Upload . with huggingface_hub
Browse files- README.md +123 -0
- config.json +57 -0
- pipeline.skops +0 -0
README.md
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: sklearn
|
3 |
+
tags:
|
4 |
+
- sklearn
|
5 |
+
- skops
|
6 |
+
- tabular-regression
|
7 |
+
model_file: pipeline.skops
|
8 |
+
widget:
|
9 |
+
structuredData:
|
10 |
+
acceleration:
|
11 |
+
- 20.7
|
12 |
+
- 17.0
|
13 |
+
- 18.6
|
14 |
+
cylinders:
|
15 |
+
- 4
|
16 |
+
- 4
|
17 |
+
- 4
|
18 |
+
displacement:
|
19 |
+
- 98.0
|
20 |
+
- 120.0
|
21 |
+
- 120.0
|
22 |
+
horsepower:
|
23 |
+
- '65'
|
24 |
+
- '88'
|
25 |
+
- '79'
|
26 |
+
model year:
|
27 |
+
- 81
|
28 |
+
- 75
|
29 |
+
- 82
|
30 |
+
origin:
|
31 |
+
- 1
|
32 |
+
- 2
|
33 |
+
- 1
|
34 |
+
weight:
|
35 |
+
- 2380
|
36 |
+
- 2957
|
37 |
+
- 2625
|
38 |
+
---
|
39 |
+
|
40 |
+
# Model description
|
41 |
+
|
42 |
+
This is a regression model on MPG dataset trained for this [kaggle tutorial](https://www.kaggle.com/unofficialmerve/persisting-your-scikit-learn-model-using-skops/).
|
43 |
+
|
44 |
+
## Intended uses & limitations
|
45 |
+
|
46 |
+
This model is not ready to be used in production.
|
47 |
+
|
48 |
+
## Training Procedure
|
49 |
+
|
50 |
+
### Hyperparameters
|
51 |
+
|
52 |
+
The model is trained with below hyperparameters.
|
53 |
+
|
54 |
+
<details>
|
55 |
+
<summary> Click to expand </summary>
|
56 |
+
|
57 |
+
| Hyperparameter | Value |
|
58 |
+
|--------------------------|---------------|
|
59 |
+
| ccp_alpha | 0.0 |
|
60 |
+
| criterion | squared_error |
|
61 |
+
| max_depth | |
|
62 |
+
| max_features | |
|
63 |
+
| max_leaf_nodes | |
|
64 |
+
| min_impurity_decrease | 0.0 |
|
65 |
+
| min_samples_leaf | 1 |
|
66 |
+
| min_samples_split | 2 |
|
67 |
+
| min_weight_fraction_leaf | 0.0 |
|
68 |
+
| random_state | |
|
69 |
+
| splitter | best |
|
70 |
+
|
71 |
+
</details>
|
72 |
+
|
73 |
+
### Model Plot
|
74 |
+
|
75 |
+
The model plot is below.
|
76 |
+
|
77 |
+
<style>#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 {color: black;background-color: white;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 pre{padding: 0;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-toggleable {background-color: white;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-estimator:hover {background-color: #d4ebff;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-item {z-index: 1;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-parallel::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-parallel-item:only-child::after {width: 0;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;position: relative;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-label-container {position: relative;z-index: 2;text-align: center;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-text-repr-fallback {display: none;}</style><div id="sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>DecisionTreeRegressor()</pre><b>Please rerun this cell to show the HTML repr or trust the notebook.</b></div><div class="sk-container" hidden><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="37ade0f5-01f0-4181-acab-e7150c3b5fa2" type="checkbox" checked><label for="37ade0f5-01f0-4181-acab-e7150c3b5fa2" class="sk-toggleable__label sk-toggleable__label-arrow">DecisionTreeRegressor</label><div class="sk-toggleable__content"><pre>DecisionTreeRegressor()</pre></div></div></div></div></div>
|
78 |
+
|
79 |
+
## Evaluation Results
|
80 |
+
|
81 |
+
You can find the details about evaluation process and the evaluation results.
|
82 |
+
|
83 |
+
|
84 |
+
|
85 |
+
| Metric | Value |
|
86 |
+
|--------------------|---------------------------------------|
|
87 |
+
| Mean Squared Error | 10.86399394359616 |
|
88 |
+
| R-Squared | <function r2_score at 0x7f743fc54b00> |
|
89 |
+
|
90 |
+
# How to Get Started with the Model
|
91 |
+
|
92 |
+
Use the code below to get started with the model.
|
93 |
+
|
94 |
+
```python
|
95 |
+
from skops.io import load
|
96 |
+
import json
|
97 |
+
import pandas as pd
|
98 |
+
clf = load("pipeline.skops")
|
99 |
+
with open("config.json") as f:
|
100 |
+
config = json.load(f)
|
101 |
+
clf.predict(pd.DataFrame.from_dict(config["sklearn"]["example_input"]))
|
102 |
+
```
|
103 |
+
|
104 |
+
|
105 |
+
# Model Card Authors
|
106 |
+
|
107 |
+
This model card is written by following authors:
|
108 |
+
|
109 |
+
[More Information Needed]
|
110 |
+
|
111 |
+
# Model Card Contact
|
112 |
+
|
113 |
+
You can contact the model card authors through following channels:
|
114 |
+
[More Information Needed]
|
115 |
+
|
116 |
+
# Citation
|
117 |
+
|
118 |
+
Below you can find information related to citation.
|
119 |
+
|
120 |
+
**BibTeX:**
|
121 |
+
```
|
122 |
+
[More Information Needed]
|
123 |
+
```
|
config.json
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"sklearn": {
|
3 |
+
"columns": [
|
4 |
+
"cylinders",
|
5 |
+
"displacement",
|
6 |
+
"horsepower",
|
7 |
+
"weight",
|
8 |
+
"acceleration",
|
9 |
+
"model year",
|
10 |
+
"origin"
|
11 |
+
],
|
12 |
+
"environment": [
|
13 |
+
"scikit-learn"
|
14 |
+
],
|
15 |
+
"example_input": {
|
16 |
+
"acceleration": [
|
17 |
+
20.7,
|
18 |
+
17.0,
|
19 |
+
18.6
|
20 |
+
],
|
21 |
+
"cylinders": [
|
22 |
+
4,
|
23 |
+
4,
|
24 |
+
4
|
25 |
+
],
|
26 |
+
"displacement": [
|
27 |
+
98.0,
|
28 |
+
120.0,
|
29 |
+
120.0
|
30 |
+
],
|
31 |
+
"horsepower": [
|
32 |
+
"65",
|
33 |
+
"88",
|
34 |
+
"79"
|
35 |
+
],
|
36 |
+
"model year": [
|
37 |
+
81,
|
38 |
+
75,
|
39 |
+
82
|
40 |
+
],
|
41 |
+
"origin": [
|
42 |
+
1,
|
43 |
+
2,
|
44 |
+
1
|
45 |
+
],
|
46 |
+
"weight": [
|
47 |
+
2380,
|
48 |
+
2957,
|
49 |
+
2625
|
50 |
+
]
|
51 |
+
},
|
52 |
+
"model": {
|
53 |
+
"file": "pipeline.skops"
|
54 |
+
},
|
55 |
+
"task": "tabular-regression"
|
56 |
+
}
|
57 |
+
}
|
pipeline.skops
ADDED
Binary file (13.7 kB). View file
|
|