merve HF staff commited on
Commit
90021a6
1 Parent(s): 861a7b3

Upload . with huggingface_hub

Browse files
Files changed (3) hide show
  1. README.md +123 -0
  2. config.json +57 -0
  3. pipeline.skops +0 -0
README.md ADDED
@@ -0,0 +1,123 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: sklearn
3
+ tags:
4
+ - sklearn
5
+ - skops
6
+ - tabular-regression
7
+ model_file: pipeline.skops
8
+ widget:
9
+ structuredData:
10
+ acceleration:
11
+ - 20.7
12
+ - 17.0
13
+ - 18.6
14
+ cylinders:
15
+ - 4
16
+ - 4
17
+ - 4
18
+ displacement:
19
+ - 98.0
20
+ - 120.0
21
+ - 120.0
22
+ horsepower:
23
+ - '65'
24
+ - '88'
25
+ - '79'
26
+ model year:
27
+ - 81
28
+ - 75
29
+ - 82
30
+ origin:
31
+ - 1
32
+ - 2
33
+ - 1
34
+ weight:
35
+ - 2380
36
+ - 2957
37
+ - 2625
38
+ ---
39
+
40
+ # Model description
41
+
42
+ This is a regression model on MPG dataset trained for this [kaggle tutorial](https://www.kaggle.com/unofficialmerve/persisting-your-scikit-learn-model-using-skops/).
43
+
44
+ ## Intended uses & limitations
45
+
46
+ This model is not ready to be used in production.
47
+
48
+ ## Training Procedure
49
+
50
+ ### Hyperparameters
51
+
52
+ The model is trained with below hyperparameters.
53
+
54
+ <details>
55
+ <summary> Click to expand </summary>
56
+
57
+ | Hyperparameter | Value |
58
+ |--------------------------|---------------|
59
+ | ccp_alpha | 0.0 |
60
+ | criterion | squared_error |
61
+ | max_depth | |
62
+ | max_features | |
63
+ | max_leaf_nodes | |
64
+ | min_impurity_decrease | 0.0 |
65
+ | min_samples_leaf | 1 |
66
+ | min_samples_split | 2 |
67
+ | min_weight_fraction_leaf | 0.0 |
68
+ | random_state | |
69
+ | splitter | best |
70
+
71
+ </details>
72
+
73
+ ### Model Plot
74
+
75
+ The model plot is below.
76
+
77
+ <style>#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 {color: black;background-color: white;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 pre{padding: 0;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-toggleable {background-color: white;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-estimator:hover {background-color: #d4ebff;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-item {z-index: 1;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-parallel::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-parallel-item:only-child::after {width: 0;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;position: relative;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-label-container {position: relative;z-index: 2;text-align: center;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-text-repr-fallback {display: none;}</style><div id="sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>DecisionTreeRegressor()</pre><b>Please rerun this cell to show the HTML repr or trust the notebook.</b></div><div class="sk-container" hidden><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="37ade0f5-01f0-4181-acab-e7150c3b5fa2" type="checkbox" checked><label for="37ade0f5-01f0-4181-acab-e7150c3b5fa2" class="sk-toggleable__label sk-toggleable__label-arrow">DecisionTreeRegressor</label><div class="sk-toggleable__content"><pre>DecisionTreeRegressor()</pre></div></div></div></div></div>
78
+
79
+ ## Evaluation Results
80
+
81
+ You can find the details about evaluation process and the evaluation results.
82
+
83
+
84
+
85
+ | Metric | Value |
86
+ |--------------------|---------------------------------------|
87
+ | Mean Squared Error | 10.86399394359616 |
88
+ | R-Squared | <function r2_score at 0x7f743fc54b00> |
89
+
90
+ # How to Get Started with the Model
91
+
92
+ Use the code below to get started with the model.
93
+
94
+ ```python
95
+ from skops.io import load
96
+ import json
97
+ import pandas as pd
98
+ clf = load("pipeline.skops")
99
+ with open("config.json") as f:
100
+ config = json.load(f)
101
+ clf.predict(pd.DataFrame.from_dict(config["sklearn"]["example_input"]))
102
+ ```
103
+
104
+
105
+ # Model Card Authors
106
+
107
+ This model card is written by following authors:
108
+
109
+ [More Information Needed]
110
+
111
+ # Model Card Contact
112
+
113
+ You can contact the model card authors through following channels:
114
+ [More Information Needed]
115
+
116
+ # Citation
117
+
118
+ Below you can find information related to citation.
119
+
120
+ **BibTeX:**
121
+ ```
122
+ [More Information Needed]
123
+ ```
config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "sklearn": {
3
+ "columns": [
4
+ "cylinders",
5
+ "displacement",
6
+ "horsepower",
7
+ "weight",
8
+ "acceleration",
9
+ "model year",
10
+ "origin"
11
+ ],
12
+ "environment": [
13
+ "scikit-learn"
14
+ ],
15
+ "example_input": {
16
+ "acceleration": [
17
+ 20.7,
18
+ 17.0,
19
+ 18.6
20
+ ],
21
+ "cylinders": [
22
+ 4,
23
+ 4,
24
+ 4
25
+ ],
26
+ "displacement": [
27
+ 98.0,
28
+ 120.0,
29
+ 120.0
30
+ ],
31
+ "horsepower": [
32
+ "65",
33
+ "88",
34
+ "79"
35
+ ],
36
+ "model year": [
37
+ 81,
38
+ 75,
39
+ 82
40
+ ],
41
+ "origin": [
42
+ 1,
43
+ 2,
44
+ 1
45
+ ],
46
+ "weight": [
47
+ 2380,
48
+ 2957,
49
+ 2625
50
+ ]
51
+ },
52
+ "model": {
53
+ "file": "pipeline.skops"
54
+ },
55
+ "task": "tabular-regression"
56
+ }
57
+ }
pipeline.skops ADDED
Binary file (13.7 kB). View file