david-scilo commited on
Commit
0b02645
1 Parent(s): d1e6f53

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,379 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: sentence-transformers
3
+ pipeline_tag: sentence-similarity
4
+ tags:
5
+ - sentence-transformers
6
+ - sentence-similarity
7
+ - feature-extraction
8
+ - generated_from_trainer
9
+ - dataset_size:1999
10
+ - loss:MultipleNegativesRankingLoss
11
+ widget:
12
+ - source_sentence: Which area code corresponds to the city listed as Richmond in the
13
+ context, and in which state is Richmond located?
14
+ sentences:
15
+ - ple, suppose an organization has two network interfaces. suppose both interfaces
16
+ are assigned to a single bandwidth policy. the virtual interface for the organization
17
+ will represent both network interfaces
18
+ - field, sl1 automatically calculates the width of the text field l height. the
19
+ height of the text field, including the label text, in pixels. if you do not supply
20
+ a value in this
21
+ - ) [1] => array ( [state] => va [city] => richmond [area_code] => 804 ) [2]
22
+ => array ( [state] => dc
23
+ - source_sentence: What connection details should you set in the `connect()` function
24
+ of your `main.go` file after running the command `go mod tidy`?
25
+ sentences:
26
+ - run go mod tidy go mod tidy set your connection details earlier you looked
27
+ up your connection details. set them in main.go in the connect() function
28
+ - 7. to leave an annotation for a status policy or rule, click the annotation icon
29
+ ( ) next to the rule or tab. type your annotation text in the annotation window
30
+ and click [save]. the annotation icon now displays as solid blue, while empty
31
+ annotation icons contain a plus sign
32
+ - the destination takes as its value the path where the le or directory is mounted
33
+ in the container. can be speci ed as destination , dst , or target
34
+ - source_sentence: What is the total memory limit for the steprunner in the xlqueue,
35
+ and how much more memory is allocated compared to the standard steprunner?
36
+ sentences:
37
+ - noise reduction is the percentage of alerts that did not become events in sl1.
38
+ a mature, tuned sl1 system will have a high noise reduction percentage, as sl1
39
+ is sharing only the events that matter to your environment
40
+ - <link uri="/api/device/852" description="vmpea1" elemtype="href"/> <link uri="/api/device/853"
41
+ description="cloudservicepeu2"
42
+ - 'l 1x steprunner: 15 gb memory limit (xlqueue steprunner): 15 gb total limits/max
43
+ expected memory usage'
44
+ - source_sentence: During the execution of a classic discovery session, how does the
45
+ system determine the value to be used if the default value in a specific field
46
+ is deleted and no other value is specified by the user?
47
+ sentences:
48
+ - '"sciencelogic, inc. | em7 admin portal" examples and reference 349 350 ] ] ] ] ] ] "sciencelogic,
49
+ inc. | em7 database"'
50
+ - isacknowledged = true message search for details about an event message message
51
+ contains "problem"
52
+ - 134 managing classic discovery sessions o during the execution of this discovery
53
+ session, sl1 uses the value in this field first. if you delete the default values
54
+ and do not specify another value in this field, sl1 uses the value in the global
55
+ threshold settings page (system > settings > thresholds)
56
+ - source_sentence: Which statement is true regarding the configuration of SL1 systems
57
+ to use Powerflow for syncing with third-party applications like ServiceNow or
58
+ Cherwell?
