sci-m-wang
commited on
Commit
•
20ac4de
1
Parent(s):
b2666e6
Upload 12 files
Browse files- README.md +202 -0
- adapter_config.json +28 -0
- adapter_model.safetensors +3 -0
- optimizer.pt +3 -0
- rng_state.pth +3 -0
- scheduler.pt +3 -0
- special_tokens_map.json +6 -0
- tokenization_internlm.py +240 -0
- tokenizer.model +3 -0
- tokenizer_config.json +44 -0
- trainer_state.json +981 -0
- training_args.bin +3 -0
README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: internlm/internlm2-7b
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.11.1
|
adapter_config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "internlm/internlm2-7b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 16,
|
14 |
+
"lora_dropout": 0,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"wqkv"
|
24 |
+
],
|
25 |
+
"task_type": "CAUSAL_LM",
|
26 |
+
"use_dora": false,
|
27 |
+
"use_rslora": false
|
28 |
+
}
|
adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:80ba30483ccd987d621cb48697b808dcbfe7d54b4b9e7efe013ee7c09ff9f125
|
3 |
+
size 10494088
|
optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:57537ee701318c13465a329510699c55fb5ede09a90f80c20f0ec73eab240ff8
|
3 |
+
size 21025594
|
rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8d138cfe3a4adf21f048848ee35837c9a757a0a3616ff7adbb45b69aac247435
|
3 |
+
size 14244
|
scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3af038473f20545bacb7d27125c632099467545ee3520cb3424ddb40f0a0d546
|
3 |
+
size 1064
|
special_tokens_map.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"eos_token": "</s>",
|
4 |
+
"pad_token": "</s>",
|
5 |
+
"unk_token": "<unk>"
|
6 |
+
}
|
tokenization_internlm.py
ADDED
@@ -0,0 +1,240 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright (c) InternLM. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
+
# and OPT implementations in this library. It has been modified from its
|
6 |
+
# original forms to accommodate minor architectural differences compared
|
7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
|
21 |
+
"""Tokenization classes for IntermLM."""
|
22 |
+
import os
|
23 |
+
from shutil import copyfile
|
24 |
+
from typing import Any, Dict, List, Optional, Tuple
|
25 |
+
|
26 |
+
import sentencepiece as spm
|
27 |
+
from transformers.tokenization_utils import PreTrainedTokenizer
|
28 |
+
from transformers.utils import logging
|
29 |
+
|
30 |
+
logger = logging.get_logger(__name__)
|
31 |
+
|
32 |
+
VOCAB_FILES_NAMES = {"vocab_file": "./tokenizer.model"}
|
33 |
+
|
34 |
+
PRETRAINED_VOCAB_FILES_MAP = {}
|
35 |
+
|
36 |
+
|
37 |
+
class InternLMTokenizer(PreTrainedTokenizer):
|
38 |
+
"""
|
39 |
+
Construct a InternLM tokenizer. Based on byte-level Byte-Pair-Encoding.
|
40 |
+
|
41 |
+
Args:
|
42 |
+
vocab_file (`str`):
|
43 |
+
Path to the vocabulary file.
|
44 |
+
"""
|
45 |
+
|
46 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
47 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
48 |
+
model_input_names = ["input_ids", "attention_mask"]
|
49 |
+
_auto_class = "AutoTokenizer"
|
50 |
+
|
51 |
+
def __init__(
|
52 |
+
self,
|
53 |
+
vocab_file,
|
54 |
+
unk_token="<unk>",
|
55 |
+
bos_token="<s>",
|
56 |
+
eos_token="</s>",
|
57 |
+
pad_token="</s>",
|
58 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
59 |
+
add_bos_token=True,
|
60 |
+
add_eos_token=False,
|
61 |
+
decode_with_prefix_space=False,
|
62 |
+
clean_up_tokenization_spaces=False,
|
63 |
+
**kwargs,
|
64 |
+
):
|
65 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
66 |
+
self.vocab_file = vocab_file
|
67 |
+
self.add_bos_token = add_bos_token
|
68 |
+
self.add_eos_token = add_eos_token
|
69 |
+
self.decode_with_prefix_space = decode_with_prefix_space
|
70 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
71 |
+
self.sp_model.Load(vocab_file)
|
72 |
+
self._no_prefix_space_tokens = None
|
73 |
+
super().__init__(
|
74 |
+
bos_token=bos_token,
|
75 |
+
eos_token=eos_token,
|
76 |
+
unk_token=unk_token,
|
77 |
+
pad_token=pad_token,
|
78 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
79 |
+
**kwargs,
|
80 |
+
)
|
81 |
+
|
82 |
+
""" Initialization"""
|
83 |
+
|
84 |
+
@property
|
85 |
+
def no_prefix_space_tokens(self):
|
86 |
+
if self._no_prefix_space_tokens is None:
|
87 |
+
vocab = self.convert_ids_to_tokens(list(range(self.vocab_size)))
|
88 |
+
self._no_prefix_space_tokens = {i for i, tok in enumerate(vocab) if not tok.startswith("▁")}
|
89 |
+
return self._no_prefix_space_tokens
|
90 |
+
|
91 |
+
@property
|
92 |
+
def vocab_size(self):
|
93 |
+
"""Returns vocab size"""
|
94 |
+
return self.sp_model.get_piece_size()
|
95 |
+
|
96 |
+
@property
|
97 |
+
def bos_token_id(self) -> Optional[int]:
|
98 |
+
return self.sp_model.bos_id()
|
99 |
+
|
100 |
+
@property
|
101 |
+
def eos_token_id(self) -> Optional[int]:
|
102 |
+
return self.sp_model.eos_id()
|
103 |
+
|
104 |
+
def get_vocab(self):
|
105 |
+
"""Returns vocab as a dict"""
|
106 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
107 |
+
vocab.update(self.added_tokens_encoder)
|
108 |
+
return vocab
|
109 |
+
|
110 |
+
def _tokenize(self, text):
|
111 |
+
"""Returns a tokenized string."""
|
112 |
+
return self.sp_model.encode(text, out_type=str)
|
113 |
+
|
114 |
+
def _convert_token_to_id(self, token):
|
115 |
+
"""Converts a token (str) in an id using the vocab."""
