scoris commited on
Commit
cc1b798
1 Parent(s): 1722211

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +3 -3
README.md CHANGED
@@ -12,7 +12,7 @@ metrics:
12
  ![Scoris logo](https://scoris.lt/logo_smaller.png)
13
  This is an English-Lithuanian translation model based on [Helsinki-NLP/opus-mt-tc-big-en-lt](https://huggingface.co/Helsinki-NLP/opus-mt-tc-big-en-lt)
14
 
15
- For Lithuanian-English translation check another model [scoris/opus-mt-tc-big-lt-en-scoris-finetuned](https://huggingface.co/scoris/opus-mt-tc-big-lt-en-scoris-finetuned)
16
 
17
 
18
  Fine-tuned on large merged data set: [scoris/en-lt-merged-data](https://huggingface.co/datasets/scoris/en-lt-merged-data) (5.4 million sentence pairs)
@@ -26,7 +26,7 @@ Tested on scoris/en-lt-merged-data validation set. Metric: sacrebleu
26
 
27
  | model | testset | BLEU | Gen Len |
28
  |----------|---------|-------|-------|
29
- | scoris/opus-mt-tc-big-en-lt-scoris-finetuned | scoris/en-lt-merged-data (validation) | 41.8841 | 17.4785
30
  | Helsinki-NLP/opus-mt-tc-big-en-lt | scoris/en-lt-merged-data (validation) | 34.2768 | 17.6664
31
 
32
  According to [Google](https://cloud.google.com/translate/automl/docs/evaluate) BLEU score interpretation is following:
@@ -47,7 +47,7 @@ You can use the model in the following way:
47
  from transformers import MarianMTModel, MarianTokenizer
48
 
49
  # Specify the model identifier on Hugging Face Model Hub
50
- model_name = "scoris/opus-mt-tc-big-en-lt-scoris-finetuned"
51
 
52
  # Load the model and tokenizer from Hugging Face
53
  tokenizer = MarianTokenizer.from_pretrained(model_name)
 
12
  ![Scoris logo](https://scoris.lt/logo_smaller.png)
13
  This is an English-Lithuanian translation model based on [Helsinki-NLP/opus-mt-tc-big-en-lt](https://huggingface.co/Helsinki-NLP/opus-mt-tc-big-en-lt)
14
 
15
+ For Lithuanian-English translation check another model [scoris-mt-lt-en](https://huggingface.co/scoris/scoris-mt-lt-en)
16
 
17
 
18
  Fine-tuned on large merged data set: [scoris/en-lt-merged-data](https://huggingface.co/datasets/scoris/en-lt-merged-data) (5.4 million sentence pairs)
 
26
 
27
  | model | testset | BLEU | Gen Len |
28
  |----------|---------|-------|-------|
29
+ | scoris/scoris-mt-en-lt | scoris/en-lt-merged-data (validation) | 41.8841 | 17.4785
30
  | Helsinki-NLP/opus-mt-tc-big-en-lt | scoris/en-lt-merged-data (validation) | 34.2768 | 17.6664
31
 
32
  According to [Google](https://cloud.google.com/translate/automl/docs/evaluate) BLEU score interpretation is following:
 
47
  from transformers import MarianMTModel, MarianTokenizer
48
 
49
  # Specify the model identifier on Hugging Face Model Hub
50
+ model_name = "scoris/scoris-mt-en-lt
51
 
52
  # Load the model and tokenizer from Hugging Face
53
  tokenizer = MarianTokenizer.from_pretrained(model_name)