59
+ sentences:
60
+ - l you can configure one or more sl1 systems to use powerflow to sync with a single
61
+ instance of a third-party application like servicenow or cherwell. you cannot
62
+ configure one sl1 system to use powerflow to sync with multiple instances of a
63
+ third-party application like servicenow or cherwell. the relationship between
64
+ sl1 and the third-party application can be either one-to-one or many-to-one, but
65
+ - l apply_64gb_override and verify_64gb_override the following command is an example
66
+ of a pfctl command to apply the 32 gb override
67
+ - ( provisioning a customer (provision_customer.php) 229 [0] => array ( ['start_ip']
68
+ => ['end_ip'] =>
69
+ ---
70
+
71
+ # SentenceTransformer
72
+
73
+ This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
74
+
75
+ ## Model Details
76
+
77
+ ### Model Description
78
+ - **Model Type:** Sentence Transformer
79
+ <!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
80
+ - **Maximum Sequence Length:** 512 tokens
81
+ - **Output Dimensionality:** 384 tokens
82
+ - **Similarity Function:** Cosine Similarity
83
+ <!-- - **Training Dataset:** Unknown -->
84
+ <!-- - **Language:** Unknown -->
85
+ <!-- - **License:** Unknown -->
86
+
87
+ ### Model Sources
88
+
89
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
90
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
91
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
92
+
93
+ ### Full Model Architecture
94
+
95
+ ```
96
+ SentenceTransformer(
97
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
98
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
99
+ (2): Normalize()
100
+ )
101
+ ```
102
+
103
+ ## Usage
104
+
105
+ ### Direct Usage (Sentence Transformers)
106
+
107
+ First install the Sentence Transformers library:
108
+
109
+ ```bash
110
+ pip install -U sentence-transformers
111
+ ```
112
+
113
+ Then you can load this model and run inference.
114
+ ```python
115
+ from sentence_transformers import SentenceTransformer
116
+
117
+ # Download from the 🤗 Hub
118
+ model = SentenceTransformer("david-scilo/test_upload_10_17_2024")
119
+ # Run inference
120
+ sentences = [
121
+ 'Which statement is true regarding the configuration of SL1 systems to use Powerflow for syncing with third-party applications like ServiceNow or Cherwell?',
122
+ 'l you can configure one or more sl1 systems to use powerflow to sync with a single instance of a third-party application like servicenow or cherwell. you cannot configure one sl1 system to use powerflow to sync with multiple instances of a third-party application like servicenow or cherwell. the relationship between sl1 and the third-party application can be either one-to-one or many-to-one, but',
123
+ "( provisioning a customer (provision_customer.php) 229 [0] => array ( ['start_ip'] => ['end_ip'] =>",
124
+ ]
125
+ embeddings = model.encode(sentences)
126
+ print(embeddings.shape)
127
+ # [3, 384]
128
+
129
+ # Get the similarity scores for the embeddings
130
+ similarities = model.similarity(embeddings, embeddings)
131
+ print(similarities.shape)
132
+ # [3, 3]
133
+ ```
134
+
135
+ <!--
136
+ ### Direct Usage (Transformers)
137
+
138
+ <details><summary>Click to see the direct usage in Transformers</summary>
139
+
140
+ </details>
141
+ -->
142
+
143
+ <!--
144
+ ### Downstream Usage (Sentence Transformers)
145
+
146
+ You can finetune this model on your own dataset.
147
+
148
+ <details><summary>Click to expand</summary>
149
+
150
+ </details>
151
+ -->
152
+
153
+ <!--
154
+ ### Out-of-Scope Use
155
+
156
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
157
+ -->
158
+
159
+ <!--
160
+ ## Bias, Risks and Limitations
161
+
162
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
163
+ -->
164
+
165
+ <!--
166
+ ### Recommendations
167
+
168
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
169
+ -->
170
+
171
+ ## Training Details
172
+
173
+ ### Training Dataset
174
+
175
+ #### Unnamed Dataset
176
+
177
+
178
+ * Size: 1,999 training samples
179
+ * Columns: <code>sentence_0</code> and <code>sentence_1</code>
180
+ * Approximate statistics based on the first 1000 samples:
181
+ | | sentence_0 | sentence_1 |
182
+ |:--------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
183
+ | type | string | string |
184
+ | details | <ul><li>min: 13 tokens</li><li>mean: 34.55 tokens</li><li>max: 138 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 52.41 tokens</li><li>max: 210 tokens</li></ul> |
185
+ * Samples:
186
+ | sentence_0 | sentence_1 |
187
+ |:--------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
188
+ | <code>Which software ignores the authentication method field for users who are authenticated with single sign-on (SSO) in the context of EM7?</code> | <code>note: for users who are authenticated with single sign on (sso), em7 ignores the authentication method field. for details on configuring sl1 to use single sign on (sso) authentication, see the manual on using using single sign on</code> |
189
+ | <code>Which command would you use to enable the ol8_appstream repository for package management on a Linux system using DNF?</code> | <code>sudo dnf install yum-utils sudo dnf config-manager --enable ol8_baseos_latest sudo dnf config-manager --enable ol8_appstream</code> |
190
+ | <code>Which process should you consider using if you encounter environmental problems during the automated upgrade scripts for AWS environments?</code> | <code>the automated upgrade scripts will likely work for aws environments, but due to potential environmental differences between chosen amis, there might be other package updates or requirements. if you encounter environmental problems, you should consider using the back up, re-install, and restore process instead</code> |
191
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
192
+ ```json
193
+ {
194
+ "scale": 20.0,
195
+ "similarity_fct": "cos_sim"
196
+ }
197
+ ```
198
+
199
+ ### Training Hyperparameters
200
+ #### Non-Default Hyperparameters
201
+
202
+ - `eval_strategy`: steps
203
+ - `per_device_train_batch_size`: 10
204
+ - `per_device_eval_batch_size`: 10
205
+ - `num_train_epochs`: 1
206
+ - `multi_dataset_batch_sampler`: round_robin
207
+
208
+ #### All Hyperparameters
209
+ <details><summary>Click to expand</summary>
210
+
211
+ - `overwrite_output_dir`: False
212
+ - `do_predict`: False
213
+ - `eval_strategy`: steps
214
+ - `prediction_loss_only`: True
215
+ - `per_device_train_batch_size`: 10
216
+ - `per_device_eval_batch_size`: 10
217
+ - `per_gpu_train_batch_size`: None
218
+ - `per_gpu_eval_batch_size`: None
219
+ - `gradient_accumulation_steps`: 1
220
+ - `eval_accumulation_steps`: None
221
+ - `torch_empty_cache_steps`: None
222
+ - `learning_rate`: 5e-05
223
+ - `weight_decay`: 0.0
224
+ - `adam_beta1`: 0.9
225
+ - `adam_beta2`: 0.999
226
+ - `adam_epsilon`: 1e-08
227
+ - `max_grad_norm`: 1
228
+ - `num_train_epochs`: 1
229
+ - `max_steps`: -1
230
+ - `lr_scheduler_type`: linear
231
+ - `lr_scheduler_kwargs`: {}
232
+ - `warmup_ratio`: 0.0
233
+ - `warmup_steps`: 0
234
+ - `log_level`: passive
235
+ - `log_level_replica`: warning
236
+ - `log_on_each_node`: True
237
+ - `logging_nan_inf_filter`: True
238
+ - `save_safetensors`: True
239
+ - `save_on_each_node`: False
240
+ - `save_only_model`: False
241
+ - `restore_callback_states_from_checkpoint`: False
242
+ - `no_cuda`: False
243
+ - `use_cpu`: False
244
+ - `use_mps_device`: False
245
+ - `seed`: 42
246
+ - `data_seed`: None
247
+ - `jit_mode_eval`: False
248
+ - `use_ipex`: False
249
+ - `bf16`: False
250
+ - `fp16`: False
251
+ - `fp16_opt_level`: O1
252
+ - `half_precision_backend`: auto
253
+ - `bf16_full_eval`: False
254
+ - `fp16_full_eval`: False
255
+ - `tf32`: None
256
+ - `local_rank`: 0
257
+ - `ddp_backend`: None
258
+ - `tpu_num_cores`: None
259
+ - `tpu_metrics_debug`: False
260
+ - `debug`: []
261
+ - `dataloader_drop_last`: False
262
+ - `dataloader_num_workers`: 0
263
+ - `dataloader_prefetch_factor`: None
264
+ - `past_index`: -1
265
+ - `disable_tqdm`: False
266
+ - `remove_unused_columns`: True
267
+ - `label_names`: None
268
+ - `load_best_model_at_end`: False
269
+ - `ignore_data_skip`: False
270
+ - `fsdp`: []
271
+ - `fsdp_min_num_params`: 0
272
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
