87 | 0.69 | 0.54 | 1355.00 |
|
201 |
+
| IgM plasma cell | 0.95 | 0.09 | 0.98 | 0.92 | 0.42 | 0.46 | 1163.00 |
|
202 |
+
| ILC1, human | 0.84 | 0.10 | 0.96 | 0.88 | 0.53 | 0.55 | 776.00 |
|
203 |
+
| erythroid progenitor cell, mammalian | 0.58 | 0.15 | 0.94 | 0.92 | 0.22 | 0.22 | 773.00 |
|
204 |
+
| monocyte | 0.79 | 0.09 | 0.98 | 0.96 | 0.69 | 0.70 | 649.00 |
|
205 |
+
| CD4-positive, alpha-beta T cell | 0.89 | 0.11 | 0.96 | 0.83 | 0.58 | 0.59 | 624.00 |
|
206 |
+
| dendritic cell | 0.74 | 0.20 | 0.83 | 0.80 | 0.52 | 0.41 | 585.00 |
|
207 |
+
| T-helper 1 cell | 0.95 | 0.10 | 0.98 | 0.95 | 0.73 | 0.73 | 481.00 |
|
208 |
+
| regulatory T cell | 0.89 | 0.14 | 0.97 | 0.94 | 0.89 | 0.85 | 329.00 |
|
209 |
+
| hematopoietic precursor cell | 0.63 | 0.28 | 0.29 | 0.88 | 0.36 | 0.28 | 180.00 |
|
210 |
+
| group 2 innate lymphoid cell, human | 0.63 | 0.25 | 0.98 | 0.53 | 0.33 | 0.36 | 93.00 |
|
211 |
+
| T-helper 2 cell | 0.68 | 0.28 | 0.88 | 0.73 | 0.74 | 0.65 | 55.00 |
|
212 |
+
| myeloid lineage restricted progenitor cell | 0.32 | 0.27 | 0.98 | 0.80 | 0.54 | 0.26 | 53.00 |
|
213 |
+
| megakaryocyte | 0.63 | 0.23 | 0.98 | 0.81 | 0.57 | 0.52 | 53.00 |
|
214 |
+
| T-helper 17 cell | 0.68 | 0.53 | 0.70 | 0.74 | 0.48 | 0.36 | 13.00 |
|
215 |
+
|
216 |
+
|
217 |
+
|
218 |
+
</details>
|
219 |
+
|
220 |
+
# Model Properties
|
221 |
+
|
222 |
+
We provide here key parameters used to setup and train the model.
|
223 |
+
|
224 |
+
<details>
|
225 |
+
<summary><strong>Model Parameters</strong></summary>
|
226 |
+
|
227 |
+
These provide the settings to setup the original model:
|
228 |
+
```json
|
229 |
+
{
|
230 |
+
"n_latent": 20,
|
231 |
+
"gene_dispersion": "gene",
|
232 |
+
"protein_dispersion": "protein",
|
233 |
+
"gene_likelihood": "nb",
|
234 |
+
"latent_distribution": "normal",
|
235 |
+
"empirical_protein_background_prior": null,
|
236 |
+
"override_missing_proteins": false
|
237 |
+
}
|
238 |
+
```
|
239 |
+
|
240 |
+
</details>
|
241 |
+
|
242 |
+
<details>
|
243 |
+
<summary><strong>Setup Data Arguments</strong></summary>
|
244 |
+
|
245 |
+
Arguments passed to setup_anndata of the original model:
|
246 |
+
```json
|
247 |
+
{
|
248 |
+
"rna_layer": "counts",
|
249 |
+
"protein_layer": null,
|
250 |
+
"batch_key": "donor_id",
|
251 |
+
"size_factor_key": null,
|
252 |
+
"categorical_covariate_keys": null,
|
253 |
+
"continuous_covariate_keys": null,
|
254 |
+
"modalities": {
|
255 |
+
"rna_layer": "rna",
|
256 |
+
"protein_layer": "protein",
|
257 |
+
"batch_key": "rna"
|
258 |
+
}
|
259 |
+
}
|
260 |
+
```
|
261 |
+
|
262 |
+
</details>
|
263 |
+
|
264 |
+
<details>
|
265 |
+
<summary><strong>Data Registry</strong></summary>
|
266 |
+
|
267 |
+
Registry elements for AnnData manager:
|
268 |
+
| Registry Key | scvi-tools Location |
|
269 |
+
|--------------------------|--------------------------------------|
|
270 |
+
| X | adata.mod['rna'].layers['counts'] |
|
271 |
+
| batch | adata.mod['rna'].obs['_scvi_batch'] |
|
272 |
+
| labels | adata.obs['_scvi_labels'] |
|
273 |
+
| latent_qzm | adata.obsm['totalvi_latent_qzm'] |
|
274 |
+
| latent_qzv | adata.obsm['totalvi_latent_qzv'] |
|
275 |
+
| minify_type | adata.uns['_scvi_adata_minify_type'] |
|
276 |
+
| observed_lib_size | adata.obs['observed_lib_size'] |
|
277 |
+
| proteins | adata.mod['protein'].X |
|
278 |
+
|
279 |
+
- **Data is Minified**: False
|
280 |
+
|
281 |
+
</details>
|
282 |
+
|
283 |
+
<details>
|
284 |
+
<summary><strong>Summary Statistics</strong></summary>
|
285 |
+
|
286 |
+
| Summary Stat Key | Value |
|
287 |
+
|--------------------------|-------|
|
288 |
+
| n_batch | 120 |
|
289 |
+
| n_cells | 647366 |
|
290 |
+
| n_extra_categorical_covs | 0 |
|
291 |
+
| n_extra_continuous_covs | 0 |
|
292 |
+
| n_labels | 1 |
|
293 |
+
| n_latent_qzm | 20 |
|
294 |
+
| n_latent_qzv | 20 |
|
295 |
+
| n_proteins | 192 |
|
296 |
+
| n_vars | 4000 |
|
297 |
+
|
298 |
+
</details>
|
299 |
+
|
300 |
+
|
301 |
+
<details>
|
302 |
+
<summary><strong>Training</strong></summary>
|
303 |
+
|
304 |
+
<!-- If your model is not uploaded with any data (e.g., minified data) on the Model Hub, then make
|
305 |
+
sure to provide this field if you want users to be able to access your training data. See the
|
306 |
+
scvi-tools documentation for details. -->
|
307 |
+
**Training data url**: Not provided by uploader
|
308 |
+
|
309 |
+
If provided by the original uploader, for those interested in understanding or replicating the
|
310 |
+
training process, the code is available at the link below.
|
311 |
+
|
312 |
+
**Training Code URL**: https://github.com/YosefLab/Thymus_CITE-seq/blob/main/totalVI_AllData/totalVI_thymus111.ipynb
|
313 |
+
|
314 |
+
</details>
|
315 |
+
|
316 |
+
|
317 |
+
# References
|
318 |
+
|
319 |
+
Steier, Z., Aylard, D.A., McIntyre, L.L. et al. Single-cell multiomic analysis of thymocyte development reveals drivers of CD4+ T cell and CD8+ T cell lineage commitment. Nat Immunol 24, 1579–1590 (2023). https://doi.org/10.1038/s41590-023-01584-0.
|