|
116 |
+
return self.sp_model.piece_to_id(token)
|
117 |
+
|
118 |
+
def _convert_id_to_token(self, index):
|
119 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
120 |
+
token = self.sp_model.IdToPiece(index)
|
121 |
+
return token
|
122 |
+
|
123 |
+
def _maybe_add_prefix_space(self, tokens, decoded):
|
124 |
+
if tokens and tokens[0] not in self.no_prefix_space_tokens:
|
125 |
+
return " " + decoded
|
126 |
+
else:
|
127 |
+
return decoded
|
128 |
+
|
129 |
+
def convert_tokens_to_string(self, tokens):
|
130 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
131 |
+
current_sub_tokens = []
|
132 |
+
out_string = ""
|
133 |
+
prev_is_special = False
|
134 |
+
for token in tokens:
|
135 |
+
# make sure that special tokens are not decoded using sentencepiece model
|
136 |
+
if token in self.all_special_tokens:
|
137 |
+
if not prev_is_special:
|
138 |
+
out_string += " "
|
139 |
+
out_string += self.sp_model.decode(current_sub_tokens) + token
|
140 |
+
prev_is_special = True
|
141 |
+
current_sub_tokens = []
|
142 |
+
else:
|
143 |
+
current_sub_tokens.append(token)
|
144 |
+
prev_is_special = False
|
145 |
+
out_string += self.sp_model.decode(current_sub_tokens)
|
146 |
+
out_string = self.clean_up_tokenization(out_string)
|
147 |
+
out_string = self._maybe_add_prefix_space(tokens=tokens, decoded=out_string)
|
148 |
+
return out_string[1:]
|
149 |
+
|
150 |
+
def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
151 |
+
"""
|
152 |
+
Save the vocabulary and special tokens file to a directory.
|
153 |
+
|
154 |
+
Args:
|
155 |
+
save_directory (`str`):
|
156 |
+
The directory in which to save the vocabulary.
|
157 |
+
|
158 |
+
Returns:
|
159 |
+
`Tuple(str)`: Paths to the files saved.
|
160 |
+
"""
|
161 |
+
if not os.path.isdir(save_directory):
|
162 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
163 |
+
return
|
164 |
+
out_vocab_file = os.path.join(
|
165 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
166 |
+
)
|
167 |
+
|
168 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
169 |
+
copyfile(self.vocab_file, out_vocab_file)
|
170 |
+
elif not os.path.isfile(self.vocab_file):
|
171 |
+
with open(out_vocab_file, "wb") as fi:
|
172 |
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
173 |
+
fi.write(content_spiece_model)
|
174 |
+
|
175 |
+
return (out_vocab_file,)
|
176 |
+
|
177 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
178 |
+
if self.add_bos_token:
|
179 |
+
bos_token_ids = [self.bos_token_id]
|
180 |
+
else:
|
181 |
+
bos_token_ids = []
|
182 |
+
|
183 |
+
output = bos_token_ids + token_ids_0
|
184 |
+
|
185 |
+
if token_ids_1 is not None:
|
186 |
+
output = output + token_ids_1
|
187 |
+
|
188 |
+
if self.add_eos_token:
|
189 |
+
output = output + [self.eos_token_id]
|
190 |
+
|
191 |
+
return output
|
192 |
+
|
193 |
+
def get_special_tokens_mask(
|
194 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
195 |
+
) -> List[int]:
|
196 |
+
"""
|
197 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
198 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
199 |
+
|
200 |
+
Args:
|
201 |
+
token_ids_0 (`List[int]`):
|
202 |
+
List of IDs.
|
203 |
+
token_ids_1 (`List[int]`, *optional*):
|
204 |
+
Optional second list of IDs for sequence pairs.
|
205 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
206 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
207 |
+
|
208 |
+
Returns:
|
209 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
210 |
+
"""
|
211 |
+
if already_has_special_tokens:
|
212 |
+
return super().get_special_tokens_mask(
|
213 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
214 |
+
)
|
215 |
+
|
216 |
+
if token_ids_1 is None:
|
217 |
+
return [1] + ([0] * len(token_ids_0)) + [1]
|
218 |
+
return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
|
219 |
+
|
220 |
+
def create_token_type_ids_from_sequences(
|
221 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
222 |
+
) -> List[int]:
|
223 |
+
"""
|
224 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make
|
225 |
+
use of token type ids, therefore a list of zeros is returned.
|
226 |
+
|
227 |
+
Args:
|
228 |
+
token_ids_0 (`List[int]`):
|
229 |
+
List of IDs.
|
230 |
+
token_ids_1 (`List[int]`, *optional*):
|
231 |
+
Optional second list of IDs for sequence pairs.
|
232 |
+
|
233 |
+
Returns:
|
234 |
+
`List[int]`: List of zeros.