273
+ - `fsdp_transformer_layer_cls_to_wrap`: None
274
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
275
+ - `deepspeed`: None
276
+ - `label_smoothing_factor`: 0.0
277
+ - `optim`: adamw_torch
278
+ - `optim_args`: None
279
+ - `adafactor`: False
280
+ - `group_by_length`: False
281
+ - `length_column_name`: length
282
+ - `ddp_find_unused_parameters`: None
283
+ - `ddp_bucket_cap_mb`: None
284
+ - `ddp_broadcast_buffers`: False
285
+ - `dataloader_pin_memory`: True
286
+ - `dataloader_persistent_workers`: False
287
+ - `skip_memory_metrics`: True
288
+ - `use_legacy_prediction_loop`: False
289
+ - `push_to_hub`: False
290
+ - `resume_from_checkpoint`: None
291
+ - `hub_model_id`: None
292
+ - `hub_strategy`: every_save
293
+ - `hub_private_repo`: False
294
+ - `hub_always_push`: False
295
+ - `gradient_checkpointing`: False
296
+ - `gradient_checkpointing_kwargs`: None
297
+ - `include_inputs_for_metrics`: False
298
+ - `eval_do_concat_batches`: True
299
+ - `fp16_backend`: auto
300
+ - `push_to_hub_model_id`: None
301
+ - `push_to_hub_organization`: None
302
+ - `mp_parameters`:
303
+ - `auto_find_batch_size`: False
304
+ - `full_determinism`: False
305
+ - `torchdynamo`: None
306
+ - `ray_scope`: last
307
+ - `ddp_timeout`: 1800
308
+ - `torch_compile`: False
309
+ - `torch_compile_backend`: None
310
+ - `torch_compile_mode`: None
311
+ - `dispatch_batches`: None
312
+ - `split_batches`: None
313
+ - `include_tokens_per_second`: False
314
+ - `include_num_input_tokens_seen`: False
315
+ - `neftune_noise_alpha`: None
316
+ - `optim_target_modules`: None
317
+ - `batch_eval_metrics`: False
318
+ - `eval_on_start`: False
319
+ - `eval_use_gather_object`: False
320
+ - `batch_sampler`: batch_sampler
321
+ - `multi_dataset_batch_sampler`: round_robin
322
+
323
+ </details>
324
+
325
+ ### Framework Versions
326
+ - Python: 3.11.9
327
+ - Sentence Transformers: 3.1.1
328
+ - Transformers: 4.43.3
329
+ - PyTorch: 2.3.1+cu121
330
+ - Accelerate: 0.30.1
331
+ - Datasets: 2.19.1
332
+ - Tokenizers: 0.19.1
333
+
334
+ ## Citation
335
+
336
+ ### BibTeX
337
+
338
+ #### Sentence Transformers
339
+ ```bibtex
340
+ @inproceedings{reimers-2019-sentence-bert,
341
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
342
+ author = "Reimers, Nils and Gurevych, Iryna",
343
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
344
+ month = "11",
345
+ year = "2019",
346
+ publisher = "Association for Computational Linguistics",
347
+ url = "https://arxiv.org/abs/1908.10084",
348
+ }
349
+ ```
350
+
351
+ #### MultipleNegativesRankingLoss
352
+ ```bibtex
353
+ @misc{henderson2017efficient,
354
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
355
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
356
+ year={2017},
357
+ eprint={1705.00652},
358
+ archivePrefix={arXiv},
359
+ primaryClass={cs.CL}
360
+ }
361
+ ```
362
+
363
+ <!--
364
+ ## Glossary
365
+
366
+ *Clearly define terms in order to be accessible across audiences.*
367
+ -->
368
+
369
+ <!--
370
+ ## Model Card Authors
371
+
372
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
373
+ -->
374
+
375
+ <!--
376
+ ## Model Card Contact
377
+
378
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
379
+ -->
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "david-scilo/test_upload_10_17_2024",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 1536,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 12,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.43.3",
22
+ "type_vocab_size": 2,
23
+ "use_cache": true,
24
+ "vocab_size": 30522
25
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.43.3",
5
+ "pytorch": "2.3.1+cu121"
6
+ },
7
+ "prompts": {
8
+ "query": "Represent this sentence for searching relevant passages: "
9
+ },
10
+ "default_prompt_name": null,
11
+ "similarity_fn_name": null
12
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dd7b1ed735c6b306ad6a6bb01bd93b8535bcdabe1c153935410b6cfa1ae25a41
3
+ size 133462128
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 512,
50
+ "model_max_length": 512,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff