sci-m-wang commited on
Commit
20ac4de
1 Parent(s): b2666e6

Upload 12 files

Browse files
README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: internlm/internlm2-7b
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
adapter_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "internlm/internlm2-7b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "wqkv"
24
+ ],
25
+ "task_type": "CAUSAL_LM",
26
+ "use_dora": false,
27
+ "use_rslora": false
28
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:80ba30483ccd987d621cb48697b808dcbfe7d54b4b9e7efe013ee7c09ff9f125
3
+ size 10494088
optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:57537ee701318c13465a329510699c55fb5ede09a90f80c20f0ec73eab240ff8
3
+ size 21025594
rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8d138cfe3a4adf21f048848ee35837c9a757a0a3616ff7adbb45b69aac247435
3
+ size 14244
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3af038473f20545bacb7d27125c632099467545ee3520cb3424ddb40f0a0d546
3
+ size 1064
special_tokens_map.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "eos_token": "</s>",
4
+ "pad_token": "</s>",
5
+ "unk_token": "<unk>"
6
+ }
tokenization_internlm.py ADDED
@@ -0,0 +1,240 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright (c) InternLM. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+
21
+ """Tokenization classes for IntermLM."""
22
+ import os
23
+ from shutil import copyfile
24
+ from typing import Any, Dict, List, Optional, Tuple
25
+
26
+ import sentencepiece as spm
27
+ from transformers.tokenization_utils import PreTrainedTokenizer
28
+ from transformers.utils import logging
29
+
30
+ logger = logging.get_logger(__name__)
31
+
32
+ VOCAB_FILES_NAMES = {"vocab_file": "./tokenizer.model"}
33
+
34
+ PRETRAINED_VOCAB_FILES_MAP = {}
35
+
36
+
37
+ class InternLMTokenizer(PreTrainedTokenizer):
38
+ """
39
+ Construct a InternLM tokenizer. Based on byte-level Byte-Pair-Encoding.
40
+
41
+ Args:
42
+ vocab_file (`str`):
43
+ Path to the vocabulary file.
44
+ """
45
+
46
+ vocab_files_names = VOCAB_FILES_NAMES
47
+ pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
48
+ model_input_names = ["input_ids", "attention_mask"]
49
+ _auto_class = "AutoTokenizer"
50
+
51
+ def __init__(
52
+ self,
53
+ vocab_file,
54
+ unk_token="<unk>",
55
+ bos_token="<s>",
56
+ eos_token="</s>",
57
+ pad_token="</s>",
58
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
59
+ add_bos_token=True,
60
+ add_eos_token=False,
61
+ decode_with_prefix_space=False,
62
+ clean_up_tokenization_spaces=False,
63
+ **kwargs,
64
+ ):
65
+ self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
66
+ self.vocab_file = vocab_file
67
+ self.add_bos_token = add_bos_token
68
+ self.add_eos_token = add_eos_token
69
+ self.decode_with_prefix_space = decode_with_prefix_space
70
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
71
+ self.sp_model.Load(vocab_file)
72
+ self._no_prefix_space_tokens = None
73
+ super().__init__(
74
+ bos_token=bos_token,
75
+ eos_token=eos_token,
76
+ unk_token=unk_token,
77
+ pad_token=pad_token,
78
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
79
+ **kwargs,
80
+ )
81
+
82
+ """ Initialization"""
83
+
84
+ @property
85
+ def no_prefix_space_tokens(self):
86
+ if self._no_prefix_space_tokens is None:
87
+ vocab = self.convert_ids_to_tokens(list(range(self.vocab_size)))
88
+ self._no_prefix_space_tokens = {i for i, tok in enumerate(vocab) if not tok.startswith("▁")}
89
+ return self._no_prefix_space_tokens
90
+
91
+ @property
92
+ def vocab_size(self):
93
+ """Returns vocab size"""
94
+ return self.sp_model.get_piece_size()
95
+
96
+ @property
97
+ def bos_token_id(self) -> Optional[int]:
98
+ return self.sp_model.bos_id()
99
+
100
+ @property
101
+ def eos_token_id(self) -> Optional[int]:
102
+ return self.sp_model.eos_id()
103
+
104
+ def get_vocab(self):
105
+ """Returns vocab as a dict"""
106
+ vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
107
+ vocab.update(self.added_tokens_encoder)
108
+ return vocab
109
+
110
+ def _tokenize(self, text):
111
+ """Returns a tokenized string."""
112
+ return self.sp_model.encode(text, out_type=str)
113
+
114
+ def _convert_token_to_id(self, token):
115
+ """Converts a token (str) in an id using the vocab."""
116
+ return self.sp_model.piece_to_id(token)
117
+
118
+ def _convert_id_to_token(self, index):
119
+ """Converts an index (integer) in a token (str) using the vocab."""
120
+ token = self.sp_model.IdToPiece(index)
121
+ return token
122
+
123
+ def _maybe_add_prefix_space(self, tokens, decoded):
124
+ if tokens and tokens[0] not in self.no_prefix_space_tokens:
125
+ return " " + decoded
126
+ else:
127
+ return decoded
128
+
129
+ def convert_tokens_to_string(self, tokens):
130
+ """Converts a sequence of tokens (string) in a single string."""
131
+ current_sub_tokens = []
132
+ out_string = ""
133
+ prev_is_special = False
134
+ for token in tokens:
135
+ # make sure that special tokens are not decoded using sentencepiece model
136
+ if token in self.all_special_tokens:
137
+ if not prev_is_special:
138
+ out_string += " "
139
+ out_string += self.sp_model.decode(current_sub_tokens) + token
140
+ prev_is_special = True
141
+ current_sub_tokens = []
142
+ else:
143
+ current_sub_tokens.append(token)
144
+ prev_is_special = False
145
+ out_string += self.sp_model.decode(current_sub_tokens)
146
+ out_string = self.clean_up_tokenization(out_string)
147
+ out_string = self._maybe_add_prefix_space(tokens=tokens, decoded=out_string)
148
+ return out_string[1:]
149
+
150
+ def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
151
+ """
152
+ Save the vocabulary and special tokens file to a directory.
153
+
154
+ Args:
155
+ save_directory (`str`):
156
+ The directory in which to save the vocabulary.
157
+
158
+ Returns:
159
+ `Tuple(str)`: Paths to the files saved.
160
+ """
161
+ if not os.path.isdir(save_directory):
162
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
163
+ return
164
+ out_vocab_file = os.path.join(
165
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
166
+ )
167
+
168
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
169
+ copyfile(self.vocab_file, out_vocab_file)
170
+ elif not os.path.isfile(self.vocab_file):
171
+ with open(out_vocab_file, "wb") as fi:
172
+ content_spiece_model = self.sp_model.serialized_model_proto()
173
+ fi.write(content_spiece_model)
174
+
175
+ return (out_vocab_file,)
176
+
177
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
178
+ if self.add_bos_token:
179
+ bos_token_ids = [self.bos_token_id]
180
+ else:
181
+ bos_token_ids = []
182
+
183
+ output = bos_token_ids + token_ids_0
184
+
185
+ if token_ids_1 is not None:
186
+ output = output + token_ids_1
187
+
188
+ if self.add_eos_token:
189
+ output = output + [self.eos_token_id]
190
+
191
+ return output
192
+
193
+ def get_special_tokens_mask(
194
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
195
+ ) -> List[int]:
196
+ """
197
+ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
198
+ special tokens using the tokenizer `prepare_for_model` method.
199
+
200
+ Args:
201
+ token_ids_0 (`List[int]`):
202
+ List of IDs.
203
+ token_ids_1 (`List[int]`, *optional*):
204
+ Optional second list of IDs for sequence pairs.
205
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
206
+ Whether or not the token list is already formatted with special tokens for the model.
207
+
208
+ Returns:
209
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
210
+ """
211
+ if already_has_special_tokens:
212
+ return super().get_special_tokens_mask(
213
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
214
+ )
215
+
216
+ if token_ids_1 is None:
217
+ return [1] + ([0] * len(token_ids_0)) + [1]
218
+ return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
219
+
220
+ def create_token_type_ids_from_sequences(
221
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
222
+ ) -> List[int]:
223
+ """
224
+ Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make
225
+ use of token type ids, therefore a list of zeros is returned.
226
+
227
+ Args:
228
+ token_ids_0 (`List[int]`):
229
+ List of IDs.
230
+ token_ids_1 (`List[int]`, *optional*):
231
+ Optional second list of IDs for sequence pairs.
232
+
233
+ Returns:
234
+ `List[int]`: List of zeros.
235
+ """
236
+ eos = [self.eos_token_id]
237
+
238
+ if token_ids_1 is None:
239
+ return len(token_ids_0 + eos) * [0]
240
+ return len(token_ids_0 + eos + token_ids_1 + eos) * [0]
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f868398fc4e05ee1e8aeba95ddf18ddcc45b8bce55d5093bead5bbf80429b48b
3
+ size 1477754
tokenizer_config.json ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<unk>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<s>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ }
27
+ },
28
+ "auto_map": {
29
+ "AutoTokenizer": [
30
+ "tokenization_internlm.InternLMTokenizer",
31
+ null
32
+ ]
33
+ },
34
+ "bos_token": "<s>",
35
+ "chat_template": "{% if messages[0]['role'] == 'system' %}{% set system_message = messages[0]['content'] %}{% endif %}{% if system_message is defined %}{{ system_message + '\n' }}{% endif %}{% for message in messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ 'Human: ' + content + '\nAssistant: ' }}{% elif message['role'] == 'assistant' %}{{ content + '</s>' + '\n' }}{% endif %}{% endfor %}",
36
+ "clean_up_tokenization_spaces": false,
37
+ "eos_token": "</s>",
38
+ "model_max_length": 1000000000000000019884624838656,
39
+ "pad_token": "</s>",
40
+ "padding_side": "right",
41
+ "split_special_tokens": false,
42
+ "tokenizer_class": "InternLMTokenizer",
43
+ "unk_token": "<unk>"
44
+ }
trainer_state.json ADDED
@@ -0,0 +1,981 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.5002344116268167,
5
+ "eval_steps": 500,
6
+ "global_step": 800,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.01,
13
+ "learning_rate": 4.999956573574533e-05,
14
+ "loss": 0.9781,
15
+ "step": 5
16
+ },
17
+ {
18
+ "epoch": 0.02,
19
+ "learning_rate": 4.999826295806815e-05,
20
+ "loss": 0.9708,
21
+ "step": 10
22
+ },
23
+ {
24
+ "epoch": 0.03,
25
+ "learning_rate": 4.999609171222846e-05,
26
+ "loss": 0.9112,
27
+ "step": 15
28
+ },
29
+ {
30
+ "epoch": 0.04,
31
+ "learning_rate": 4.99930520736578e-05,
32
+ "loss": 0.9353,
33
+ "step": 20
34
+ },
35
+ {
36
+ "epoch": 0.05,
37
+ "learning_rate": 4.998914414795668e-05,
38
+ "loss": 0.8337,
39
+ "step": 25
40
+ },
41
+ {
42
+ "epoch": 0.06,
43
+ "learning_rate": 4.99843680708909e-05,
44
+ "loss": 0.8133,
45
+ "step": 30
46
+ },
47
+ {
48
+ "epoch": 0.07,
49
+ "learning_rate": 4.997872400838682e-05,
50
+ "loss": 0.8195,
51
+ "step": 35
52
+ },
53
+ {
54
+ "epoch": 0.08,
55
+ "learning_rate": 4.997221215652562e-05,
56
+ "loss": 0.7842,
57
+ "step": 40
58
+ },
59
+ {
60
+ "epoch": 0.08,
61
+ "learning_rate": 4.9964832741536444e-05,
62
+ "loss": 0.7454,
63
+ "step": 45
64
+ },
65
+ {
66
+ "epoch": 0.09,
67
+ "learning_rate": 4.9956586019788584e-05,
68
+ "loss": 0.7732,
69
+ "step": 50
70
+ },
71
+ {
72
+ "epoch": 0.1,
73
+ "learning_rate": 4.9947472277782584e-05,
74
+ "loss": 0.7903,
75
+ "step": 55
76
+ },
77
+ {
78
+ "epoch": 0.11,
79
+ "learning_rate": 4.993749183214021e-05,
80
+ "loss": 0.8053,
81
+ "step": 60
82
+ },
83
+ {
84
+ "epoch": 0.12,
85
+ "learning_rate": 4.992664502959351e-05,
86
+ "loss": 0.7508,
87
+ "step": 65
88
+ },
89
+ {
90
+ "epoch": 0.13,
91
+ "learning_rate": 4.991493224697281e-05,
92
+ "loss": 0.7461,
93
+ "step": 70
94
+ },
95
+ {
96
+ "epoch": 0.14,
97
+ "learning_rate": 4.990235389119352e-05,
98
+ "loss": 0.747,
99
+ "step": 75
100
+ },
101
+ {
102
+ "epoch": 0.15,
103
+ "learning_rate": 4.9888910399242065e-05,
104
+ "loss": 0.734,
105
+ "step": 80
106
+ },
107
+ {
108
+ "epoch": 0.16,
109
+ "learning_rate": 4.987460223816067e-05,
110
+ "loss": 0.736,
111
+ "step": 85
112
+ },
113
+ {
114
+ "epoch": 0.17,
115
+ "learning_rate": 4.985942990503119e-05,
116
+ "loss": 0.7058,
117
+ "step": 90
118
+ },
119
+ {
120
+ "epoch": 0.18,
121
+ "learning_rate": 4.984339392695777e-05,
122
+ "loss": 0.6632,
123
+ "step": 95
124
+ },
125
+ {
126
+ "epoch": 0.19,
127
+ "learning_rate": 4.9826494861048576e-05,
128
+ "loss": 0.7428,
129
+ "step": 100
130
+ },
131
+ {
132
+ "epoch": 0.2,
133
+ "learning_rate": 4.980873329439644e-05,
134
+ "loss": 0.7101,
135
+ "step": 105
136
+ },
137
+ {
138
+ "epoch": 0.21,
139
+ "learning_rate": 4.979010984405842e-05,
140
+ "loss": 0.6687,
141
+ "step": 110
142
+ },
143
+ {
144
+ "epoch": 0.22,
145
+ "learning_rate": 4.9770625157034436e-05,
146
+ "loss": 0.6999,
147
+ "step": 115
148
+ },
149
+ {
150
+ "epoch": 0.23,
151
+ "learning_rate": 4.975027991024473e-05,
152
+ "loss": 0.6625,
153
+ "step": 120
154
+ },
155
+ {
156
+ "epoch": 0.23,
157
+ "learning_rate": 4.972907481050637e-05,
158
+ "loss": 0.7781,
159
+ "step": 125
160
+ },
161
+ {
162
+ "epoch": 0.24,
163
+ "learning_rate": 4.970701059450872e-05,
164
+ "loss": 0.6394,
165
+ "step": 130
166
+ },
167
+ {
168
+ "epoch": 0.25,
169
+ "learning_rate": 4.968408802878778e-05,
170
+ "loss": 0.6739,
171
+ "step": 135
172
+ },
173
+ {
174
+ "epoch": 0.26,
175
+ "learning_rate": 4.9660307909699645e-05,
176
+ "loss": 0.7285,
177
+ "step": 140
178
+ },
179
+ {
180
+ "epoch": 0.27,
181
+ "learning_rate": 4.963567106339276e-05,
182
+ "loss": 0.7181,
183
+ "step": 145
184
+ },
185
+ {
186
+ "epoch": 0.28,
187
+ "learning_rate": 4.961017834577927e-05,
188
+ "loss": 0.6995,
189
+ "step": 150
190
+ },
191
+ {
192
+ "epoch": 0.29,
193
+ "learning_rate": 4.958383064250525e-05,
194
+ "loss": 0.6791,
195
+ "step": 155
196
+ },
197
+ {
198
+ "epoch": 0.3,
199
+ "learning_rate": 4.955662886891995e-05,
200
+ "loss": 0.7085,
201
+ "step": 160
202
+ },
203
+ {
204
+ "epoch": 0.31,
205
+ "learning_rate": 4.952857397004401e-05,
206
+ "loss": 0.6656,
207
+ "step": 165
208
+ },
209
+ {
210
+ "epoch": 0.32,
211
+ "learning_rate": 4.949966692053663e-05,
212
+ "loss": 0.7306,
213
+ "step": 170
214
+ },
215
+ {
216
+ "epoch": 0.33,
217
+ "learning_rate": 4.946990872466164e-05,
218
+ "loss": 0.663,
219
+ "step": 175
220
+ },
221
+ {
222
+ "epoch": 0.34,
223
+ "learning_rate": 4.943930041625272e-05,
224
+ "loss": 0.6459,
225
+ "step": 180
226
+ },
227
+ {
228
+ "epoch": 0.35,
229
+ "learning_rate": 4.940784305867741e-05,
230
+ "loss": 0.6371,
231
+ "step": 185
232
+ },
233
+ {
234
+ "epoch": 0.36,
235
+ "learning_rate": 4.937553774480018e-05,
236
+ "loss": 0.7068,
237
+ "step": 190
238
+ },
239
+ {
240
+ "epoch": 0.37,
241
+ "learning_rate": 4.934238559694448e-05,
242
+ "loss": 0.7062,
243
+ "step": 195
244
+ },
245
+ {
246
+ "epoch": 0.38,
247
+ "learning_rate": 4.9308387766853725e-05,
248
+ "loss": 0.6465,
249
+ "step": 200
250
+ },
251
+ {
252
+ "epoch": 0.38,
253
+ "learning_rate": 4.92735454356513e-05,
254
+ "loss": 0.7055,
255
+ "step": 205
256
+ },
257
+ {
258
+ "epoch": 0.39,
259
+ "learning_rate": 4.9237859813799535e-05,
260
+ "loss": 0.6427,
261
+ "step": 210
262
+ },
263
+ {
264
+ "epoch": 0.4,
265
+ "learning_rate": 4.9201332141057623e-05,
266
+ "loss": 0.6281,
267
+ "step": 215
268
+ },
269
+ {
270
+ "epoch": 0.41,
271
+ "learning_rate": 4.9163963686438575e-05,
272
+ "loss": 0.6499,
273
+ "step": 220
274
+ },
275
+ {
276
+ "epoch": 0.42,
277
+ "learning_rate": 4.912575574816511e-05,
278
+ "loss": 0.6558,
279
+ "step": 225
280
+ },
281
+ {
282
+ "epoch": 0.43,
283
+ "learning_rate": 4.908670965362457e-05,
284
+ "loss": 0.6523,
285
+ "step": 230
286
+ },
287
+ {
288
+ "epoch": 0.44,
289
+ "learning_rate": 4.9046826759322825e-05,
290
+ "loss": 0.6378,
291
+ "step": 235
292
+ },
293
+ {
294
+ "epoch": 0.45,
295
+ "learning_rate": 4.9006108450837095e-05,
296
+ "loss": 0.6463,
297
+ "step": 240
298
+ },
299
+ {
300
+ "epoch": 0.46,
301
+ "learning_rate": 4.8964556142767845e-05,
302
+ "loss": 0.6825,
303
+ "step": 245
304
+ },
305
+ {
306
+ "epoch": 0.47,
307
+ "learning_rate": 4.892217127868965e-05,
308
+ "loss": 0.6576,
309
+ "step": 250
310
+ },
311
+ {
312
+ "epoch": 0.48,
313
+ "learning_rate": 4.8878955331101026e-05,
314
+ "loss": 0.687,
315
+ "step": 255
316
+ },
317
+ {
318
+ "epoch": 0.49,
319
+ "learning_rate": 4.8834909801373264e-05,
320
+ "loss": 0.6567,
321
+ "step": 260
322
+ },
323
+ {
324
+ "epoch": 0.5,
325
+ "learning_rate": 4.879003621969831e-05,
326
+ "loss": 0.6697,
327
+ "step": 265
328
+ },
329
+ {
330
+ "epoch": 0.51,
331
+ "learning_rate": 4.874433614503554e-05,
332
+ "loss": 0.6451,
333
+ "step": 270
334
+ },
335
+ {
336
+ "epoch": 0.52,
337
+ "learning_rate": 4.869781116505768e-05,
338
+ "loss": 0.6601,
339
+ "step": 275
340
+ },
341
+ {
342
+ "epoch": 0.53,
343
+ "learning_rate": 4.8650462896095597e-05,
344
+ "loss": 0.677,
345
+ "step": 280
346
+ },
347
+ {
348
+ "epoch": 0.53,
349
+ "learning_rate": 4.860229298308213e-05,
350
+ "loss": 0.676,
351
+ "step": 285
352
+ },
353
+ {
354
+ "epoch": 0.54,
355
+ "learning_rate": 4.8553303099495e-05,
356
+ "loss": 0.6286,
357
+ "step": 290
358
+ },
359
+ {
360
+ "epoch": 0.55,
361
+ "learning_rate": 4.8503494947298634e-05,
362
+ "loss": 0.6844,
363
+ "step": 295
364
+ },
365
+ {
366
+ "epoch": 0.56,
367
+ "learning_rate": 4.845287025688503e-05,
368
+ "loss": 0.6389,
369
+ "step": 300
370
+ },
371
+ {
372
+ "epoch": 0.57,
373
+ "learning_rate": 4.8401430787013666e-05,
374
+ "loss": 0.641,
375
+ "step": 305
376
+ },
377
+ {
378
+ "epoch": 0.58,
379
+ "learning_rate": 4.8349178324750387e-05,
380
+ "loss": 0.6959,
381
+ "step": 310
382
+ },
383
+ {
384
+ "epoch": 0.59,
385
+ "learning_rate": 4.8296114685405324e-05,
386
+ "loss": 0.6356,
387
+ "step": 315
388
+ },
389
+ {
390
+ "epoch": 0.6,
391
+ "learning_rate": 4.824224171246981e-05,
392
+ "loss": 0.6673,
393
+ "step": 320
394
+ },
395
+ {
396
+ "epoch": 0.61,
397
+ "learning_rate": 4.8187561277552374e-05,
398
+ "loss": 0.5884,
399
+ "step": 325
400
+ },
401
+ {
402
+ "epoch": 0.62,
403
+ "learning_rate": 4.813207528031366e-05,
404
+ "loss": 0.6729,
405
+ "step": 330
406
+ },
407
+ {
408
+ "epoch": 0.63,
409
+ "learning_rate": 4.807578564840051e-05,
410
+ "loss": 0.6228,
411
+ "step": 335
412
+ },
413
+ {
414
+ "epoch": 0.64,
415
+ "learning_rate": 4.801869433737891e-05,
416
+ "loss": 0.6136,
417
+ "step": 340
418
+ },
419
+ {
420
+ "epoch": 0.65,
421
+ "learning_rate": 4.796080333066613e-05,
422
+ "loss": 0.634,
423
+ "step": 345
424
+ },
425
+ {
426
+ "epoch": 0.66,
427
+ "learning_rate": 4.790211463946174e-05,
428
+ "loss": 0.6636,
429
+ "step": 350
430
+ },
431
+ {
432
+ "epoch": 0.67,
433
+ "learning_rate": 4.784263030267781e-05,
434
+ "loss": 0.64,
435
+ "step": 355
436
+ },
437
+ {
438
+ "epoch": 0.68,
439
+ "learning_rate": 4.7782352386868035e-05,
440
+ "loss": 0.6477,
441
+ "step": 360
442
+ },
443
+ {
444
+ "epoch": 0.68,
445
+ "learning_rate": 4.7721282986155945e-05,
446
+ "loss": 0.6591,
447
+ "step": 365
448
+ },
449
+ {
450
+ "epoch": 0.69,
451
+ "learning_rate": 4.7659424222162165e-05,
452
+ "loss": 0.626,
453
+ "step": 370
454
+ },
455
+ {
456
+ "epoch": 0.7,
457
+ "learning_rate": 4.7596778243930694e-05,
458
+ "loss": 0.6154,
459
+ "step": 375
460
+ },
461
+ {
462
+ "epoch": 0.71,
463
+ "learning_rate": 4.7533347227854265e-05,
464
+ "loss": 0.6612,
465
+ "step": 380
466
+ },
467
+ {
468
+ "epoch": 0.72,
469
+ "learning_rate": 4.7469133377598695e-05,
470
+ "loss": 0.6235,
471
+ "step": 385
472
+ },
473
+ {
474
+ "epoch": 0.73,
475
+ "learning_rate": 4.740413892402639e-05,
476
+ "loss": 0.6507,
477
+ "step": 390
478
+ },
479
+ {
480
+ "epoch": 0.74,
481
+ "learning_rate": 4.7338366125118775e-05,
482
+ "loss": 0.6008,
483
+ "step": 395
484
+ },
485
+ {
486
+ "epoch": 0.75,
487
+ "learning_rate": 4.727181726589789e-05,
488
+ "loss": 0.611,
489
+ "step": 400
490
+ },
491
+ {
492
+ "epoch": 0.76,
493
+ "learning_rate": 4.7204494658346996e-05,
494
+ "loss": 0.638,
495
+ "step": 405
496
+ },
497
+ {
498
+ "epoch": 0.77,
499
+ "learning_rate": 4.713640064133025e-05,
500
+ "loss": 0.6045,
501
+ "step": 410
502
+ },
503
+ {
504
+ "epoch": 0.78,
505
+ "learning_rate": 4.706753758051145e-05,
506
+ "loss": 0.6266,
507
+ "step": 415
508
+ },
509
+ {
510
+ "epoch": 0.79,
511
+ "learning_rate": 4.699790786827188e-05,
512
+ "loss": 0.6175,
513
+ "step": 420
514
+ },
515
+ {
516
+ "epoch": 0.8,
517
+ "learning_rate": 4.6927513923627124e-05,
518
+ "loss": 0.6393,
519
+ "step": 425
520
+ },
521
+ {
522
+ "epoch": 0.81,
523
+ "learning_rate": 4.68563581921431e-05,
524
+ "loss": 0.6792,
525
+ "step": 430
526
+ },
527
+ {
528
+ "epoch": 0.82,
529
+ "learning_rate": 4.6784443145851074e-05,
530
+ "loss": 0.6274,
531
+ "step": 435
532
+ },
533
+ {
534
+ "epoch": 0.83,
535
+ "learning_rate": 4.671177128316176e-05,
536
+ "loss": 0.6671,
537
+ "step": 440
538
+ },
539
+ {
540
+ "epoch": 0.83,
541
+ "learning_rate": 4.663834512877853e-05,
542
+ "loss": 0.6933,
543
+ "step": 445
544
+ },
545
+ {
546
+ "epoch": 0.84,
547
+ "learning_rate": 4.6564167233609736e-05,
548
+ "loss": 0.6553,
549
+ "step": 450
550
+ },
551
+ {
552
+ "epoch": 0.85,
553
+ "learning_rate": 4.648924017468003e-05,
554
+ "loss": 0.6261,
555
+ "step": 455
556
+ },
557
+ {
558
+ "epoch": 0.86,
559
+ "learning_rate": 4.6413566555040896e-05,
560
+ "loss": 0.6421,
561
+ "step": 460
562
+ },
563
+ {
564
+ "epoch": 0.87,
565
+ "learning_rate": 4.633714900368018e-05,
566
+ "loss": 0.6464,
567
+ "step": 465
568
+ },
569
+ {
570
+ "epoch": 0.88,
571
+ "learning_rate": 4.625999017543075e-05,
572
+ "loss": 0.6902,
573
+ "step": 470
574
+ },
575
+ {
576
+ "epoch": 0.89,
577
+ "learning_rate": 4.618209275087829e-05,
578
+ "loss": 0.655,
579
+ "step": 475
580
+ },
581
+ {
582
+ "epoch": 0.9,
583
+ "learning_rate": 4.610345943626817e-05,
584
+ "loss": 0.5977,
585
+ "step": 480
586
+ },
587
+ {
588
+ "epoch": 0.91,
589
+ "learning_rate": 4.602409296341141e-05,
590
+ "loss": 0.6449,
591
+ "step": 485
592
+ },
593
+ {
594
+ "epoch": 0.92,
595
+ "learning_rate": 4.5943996089589775e-05,
596
+ "loss": 0.6055,
597
+ "step": 490
598
+ },
599
+ {
600
+ "epoch": 0.93,
601
+ "learning_rate": 4.586317159746001e-05,
602
+ "loss": 0.6475,
603
+ "step": 495
604
+ },
605
+ {
606
+ "epoch": 0.94,
607
+ "learning_rate": 4.5781622294957136e-05,
608
+ "loss": 0.6492,
609
+ "step": 500
610
+ },
611
+ {
612
+ "epoch": 0.95,
613
+ "learning_rate": 4.569935101519692e-05,
614
+ "loss": 0.6209,
615
+ "step": 505
616
+ },
617
+ {
618
+ "epoch": 0.96,
619
+ "learning_rate": 4.561636061637745e-05,
620
+ "loss": 0.6437,
621
+ "step": 510
622
+ },
623
+ {
624
+ "epoch": 0.97,
625
+ "learning_rate": 4.553265398167981e-05,
626
+ "loss": 0.616,
627
+ "step": 515
628
+ },
629
+ {
630
+ "epoch": 0.98,
631
+ "learning_rate": 4.5448234019167945e-05,
632
+ "loss": 0.6512,
633
+ "step": 520
634
+ },
635
+ {
636
+ "epoch": 0.98,
637
+ "learning_rate": 4.536310366168763e-05,
638
+ "loss": 0.6408,
639
+ "step": 525
640
+ },
641
+ {
642
+ "epoch": 0.99,
643
+ "learning_rate": 4.5277265866764565e-05,
644
+ "loss": 0.6349,
645
+ "step": 530
646
+ },
647
+ {
648
+ "epoch": 1.0,
649
+ "learning_rate": 4.519072361650163e-05,
650
+ "loss": 0.6541,
651
+ "step": 535
652
+ },
653
+ {
654
+ "epoch": 1.01,
655
+ "learning_rate": 4.5103479917475286e-05,
656
+ "loss": 0.6365,
657
+ "step": 540
658
+ },
659
+ {
660
+ "epoch": 1.02,
661
+ "learning_rate": 4.501553780063113e-05,
662
+ "loss": 0.5719,
663
+ "step": 545
664
+ },
665
+ {
666
+ "epoch": 1.03,
667
+ "learning_rate": 4.4926900321178595e-05,
668
+ "loss": 0.5938,
669
+ "step": 550
670
+ },
671
+ {
672
+ "epoch": 1.04,
673
+ "learning_rate": 4.483757055848479e-05,
674
+ "loss": 0.6431,
675
+ "step": 555
676
+ },
677
+ {
678
+ "epoch": 1.05,
679
+ "learning_rate": 4.4747551615967534e-05,
680
+ "loss": 0.6333,
681
+ "step": 560
682
+ },
683
+ {
684
+ "epoch": 1.06,
685
+ "learning_rate": 4.4656846620987557e-05,
686
+ "loss": 0.6413,
687
+ "step": 565
688
+ },
689
+ {
690
+ "epoch": 1.07,
691
+ "learning_rate": 4.4565458724739825e-05,
692
+ "loss": 0.639,
693
+ "step": 570
694
+ },
695
+ {
696
+ "epoch": 1.08,
697
+ "learning_rate": 4.447339110214405e-05,
698
+ "loss": 0.6792,
699
+ "step": 575
700
+ },
701
+ {
702
+ "epoch": 1.09,
703
+ "learning_rate": 4.438064695173446e-05,
704
+ "loss": 0.606,
705
+ "step": 580
706
+ },
707
+ {
708
+ "epoch": 1.1,
709
+ "learning_rate": 4.428722949554857e-05,
710
+ "loss": 0.6392,
711
+ "step": 585
712
+ },
713
+ {
714
+ "epoch": 1.11,
715
+ "learning_rate": 4.419314197901537e-05,
716
+ "loss": 0.5808,
717
+ "step": 590
718
+ },
719
+ {
720
+ "epoch": 1.12,
721
+ "learning_rate": 4.4098387670842466e-05,
722
+ "loss": 0.5524,
723
+ "step": 595
724
+ },
725
+ {
726
+ "epoch": 1.13,
727
+ "learning_rate": 4.400296986290258e-05,
728
+ "loss": 0.5939,
729
+ "step": 600
730
+ },
731
+ {
732
+ "epoch": 1.13,
733
+ "learning_rate": 4.390689187011917e-05,
734
+ "loss": 0.6328,
735
+ "step": 605
736
+ },
737
+ {
738
+ "epoch": 1.14,
739
+ "learning_rate": 4.3810157030351276e-05,
740
+ "loss": 0.6542,
741
+ "step": 610
742
+ },
743
+ {
744
+ "epoch": 1.15,
745
+ "learning_rate": 4.371276870427753e-05,
746
+ "loss": 0.5911,
747
+ "step": 615
748
+ },
749
+ {
750
+ "epoch": 1.16,
751
+ "learning_rate": 4.3614730275279457e-05,
752
+ "loss": 0.6093,
753
+ "step": 620
754
+ },
755
+ {
756
+ "epoch": 1.17,
757
+ "learning_rate": 4.351604514932387e-05,
758
+ "loss": 0.5915,
759
+ "step": 625
760
+ },
761
+ {
762
+ "epoch": 1.18,
763
+ "learning_rate": 4.341671675484459e-05,
764
+ "loss": 0.6436,
765
+ "step": 630
766
+ },
767
+ {
768
+ "epoch": 1.19,
769
+ "learning_rate": 4.331674854262331e-05,
770
+ "loss": 0.6547,
771
+ "step": 635
772
+ },
773
+ {
774
+ "epoch": 1.2,
775
+ "learning_rate": 4.321614398566972e-05,
776
+ "loss": 0.6356,
777
+ "step": 640
778
+ },
779
+ {
780
+ "epoch": 1.21,
781
+ "learning_rate": 4.3114906579100853e-05,
782
+ "loss": 0.6458,
783
+ "step": 645
784
+ },
785
+ {
786
+ "epoch": 1.22,
787
+ "learning_rate": 4.301303984001967e-05,
788
+ "loss": 0.6527,
789
+ "step": 650
790
+ },
791
+ {
792
+ "epoch": 1.23,
793
+ "learning_rate": 4.291054730739286e-05,
794
+ "loss": 0.6872,
795
+ "step": 655
796
+ },
797
+ {
798
+ "epoch": 1.24,
799
+ "learning_rate": 4.2807432541927865e-05,
800
+ "loss": 0.5961,
801
+ "step": 660
802
+ },
803
+ {
804
+ "epoch": 1.25,
805
+ "learning_rate": 4.2703699125949245e-05,
806
+ "loss": 0.6227,
807
+ "step": 665
808
+ },
809
+ {
810
+ "epoch": 1.26,
811
+ "learning_rate": 4.259935066327415e-05,
812
+ "loss": 0.6541,
813
+ "step": 670
814
+ },
815
+ {
816
+ "epoch": 1.27,
817
+ "learning_rate": 4.2494390779087187e-05,
818
+ "loss": 0.654,
819
+ "step": 675
820
+ },
821
+ {
822
+ "epoch": 1.28,
823
+ "learning_rate": 4.238882311981441e-05,
824
+ "loss": 0.6677,
825
+ "step": 680
826
+ },
827
+ {
828
+ "epoch": 1.28,
829
+ "learning_rate": 4.228265135299669e-05,
830
+ "loss": 0.568,
831
+ "step": 685
832
+ },
833
+ {
834
+ "epoch": 1.29,
835
+ "learning_rate": 4.2175879167162304e-05,
836
+ "loss": 0.5655,
837
+ "step": 690
838
+ },
839
+ {
840
+ "epoch": 1.3,
841
+ "learning_rate": 4.206851027169871e-05,
842
+ "loss": 0.5781,
843
+ "step": 695
844
+ },
845
+ {
846
+ "epoch": 1.31,
847
+ "learning_rate": 4.196054839672382e-05,
848
+ "loss": 0.599,
849
+ "step": 700
850
+ },
851
+ {
852
+ "epoch": 1.32,
853
+ "learning_rate": 4.1851997292956255e-05,
854
+ "loss": 0.6432,
855
+ "step": 705
856
+ },
857
+ {
858
+ "epoch": 1.33,
859
+ "learning_rate": 4.174286073158516e-05,
860
+ "loss": 0.685,
861
+ "step": 710
862
+ },
863
+ {
864
+ "epoch": 1.34,
865
+ "learning_rate": 4.163314250413913e-05,
866
+ "loss": 0.6159,
867
+ "step": 715
868
+ },
869
+ {
870
+ "epoch": 1.35,
871
+ "learning_rate": 4.152284642235452e-05,
872
+ "loss": 0.6293,
873
+ "step": 720
874
+ },
875
+ {
876
+ "epoch": 1.36,
877
+ "learning_rate": 4.141197631804298e-05,
878
+ "loss": 0.608,
879
+ "step": 725
880
+ },
881
+ {
882
+ "epoch": 1.37,
883
+ "learning_rate": 4.1300536042958354e-05,
884
+ "loss": 0.6286,
885
+ "step": 730
886
+ },
887
+ {
888
+ "epoch": 1.38,
889
+ "learning_rate": 4.118852946866291e-05,
890
+ "loss": 0.6234,
891
+ "step": 735
892
+ },
893
+ {
894
+ "epoch": 1.39,
895
+ "learning_rate": 4.107596048639274e-05,
896
+ "loss": 0.6079,
897
+ "step": 740
898
+ },
899
+ {
900
+ "epoch": 1.4,
901
+ "learning_rate": 4.0962833006922675e-05,
902
+ "loss": 0.6374,
903
+ "step": 745
904
+ },
905
+ {
906
+ "epoch": 1.41,
907
+ "learning_rate": 4.0849150960430356e-05,
908
+ "loss": 0.6089,
909
+ "step": 750
910
+ },
911
+ {
912
+ "epoch": 1.42,
913
+ "learning_rate": 4.0734918296359716e-05,
914
+ "loss": 0.6256,
915
+ "step": 755
916
+ },
917
+ {
918
+ "epoch": 1.43,
919
+ "learning_rate": 4.0620138983283785e-05,
920
+ "loss": 0.59,
921
+ "step": 760
922
+ },
923
+ {
924
+ "epoch": 1.43,
925
+ "learning_rate": 4.050481700876677e-05,
926
+ "loss": 0.5918,
927
+ "step": 765
928
+ },
929
+ {
930
+ "epoch": 1.44,
931
+ "learning_rate": 4.038895637922559e-05,
932
+ "loss": 0.5828,
933
+ "step": 770
934
+ },
935
+ {
936
+ "epoch": 1.45,
937
+ "learning_rate": 4.027256111979063e-05,
938
+ "loss": 0.6087,
939
+ "step": 775
940
+ },
941
+ {
942
+ "epoch": 1.46,
943
+ "learning_rate": 4.015563527416595e-05,
944
+ "loss": 0.6005,
945
+ "step": 780
946
+ },
947
+ {
948
+ "epoch": 1.47,
949
+ "learning_rate": 4.003818290448876e-05,
950
+ "loss": 0.6306,
951
+ "step": 785
952
+ },
953
+ {
954
+ "epoch": 1.48,
955
+ "learning_rate": 3.992020809118832e-05,
956
+ "loss": 0.5853,
957
+ "step": 790
958
+ },
959
+ {
960
+ "epoch": 1.49,
961
+ "learning_rate": 3.980171493284418e-05,
962
+ "loss": 0.6681,
963
+ "step": 795
964
+ },
965
+ {
966
+ "epoch": 1.5,
967
+ "learning_rate": 3.9682707546043785e-05,
968
+ "loss": 0.6093,
969
+ "step": 800
970
+ }
971
+ ],
972
+ "logging_steps": 5,
973
+ "max_steps": 2665,
974
+ "num_input_tokens_seen": 0,
975
+ "num_train_epochs": 5,
976
+ "save_steps": 100,
977
+ "total_flos": 6.268370894910259e+17,
978
+ "train_batch_size": 2,
979
+ "trial_name": null,
980
+ "trial_params": null
981
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6aeb98d9ae3417a7458d8bc4b7970ac6d0df634a26c3c4b401f81d098581369c
3
+ size 4920