|
235 |
+
"""
|
236 |
+
eos = [self.eos_token_id]
|
237 |
+
|
238 |
+
if token_ids_1 is None:
|
239 |
+
return len(token_ids_0 + eos) * [0]
|
240 |
+
return len(token_ids_0 + eos + token_ids_1 + eos) * [0]
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f868398fc4e05ee1e8aeba95ddf18ddcc45b8bce55d5093bead5bbf80429b48b
|
3 |
+
size 1477754
|
tokenizer_config.json
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<unk>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<s>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
}
|
27 |
+
},
|
28 |
+
"auto_map": {
|
29 |
+
"AutoTokenizer": [
|
30 |
+
"tokenization_internlm.InternLMTokenizer",
|
31 |
+
null
|
32 |
+
]
|
33 |
+
},
|
34 |
+
"bos_token": "<s>",
|
35 |
+
"chat_template": "{% if messages[0]['role'] == 'system' %}{% set system_message = messages[0]['content'] %}{% endif %}{% if system_message is defined %}{{ system_message + '\n' }}{% endif %}{% for message in messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ 'Human: ' + content + '\nAssistant: ' }}{% elif message['role'] == 'assistant' %}{{ content + '</s>' + '\n' }}{% endif %}{% endfor %}",
|
36 |
+
"clean_up_tokenization_spaces": false,
|
37 |
+
"eos_token": "</s>",
|
38 |
+
"model_max_length": 1000000000000000019884624838656,
|
39 |
+
"pad_token": "</s>",
|
40 |
+
"padding_side": "right",
|
41 |
+
"split_special_tokens": false,
|
42 |
+
"tokenizer_class": "InternLMTokenizer",
|
43 |
+
"unk_token": "<unk>"
|
44 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,981 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 1.5002344116268167,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 800,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.01,
|
13 |
+
"learning_rate": 4.999956573574533e-05,
|
14 |
+
"loss": 0.9781,
|
15 |
+
"step": 5
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"epoch": 0.02,
|
19 |
+
"learning_rate": 4.999826295806815e-05,
|
20 |
+
"loss": 0.9708,
|
21 |
+
"step": 10
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"epoch": 0.03,
|
25 |
+
"learning_rate": 4.999609171222846e-05,
|
26 |
+
"loss": 0.9112,
|
27 |
+
"step": 15
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"epoch": 0.04,
|
31 |
+
"learning_rate": 4.99930520736578e-05,
|
32 |
+
"loss": 0.9353,
|
33 |
+
"step": 20
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"epoch": 0.05,
|
37 |
+
"learning_rate": 4.998914414795668e-05,
|
38 |
+
"loss": 0.8337,
|
39 |
+
"step": 25
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.06,
|
43 |
+
"learning_rate": 4.99843680708909e-05,
|
44 |
+
"loss": 0.8133,
|
45 |
+
"step": 30
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.07,
|
49 |
+
"learning_rate": 4.997872400838682e-05,
|
50 |
+
"loss": 0.8195,
|
51 |
+
"step": 35
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.08,
|
55 |
+
"learning_rate": 4.997221215652562e-05,
|
56 |
+
"loss": 0.7842,
|
57 |
+
"step": 40
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"epoch": 0.08,
|
61 |
+
"learning_rate": 4.9964832741536444e-05,
|
62 |
+
"loss": 0.7454,
|
63 |
+
"step": 45
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"epoch": 0.09,
|
67 |
+
"learning_rate": 4.9956586019788584e-05,
|
68 |
+
"loss": 0.7732,
|
69 |
+
"step": 50
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.1,
|
73 |
+
"learning_rate": 4.9947472277782584e-05,
|
74 |
+
"loss": 0.7903,
|
75 |
+
"step": 55
|
76 |
+
},
|
77 |
+
{
|
78 |
+
"epoch": 0.11,
|
79 |
+
"learning_rate": 4.993749183214021e-05,
|
80 |
+
"loss": 0.8053,
|
81 |
+
"step": 60
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"epoch": 0.12,
|
85 |
+
"learning_rate": 4.992664502959351e-05,
|
86 |
+
"loss": 0.7508,
|
87 |
+
"step": 65
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 0.13,
|
91 |
+
"learning_rate": 4.991493224697281e-05,
|
92 |
+
"loss": 0.7461,
|
93 |
+
"step": 70
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.14,
|
97 |
+
"learning_rate": 4.990235389119352e-05,
|
98 |
+
"loss": 0.747,
|
99 |
+
"step": 75
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.15,
|
103 |
+
"learning_rate": 4.9888910399242065e-05,
|
104 |
+
"loss": 0.734,
|
105 |
+
"step": 80
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"epoch": 0.16,
|
109 |
+
"learning_rate": 4.987460223816067e-05,
|
110 |
+
"loss": 0.736,
|
111 |
+
"step": 85
|
112 |
+
},
|
113 |
+
{
|
114 |
+
"epoch": 0.17,
|
115 |
+
"learning_rate": 4.985942990503119e-05,
|
116 |
+
"loss": 0.7058,
|
117 |
+
"step": 90
|
118 |
+
},
|
119 |
+
{
|
120 |
+
"epoch": 0.18,
|
121 |
+
"learning_rate": 4.984339392695777e-05,
|
122 |
+
"loss": 0.6632,
|
123 |
+
"step": 95
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"epoch": 0.19,
|
127 |
+
"learning_rate": 4.9826494861048576e-05,
|
128 |
+
"loss": 0.7428,
|
129 |
+
"step": 100
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.2,
|
133 |
+
"learning_rate": 4.980873329439644e-05,
|
134 |
+
"loss": 0.7101,
|
135 |
+
"step": 105
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.21,
|
139 |
+
"learning_rate": 4.979010984405842e-05,
|
140 |
+
"loss": 0.6687,
|
141 |
+
"step": 110
|
142 |
+
},
|
143 |
+
{
|
144 |
+
"epoch": 0.22,
|
145 |
+
"learning_rate": 4.9770625157034436e-05,
|
146 |
+
"loss": 0.6999,
|
147 |
+
"step": 115
|
148 |
+
},
|
149 |
+
{
|
150 |
+
"epoch": 0.23,
|
151 |
+
"learning_rate": 4.975027991024473e-05,
|
152 |
+
"loss": 0.6625,
|
153 |
+
"step": 120
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"epoch": 0.23,
|
157 |
+
"learning_rate": 4.972907481050637e-05,
|
158 |
+
"loss": 0.7781,
|
159 |
+
"step": 125
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 0.24,
|
163 |
+
"learning_rate": 4.970701059450872e-05,
|
164 |
+
"loss": 0.6394,
|
165 |
+
"step": 130
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"epoch": 0.25,
|
169 |
+
"learning_rate": 4.968408802878778e-05,
|
170 |
+
"loss": 0.6739,
|
171 |
+
"step": 135
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"epoch": 0.26,
|
175 |
+
"learning_rate": 4.9660307909699645e-05,
|
176 |
+
"loss": 0.7285,
|
177 |
+
"step": 140
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.27,
|
181 |
+
"learning_rate": 4.963567106339276e-05,
|
182 |
+
"loss": 0.7181,
|
183 |
+
"step": 145
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"epoch": 0.28,
|
187 |
+
"learning_rate": 4.961017834577927e-05,
|
188 |
+
"loss": 0.6995,
|
189 |
+
"step": 150
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 0.29,
|
193 |
+
"learning_rate": 4.958383064250525e-05,
|
194 |
+
"loss": 0.6791,
|
195 |
+
"step": 155
|
196 |
+
},
|
197 |
+
{
|
198 |
+
"epoch": 0.3,
|
199 |
+
"learning_rate": 4.955662886891995e-05,
|
200 |
+
"loss": 0.7085,
|
201 |
+
"step": 160
|
202 |
+
},
|
203 |
+
{
|
204 |
+
"epoch": 0.31,
|
205 |
+
"learning_rate": 4.952857397004401e-05,
|
206 |
+
"loss": 0.6656,
|
207 |
+
"step": 165
|
208 |
+
},
|
209 |
+
{
|
210 |
+
"epoch": 0.32,
|
211 |
+
"learning_rate": 4.949966692053663e-05,
|
212 |
+
"loss": 0.7306,
|
213 |
+
"step": 170
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"epoch": 0.33,
|
217 |
+
"learning_rate": 4.946990872466164e-05,
|
218 |
+
"loss": 0.663,
|
219 |
+
"step": 175
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.34,
|
223 |
+
"learning_rate": 4.943930041625272e-05,
|
224 |
+
"loss": 0.6459,
|
225 |
+
"step": 180
|
226 |
+
},
|
227 |
+
{
|
228 |
+
"epoch": 0.35,
|
229 |
+
"learning_rate": 4.940784305867741e-05,
|
230 |
+
"loss": 0.6371,
|
231 |
+
"step": 185
|
232 |
+
},
|
233 |
+
{
|
234 |
+
"epoch": 0.36,
|
235 |
+
"learning_rate": 4.937553774480018e-05,
|
236 |
+
"loss": 0.7068,
|
237 |
+
"step": 190
|
238 |
+
},
|
239 |
+
{
|
240 |
+
"epoch": 0.37,
|
241 |
+
"learning_rate": 4.934238559694448e-05,
|
242 |
+
"loss": 0.7062,
|
243 |
+
"step": 195
|
244 |
+
},
|
245 |
+
{
|
246 |
+
"epoch": 0.38,
|
247 |
+
"learning_rate": 4.9308387766853725e-05,
|
248 |
+
"loss": 0.6465,
|
249 |
+
"step": 200
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 0.38,
|
253 |
+
"learning_rate": 4.92735454356513e-05,
|
254 |
+
"loss": 0.7055,
|
255 |
+
"step": 205
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"epoch": 0.39,
|
259 |
+
"learning_rate": 4.9237859813799535e-05,
|
260 |
+
"loss": 0.6427,
|
261 |
+
"step": 210
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.4,
|
265 |
+
"learning_rate": 4.9201332141057623e-05,
|
266 |
+
"loss": 0.6281,
|
267 |
+
"step": 215
|
268 |
+
},
|
269 |
+
{
|
270 |
+
"epoch": 0.41,
|
271 |
+
"learning_rate": 4.9163963686438575e-05,
|
272 |
+
"loss": 0.6499,
|
273 |
+
"step": 220
|
274 |
+
},
|
275 |
+
{
|
276 |
+
"epoch": 0.42,
|
277 |
+
"learning_rate": 4.912575574816511e-05,
|
278 |
+
"loss": 0.6558,
|
279 |
+
"step": 225
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 0.43,
|
283 |
+
"learning_rate": 4.908670965362457e-05,
|
284 |
+
"loss": 0.6523,
|
285 |
+
"step": 230
|
286 |
+
},
|
287 |
+
{
|
288 |
+
"epoch": 0.44,
|
289 |
+
"learning_rate": 4.9046826759322825e-05,
|
290 |
+
"loss": 0.6378,
|
291 |
+
"step": 235
|
292 |
+
},
|
293 |
+
{
|
294 |
+
"epoch": 0.45,
|
295 |
+
"learning_rate": 4.9006108450837095e-05,
|
296 |
+
"loss": 0.6463,
|
297 |
+
"step": 240
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"epoch": 0.46,
|
301 |
+
"learning_rate": 4.8964556142767845e-05,
|
302 |
+
"loss": 0.6825,
|
303 |
+
"step": 245
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.47,
|
307 |
+
"learning_rate": 4.892217127868965e-05,
|
308 |
+
"loss": 0.6576,
|
309 |
+
"step": 250
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 0.48,
|
313 |
+
"learning_rate": 4.8878955331101026e-05,
|
314 |
+
"loss": 0.687,
|
315 |
+
"step": 255
|
316 |
+
},
|
317 |
+
{
|
318 |
+
"epoch": 0.49,
|
319 |
+
"learning_rate": 4.8834909801373264e-05,
|
320 |
+
"loss": 0.6567,
|
321 |
+
"step": 260
|
322 |
+
},
|
323 |
+
{
|
324 |
+
"epoch": 0.5,
|
325 |
+
"learning_rate": 4.879003621969831e-05,
|
326 |
+
"loss": 0.6697,
|
327 |
+
"step": 265
|
328 |
+
},
|
329 |
+
{
|
330 |
+
"epoch": 0.51,
|
331 |
+
"learning_rate": 4.874433614503554e-05,
|
332 |
+
"loss": 0.6451,
|
333 |
+
"step": 270
|
334 |
+
},
|
335 |
+
{
|
336 |
+
"epoch": 0.52,
|
337 |
+
"learning_rate": 4.869781116505768e-05,
|
338 |
+
"loss": 0.6601,
|
339 |
+
"step": 275
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 0.53,
|
343 |
+
"learning_rate": 4.8650462896095597e-05,
|
344 |
+
"loss": 0.677,
|
345 |
+
"step": 280
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.53,
|
349 |
+
"learning_rate": 4.860229298308213e-05,
|
350 |
+
"loss": 0.676,
|
351 |
+
"step": 285
|
352 |
+
},
|
353 |
+
{
|
354 |
+
"epoch": 0.54,
|
355 |
+
"learning_rate": 4.8553303099495e-05,
|
356 |
+
"loss": 0.6286,
|
357 |
+
"step": 290
|
358 |
+
},
|
359 |
+
{
|
360 |
+
"epoch": 0.55,
|
361 |
+
"learning_rate": 4.8503494947298634e-05,
|
362 |
+
"loss": 0.6844,
|
363 |
+
"step": 295
|
364 |
+
},
|
365 |
+
{
|
366 |
+
"epoch": 0.56,
|
367 |
+
"learning_rate": 4.845287025688503e-05,
|
368 |
+
"loss": 0.6389,
|
369 |
+
"step": 300
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 0.57,
|
373 |
+
"learning_rate": 4.8401430787013666e-05,
|
374 |
+
"loss": 0.641,
|
375 |
+
"step": 305
|
376 |
+
},
|
377 |
+
{
|
378 |
+
"epoch": 0.58,
|
379 |
+
"learning_rate": 4.8349178324750387e-05,
|
380 |
+
"loss": 0.6959,
|
381 |
+
"step": 310
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"epoch": 0.59,
|
385 |
+
"learning_rate": 4.8296114685405324e-05,
|
386 |
+
"loss": 0.6356,
|
387 |
+
"step": 315
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 0.6,
|
391 |
+
"learning_rate": 4.824224171246981e-05,
|
392 |
+
"loss": 0.6673,
|
393 |
+
"step": 320
|
394 |
+
},
|
395 |
+
{
|
396 |
+
"epoch": 0.61,
|
397 |
+
"learning_rate": 4.8187561277552374e-05,
|
398 |
+
"loss": 0.5884,
|
399 |
+
"step": 325
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 0.62,
|
403 |
+
"learning_rate": 4.813207528031366e-05,
|
404 |
+
"loss": 0.6729,
|
405 |
+
"step": 330
|
406 |
+
},
|
407 |
+
{
|
408 |
+
"epoch": 0.63,
|
409 |
+
"learning_rate": 4.807578564840051e-05,
|
410 |
+
"loss": 0.6228,
|
411 |
+
"step": 335
|
412 |
+
},
|
413 |
+
{
|
414 |
+
"epoch": 0.64,
|
415 |
+
"learning_rate": 4.801869433737891e-05,
|
416 |
+
"loss": 0.6136,
|
417 |
+
"step": 340
|
418 |
+
},
|
419 |
+
{
|
420 |
+
"epoch": 0.65,
|
421 |
+
"learning_rate": 4.796080333066613e-05,
|
422 |
+
"loss": 0.634,
|
423 |
+
"step": 345
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"epoch": 0.66,
|
427 |
+
"learning_rate": 4.790211463946174e-05,
|
428 |
+
"loss": 0.6636,
|
429 |
+
"step": 350
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.67,
|
433 |
+
"learning_rate": 4.784263030267781e-05,
|
434 |
+
"loss": 0.64,
|
435 |
+
"step": 355
|
436 |
+
},
|
437 |
+
{
|
438 |
+
"epoch": 0.68,
|
439 |
+
"learning_rate": 4.7782352386868035e-05,
|
440 |
+
"loss": 0.6477,
|
441 |
+
"step": 360
|
442 |
+
},
|
443 |
+
{
|
444 |
+
"epoch": 0.68,
|
445 |
+
"learning_rate": 4.7721282986155945e-05,
|
446 |
+
"loss": 0.6591,
|
447 |
+
"step": 365
|
448 |
+
},
|
449 |
+
{
|
450 |
+
"epoch": 0.69,
|
451 |
+
"learning_rate": 4.7659424222162165e-05,
|
452 |
+
"loss": 0.626,
|
453 |
+
"step": 370
|
454 |
+
},
|
455 |
+
{
|
456 |
+
"epoch": 0.7,
|
457 |
+
"learning_rate": 4.7596778243930694e-05,
|
458 |
+
"loss": 0.6154,
|
459 |
+
"step": 375
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 0.71,
|
463 |
+
"learning_rate": 4.7533347227854265e-05,
|
464 |
+
"loss": 0.6612,
|
465 |
+
"step": 380
|
466 |
+
},
|
467 |
+
{
|
468 |
+
"epoch": 0.72,
|
469 |
+
"learning_rate": 4.7469133377598695e-05,
|
470 |
+
"loss": 0.6235,
|
471 |
+
"step": 385
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 0.73,
|
475 |
+
"learning_rate": 4.740413892402639e-05,
|
476 |
+
"loss": 0.6507,
|
477 |
+
"step": 390
|
478 |
+
},
|
479 |
+
{
|
480 |
+
"epoch": 0.74,
|
481 |
+
"learning_rate": 4.7338366125118775e-05,
|
482 |
+
"loss": 0.6008,
|
483 |
+
"step": 395
|
484 |
+
},
|
485 |
+
{
|
486 |
+
"epoch": 0.75,
|
487 |
+
"learning_rate": 4.727181726589789e-05,
|
488 |
+
"loss": 0.611,
|
489 |
+
"step": 400
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 0.76,
|
493 |
+
"learning_rate": 4.7204494658346996e-05,
|
494 |
+
"loss": 0.638,
|
495 |
+
"step": 405
|
496 |
+
},
|
497 |
+
{
|
498 |
+
"epoch": 0.77,
|
499 |
+
"learning_rate": 4.713640064133025e-05,
|
500 |
+
"loss": 0.6045,
|
501 |
+
"step": 410
|
502 |
+
},
|
503 |
+
{
|
504 |
+
"epoch": 0.78,
|
505 |
+
"learning_rate": 4.706753758051145e-05,
|
506 |
+
"loss": 0.6266,
|
507 |
+
"step": 415
|
508 |
+
},
|
509 |
+
{
|
510 |
+
"epoch": 0.79,
|
511 |
+
"learning_rate": 4.699790786827188e-05,
|
512 |
+
"loss": 0.6175,
|
513 |
+
"step": 420
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 0.8,
|
517 |
+
"learning_rate": 4.6927513923627124e-05,
|
518 |
+
"loss": 0.6393,
|
519 |
+
"step": 425
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"epoch": 0.81,
|
523 |
+
"learning_rate": 4.68563581921431e-05,
|
524 |
+
"loss": 0.6792,
|
525 |
+
"step": 430
|
526 |
+
},
|
527 |
+
{
|
528 |
+
"epoch": 0.82,
|
529 |
+
"learning_rate": 4.6784443145851074e-05,
|
530 |
+
"loss": 0.6274,
|
531 |
+
"step": 435
|
532 |
+
},
|
533 |
+
{
|
534 |
+
"epoch": 0.83,
|
535 |
+
"learning_rate": 4.671177128316176e-05,
|
536 |
+
"loss": 0.6671,
|
537 |
+
"step": 440
|
538 |
+
},
|
539 |
+
{
|
540 |
+
"epoch": 0.83,
|
541 |
+
"learning_rate": 4.663834512877853e-05,
|
542 |
+
"loss": 0.6933,
|
543 |
+
"step": 445
|
544 |
+
},
|
545 |
+
{
|
546 |
+
"epoch": 0.84,
|
547 |
+
"learning_rate": 4.6564167233609736e-05,
|
548 |
+
"loss": 0.6553,
|
549 |
+
"step": 450
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 0.85,
|
553 |
+
"learning_rate": 4.648924017468003e-05,
|
554 |
+
"loss": 0.6261,
|
555 |
+
"step": 455
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 0.86,
|
559 |
+
"learning_rate": 4.6413566555040896e-05,
|
560 |
+
"loss": 0.6421,
|
561 |
+
"step": 460
|
562 |
+
},
|
563 |
+
{
|
564 |
+
"epoch": 0.87,
|
565 |
+
"learning_rate": 4.633714900368018e-05,
|
566 |
+
"loss": 0.6464,
|
567 |
+
"step": 465
|
568 |
+
},
|
569 |
+
{
|
570 |
+
"epoch": 0.88,
|
571 |
+
"learning_rate": 4.625999017543075e-05,
|
572 |
+
"loss": 0.6902,
|
573 |
+
"step": 470
|
574 |
+
},
|
575 |
+
{
|
576 |
+
"epoch": 0.89,
|
577 |
+
"learning_rate": 4.618209275087829e-05,
|
578 |
+
"loss": 0.655,
|
579 |
+
"step": 475
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"epoch": 0.9,
|
583 |
+
"learning_rate": 4.610345943626817e-05,
|
584 |
+
"loss": 0.5977,
|
585 |
+
"step": 480
|
586 |
+
},
|
587 |
+
{
|
588 |
+
"epoch": 0.91,
|
589 |
+
"learning_rate": 4.602409296341141e-05,
|
590 |
+
"loss": 0.6449,
|
591 |
+
"step": 485
|
592 |
+
},
|
593 |
+
{
|
594 |
+
"epoch": 0.92,
|
595 |
+
"learning_rate": 4.5943996089589775e-05,
|
596 |
+
"loss": 0.6055,
|
597 |
+
"step": 490
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 0.93,
|
601 |
+
"learning_rate": 4.586317159746001e-05,
|
602 |
+
"loss": 0.6475,
|
603 |
+
"step": 495
|
604 |
+
},
|
605 |
+
{
|
606 |
+
"epoch": 0.94,
|
607 |
+
"learning_rate": 4.5781622294957136e-05,
|
608 |
+
"loss": 0.6492,
|
609 |
+
"step": 500
|
610 |
+
},
|
611 |
+
{
|
612 |
+
"epoch": 0.95,
|
613 |
+
"learning_rate": 4.569935101519692e-05,
|
614 |
+
"loss": 0.6209,
|
615 |
+
"step": 505
|
616 |
+
},
|
617 |
+
{
|
618 |
+
"epoch": 0.96,
|
619 |
+
"learning_rate": 4.561636061637745e-05,
|
620 |
+
"loss": 0.6437,
|
621 |
+
"step": 510
|
622 |
+
},
|
623 |
+
{
|
624 |
+
"epoch": 0.97,
|
625 |
+
"learning_rate": 4.553265398167981e-05,
|
626 |
+
"loss": 0.616,
|
627 |
+
"step": 515
|
628 |
+
},
|
629 |
+
{
|
630 |
+
"epoch": 0.98,
|
631 |
+
"learning_rate": 4.5448234019167945e-05,
|
632 |
+
"loss": 0.6512,
|
633 |
+
"step": 520
|
634 |
+
},
|
635 |
+
{
|
636 |
+
"epoch": 0.98,
|
637 |
+
"learning_rate": 4.536310366168763e-05,
|
638 |
+
"loss": 0.6408,
|
639 |
+
"step": 525
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 0.99,
|
643 |
+
"learning_rate": 4.5277265866764565e-05,
|
644 |
+
"loss": 0.6349,
|
645 |
+
"step": 530
|
646 |
+
},
|
647 |
+
{
|
648 |
+
"epoch": 1.0,
|
649 |
+
"learning_rate": 4.519072361650163e-05,
|
650 |
+
"loss": 0.6541,
|
651 |
+
"step": 535
|
652 |
+
},
|
653 |
+
{
|
654 |
+
"epoch": 1.01,
|
655 |
+
"learning_rate": 4.5103479917475286e-05,
|
656 |
+
"loss": 0.6365,
|
657 |
+
"step": 540
|
658 |
+
},
|
659 |
+
{
|
660 |
+
"epoch": 1.02,
|
661 |
+
"learning_rate": 4.501553780063113e-05,
|
662 |
+
"loss": 0.5719,
|
663 |
+
"step": 545
|
664 |
+
},
|
665 |
+
{
|
666 |
+
"epoch": 1.03,
|
667 |
+
"learning_rate": 4.4926900321178595e-05,
|
668 |
+
"loss": 0.5938,
|
669 |
+
"step": 550
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"epoch": 1.04,
|
673 |
+
"learning_rate": 4.483757055848479e-05,
|
674 |
+
"loss": 0.6431,
|
675 |
+
"step": 555
|
676 |
+
},
|
677 |
+
{
|
678 |
+
"epoch": 1.05,
|
679 |
+
"learning_rate": 4.4747551615967534e-05,
|
680 |
+
"loss": 0.6333,
|
681 |
+
"step": 560
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 1.06,
|
685 |
+
"learning_rate": 4.4656846620987557e-05,
|
686 |
+
"loss": 0.6413,
|
687 |
+
"step": 565
|
688 |
+
},
|
689 |
+
{
|
690 |
+
"epoch": 1.07,
|
691 |
+
"learning_rate": 4.4565458724739825e-05,
|
692 |
+
"loss": 0.639,
|
693 |
+
"step": 570
|
694 |
+
},
|
695 |
+
{
|
696 |
+
"epoch": 1.08,
|
697 |
+
"learning_rate": 4.447339110214405e-05,
|
698 |
+
"loss": 0.6792,
|
699 |
+
"step": 575
|
700 |
+
},
|
701 |
+
{
|
702 |
+
"epoch": 1.09,
|
703 |
+
"learning_rate": 4.438064695173446e-05,
|
704 |
+
"loss": 0.606,
|
705 |
+
"step": 580
|
706 |
+
},
|
707 |
+
{
|
708 |
+
"epoch": 1.1,
|
709 |
+
"learning_rate": 4.428722949554857e-05,
|
710 |
+
"loss": 0.6392,
|
711 |
+
"step": 585
|
712 |
+
},
|
713 |
+
{
|
714 |
+
"epoch": 1.11,
|
715 |
+
"learning_rate": 4.419314197901537e-05,
|
716 |
+
"loss": 0.5808,
|
717 |
+
"step": 590
|
718 |
+
},
|
719 |
+
{
|
720 |
+
"epoch": 1.12,
|
721 |
+
"learning_rate": 4.4098387670842466e-05,
|
722 |
+
"loss": 0.5524,
|
723 |
+
"step": 595
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 1.13,
|
727 |
+
"learning_rate": 4.400296986290258e-05,
|
728 |
+
"loss": 0.5939,
|
729 |
+
"step": 600
|
730 |
+
},
|
731 |
+
{
|
732 |
+
"epoch": 1.13,
|
733 |
+
"learning_rate": 4.390689187011917e-05,
|
734 |
+
"loss": 0.6328,
|
735 |
+
"step": 605
|
736 |
+
},
|
737 |
+
{
|
738 |
+
"epoch": 1.14,
|
739 |
+
"learning_rate": 4.3810157030351276e-05,
|
740 |
+
"loss": 0.6542,
|
741 |
+
"step": 610
|
742 |
+
},
|
743 |
+
{
|
744 |
+
"epoch": 1.15,
|
745 |
+
"learning_rate": 4.371276870427753e-05,
|
746 |
+
"loss": 0.5911,
|
747 |
+
"step": 615
|
748 |
+
},
|
749 |
+
{
|
750 |
+
"epoch": 1.16,
|
751 |
+
"learning_rate": 4.3614730275279457e-05,
|
752 |
+
"loss": 0.6093,
|
753 |
+
"step": 620
|
754 |
+
},
|
755 |
+
{
|
756 |
+
"epoch": 1.17,
|
757 |
+
"learning_rate": 4.351604514932387e-05,
|
758 |
+
"loss": 0.5915,
|
759 |
+
"step": 625
|
760 |
+
},
|
761 |
+
{
|
762 |
+
"epoch": 1.18,
|
763 |
+
"learning_rate": 4.341671675484459e-05,
|
764 |
+
"loss": 0.6436,
|
765 |
+
"step": 630
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 1.19,
|
769 |
+
"learning_rate": 4.331674854262331e-05,
|
770 |
+
"loss": 0.6547,
|
771 |
+
"step": 635
|
772 |
+
},
|
773 |
+
{
|
774 |
+
"epoch": 1.2,
|
775 |
+
"learning_rate": 4.321614398566972e-05,
|
776 |
+
"loss": 0.6356,
|
777 |
+
"step": 640
|
778 |
+
},
|
779 |
+
{
|
780 |
+
"epoch": 1.21,
|
781 |
+
"learning_rate": 4.3114906579100853e-05,
|
782 |
+
"loss": 0.6458,
|
783 |
+
"step": 645
|
784 |
+
},
|
785 |
+
{
|
786 |
+
"epoch": 1.22,
|
787 |
+
"learning_rate": 4.301303984001967e-05,
|
788 |
+
"loss": 0.6527,
|
789 |
+
"step": 650
|
790 |
+
},
|
791 |
+
{
|
792 |
+
"epoch": 1.23,
|
793 |
+
"learning_rate": 4.291054730739286e-05,
|
794 |
+
"loss": 0.6872,
|
795 |
+
"step": 655
|
796 |
+
},
|
797 |
+
{
|
798 |
+
"epoch": 1.24,
|
799 |
+
"learning_rate": 4.2807432541927865e-05,
|
800 |
+
"loss": 0.5961,
|
801 |
+
"step": 660
|
802 |
+
},
|
803 |
+
{
|
804 |
+
"epoch": 1.25,
|
805 |
+
"learning_rate": 4.2703699125949245e-05,
|
806 |
+
"loss": 0.6227,
|
807 |
+
"step": 665
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"epoch": 1.26,
|
811 |
+
"learning_rate": 4.259935066327415e-05,
|
812 |
+
"loss": 0.6541,
|
813 |
+
"step": 670
|
814 |
+
},
|
815 |
+
{
|
816 |
+
"epoch": 1.27,
|
817 |
+
"learning_rate": 4.2494390779087187e-05,
|
818 |
+
"loss": 0.654,
|
819 |
+
"step": 675
|
820 |
+
},
|
821 |
+
{
|
822 |
+
"epoch": 1.28,
|
823 |
+
"learning_rate": 4.238882311981441e-05,
|
824 |
+
"loss": 0.6677,
|
825 |
+
"step": 680
|
826 |
+
},
|
827 |
+
{
|
828 |
+
"epoch": 1.28,
|
829 |
+
"learning_rate": 4.228265135299669e-05,
|
830 |
+
"loss": 0.568,
|
831 |
+
"step": 685
|
832 |
+
},
|
833 |
+
{
|
834 |
+
"epoch": 1.29,
|
835 |
+
"learning_rate": 4.2175879167162304e-05,
|
836 |
+
"loss": 0.5655,
|
837 |
+
"step": 690
|
838 |
+
},
|
839 |
+
{
|
840 |
+
"epoch": 1.3,
|
841 |
+
"learning_rate": 4.206851027169871e-05,
|
842 |
+
"loss": 0.5781,
|
843 |
+
"step": 695
|
844 |
+
},
|
845 |
+
{
|
846 |
+
"epoch": 1.31,
|
847 |
+
"learning_rate": 4.196054839672382e-05,
|
848 |
+
"loss": 0.599,
|
849 |
+
"step": 700
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 1.32,
|
853 |
+
"learning_rate": 4.1851997292956255e-05,
|
854 |
+
"loss": 0.6432,
|
855 |
+
"step": 705
|
856 |
+
},
|
857 |
+
{
|
858 |
+
"epoch": 1.33,
|
859 |
+
"learning_rate": 4.174286073158516e-05,
|
860 |
+
"loss": 0.685,
|
861 |
+
"step": 710
|
862 |
+
},
|
863 |
+
{
|
864 |
+
"epoch": 1.34,
|
865 |
+
"learning_rate": 4.163314250413913e-05,
|
866 |
+
"loss": 0.6159,
|
867 |
+
"step": 715
|
868 |
+
},
|
869 |
+
{
|
870 |
+
"epoch": 1.35,
|
871 |
+
"learning_rate": 4.152284642235452e-05,
|
872 |
+
"loss": 0.6293,
|
873 |
+
"step": 720
|
874 |
+
},
|
875 |
+
{
|
876 |
+
"epoch": 1.36,
|
877 |
+
"learning_rate": 4.141197631804298e-05,
|
878 |
+
"loss": 0.608,
|
879 |
+
"step": 725
|
880 |
+
},
|
881 |
+
{
|
882 |
+
"epoch": 1.37,
|
883 |
+
"learning_rate": 4.1300536042958354e-05,
|
884 |
+
"loss": 0.6286,
|
885 |
+
"step": 730
|
886 |
+
},
|
887 |
+
{
|
888 |
+
"epoch": 1.38,
|
889 |
+
"learning_rate": 4.118852946866291e-05,
|
890 |
+
"loss": 0.6234,
|
891 |
+
"step": 735
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"epoch": 1.39,
|
895 |
+
"learning_rate": 4.107596048639274e-05,
|
896 |
+
"loss": 0.6079,
|
897 |
+
"step": 740
|
898 |
+
},
|
899 |
+
{
|
900 |
+
"epoch": 1.4,
|
901 |
+
"learning_rate": 4.0962833006922675e-05,
|
902 |
+
"loss": 0.6374,
|
903 |
+
"step": 745
|
904 |
+
},
|
905 |
+
{
|
906 |
+
"epoch": 1.41,
|
907 |
+
"learning_rate": 4.0849150960430356e-05,
|
908 |
+
"loss": 0.6089,
|
909 |
+
"step": 750
|
910 |
+
},
|
911 |
+
{
|
912 |
+
"epoch": 1.42,
|
913 |
+
"learning_rate": 4.0734918296359716e-05,
|
914 |
+
"loss": 0.6256,
|
915 |
+
"step": 755
|
916 |
+
},
|
917 |
+
{
|
918 |
+
"epoch": 1.43,
|
919 |
+
"learning_rate": 4.0620138983283785e-05,
|
920 |
+
"loss": 0.59,
|
921 |
+
"step": 760
|
922 |
+
},
|
923 |
+
{
|
924 |
+
"epoch": 1.43,
|
925 |
+
"learning_rate": 4.050481700876677e-05,
|
926 |
+
"loss": 0.5918,
|
927 |
+
"step": 765
|
928 |
+
},
|
929 |
+
{
|
930 |
+
"epoch": 1.44,
|
931 |
+
"learning_rate": 4.038895637922559e-05,
|
932 |
+
"loss": 0.5828,
|
933 |
+
"step": 770
|
934 |
+
},
|
935 |
+
{
|
936 |
+
"epoch": 1.45,
|
937 |
+
"learning_rate": 4.027256111979063e-05,
|
938 |
+
"loss": 0.6087,
|
939 |
+
"step": 775
|
940 |
+
},
|
941 |
+
{
|
942 |
+
"epoch": 1.46,
|
943 |
+
"learning_rate": 4.015563527416595e-05,
|
944 |
+
"loss": 0.6005,
|
945 |
+
"step": 780
|
946 |
+
},
|
947 |
+
{
|
948 |
+
"epoch": 1.47,
|
949 |
+
"learning_rate": 4.003818290448876e-05,
|
950 |
+
"loss": 0.6306,
|
951 |
+
"step": 785
|
952 |
+
},
|
953 |
+
{
|
954 |
+
"epoch": 1.48,
|
955 |
+
"learning_rate": 3.992020809118832e-05,
|
956 |
+
"loss": 0.5853,
|
957 |
+
"step": 790
|
958 |
+
},
|
959 |
+
{
|
960 |
+
"epoch": 1.49,
|
961 |
+
"learning_rate": 3.980171493284418e-05,
|
962 |
+
"loss": 0.6681,
|
963 |
+
"step": 795
|
964 |
+
},
|
965 |
+
{
|
966 |
+
"epoch": 1.5,
|
967 |
+
"learning_rate": 3.9682707546043785e-05,
|
968 |
+
"loss": 0.6093,
|
969 |
+
"step": 800
|
970 |
+
}
|
971 |
+
],
|
972 |
+
"logging_steps": 5,
|
973 |
+
"max_steps": 2665,
|
974 |
+
"num_input_tokens_seen": 0,
|
975 |
+
"num_train_epochs": 5,
|
976 |
+
"save_steps": 100,
|
977 |
+
"total_flos": 6.268370894910259e+17,
|
978 |
+
"train_batch_size": 2,
|
979 |
+
"trial_name": null,
|
980 |
+
"trial_params": null
|
981 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6aeb98d9ae3417a7458d8bc4b7970ac6d0df634a26c3c4b401f81d098581369c
|
3 |
+
size 4920
|