araffin commited on
Commit
6b665a6
1 Parent(s): 890e2dd

Initial commit

Browse files
.gitattributes CHANGED
@@ -25,3 +25,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
29
+ vec_normalize.pkl filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - Hopper-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: TRPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 3673.27 +/- 3.75
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: Hopper-v3
20
+ type: Hopper-v3
21
+ ---
22
+
23
+ # **TRPO** Agent playing **Hopper-v3**
24
+ This is a trained model of a **TRPO** agent playing **Hopper-v3**
25
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
26
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
27
+
28
+ The RL Zoo is a training framework for Stable Baselines3
29
+ reinforcement learning agents,
30
+ with hyperparameter optimization and pre-trained agents included.
31
+
32
+ ## Usage (with SB3 RL Zoo)
33
+
34
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
35
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
36
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
37
+
38
+ ```
39
+ # Download model and save it into the logs/ folder
40
+ python -m utils.load_from_hub --algo trpo --env Hopper-v3 -orga sb3 -f logs/
41
+ python enjoy.py --algo trpo --env Hopper-v3 -f logs/
42
+ ```
43
+
44
+ ## Training (with the RL Zoo)
45
+ ```
46
+ python train.py --algo trpo --env Hopper-v3 -f logs/
47
+ # Upload the model and generate video (when possible)
48
+ python -m utils.push_to_hub --algo trpo --env Hopper-v3 -f logs/ -orga sb3
49
+ ```
50
+
51
+ ## Hyperparameters
52
+ ```python
53
+ OrderedDict([('batch_size', 128),
54
+ ('cg_damping', 0.1),
55
+ ('cg_max_steps', 25),
56
+ ('gae_lambda', 0.95),
57
+ ('gamma', 0.99),
58
+ ('learning_rate', 0.001),
59
+ ('n_critic_updates', 20),
60
+ ('n_envs', 2),
61
+ ('n_steps', 1024),
62
+ ('n_timesteps', 1000000.0),
63
+ ('normalize', True),
64
+ ('policy', 'MlpPolicy'),
65
+ ('sub_sampling_factor', 1),
66
+ ('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})])
67
+ ```
args.yml ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - trpo
4
+ - - env
5
+ - Hopper-v3
6
+ - - env_kwargs
7
+ - null
8
+ - - eval_episodes
9
+ - 20
10
+ - - eval_freq
11
+ - 50000
12
+ - - gym_packages
13
+ - []
14
+ - - hyperparams
15
+ - null
16
+ - - log_folder
17
+ - logs
18
+ - - log_interval
19
+ - 10
20
+ - - n_eval_envs
21
+ - 10
22
+ - - n_evaluations
23
+ - 20
24
+ - - n_jobs
25
+ - 1
26
+ - - n_startup_trials
27
+ - 10
28
+ - - n_timesteps
29
+ - -1
30
+ - - n_trials
31
+ - 10
32
+ - - no_optim_plots
33
+ - false
34
+ - - num_threads
35
+ - -1
36
+ - - optimization_log_path
37
+ - null
38
+ - - optimize_hyperparameters
39
+ - false
40
+ - - pruner
41
+ - median
42
+ - - sampler
43
+ - tpe
44
+ - - save_freq
45
+ - -1
46
+ - - save_replay_buffer
47
+ - false
48
+ - - seed
49
+ - 52924509
50
+ - - storage
51
+ - null
52
+ - - study_name
53
+ - null
54
+ - - tensorboard_log
55
+ - ''
56
+ - - trained_agent
57
+ - ''
58
+ - - truncate_last_trajectory
59
+ - true
60
+ - - uuid
61
+ - false
62
+ - - vec_env
63
+ - dummy
64
+ - - verbose
65
+ - 1
config.yml ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - batch_size
3
+ - 128
4
+ - - cg_damping
5
+ - 0.1
6
+ - - cg_max_steps
7
+ - 25
8
+ - - gae_lambda
9
+ - 0.95
10
+ - - gamma
11
+ - 0.99
12
+ - - learning_rate
13
+ - 0.001
14
+ - - n_critic_updates
15
+ - 20
16
+ - - n_envs
17
+ - 2
18
+ - - n_steps
19
+ - 1024
20
+ - - n_timesteps
21
+ - 1000000.0
22
+ - - normalize
23
+ - true
24
+ - - policy
25
+ - MlpPolicy
26
+ - - sub_sampling_factor
27
+ - 1
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ec02c8c2854ddea7615eee2a985c30dcff550be3d8acccac83bbe1a94f0fd8cf
3
+ size 1701335
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 3673.2705594, "std_reward": 3.7529195494912075, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-02T13:00:31.312482"}
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfada781ab3db7f8682cd166fc6d94ce2938ac40d73cbb3625dd83b8e1b6e95a
3
+ size 65340
trpo-Hopper-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6a187bb13dc75d4625d1462b07076d4287728db0f6fcadf06d98fe6f6503e62a
3
+ size 108315
trpo-Hopper-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.1a8
trpo-Hopper-v3/data ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9288f9b950>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9288f9b9e0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9288f9ba70>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9288f9bb00>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f9288f9bb90>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f9288f9bc20>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9288f9bcb0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f9288f9bd40>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9288f9bdd0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9288f9be60>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9288f9bef0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f9288fec840>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gASVOQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwuFlGgKiUNYAAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/5R0lGKMBGhpZ2iUaBBoEksAhZRoFIeUUpQoSwFLC4WUaAqJQ1gAAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/lHSUYowNYm91bmRlZF9iZWxvd5RoEGgSSwCFlGgUh5RSlChLAUsLhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCwAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEGgSSwCFlGgUh5RSlChLAUsLhZRoKIlDCwAAAAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROjAZfc2hhcGWUSwuFlHViLg==",
26
+ "dtype": "float64",
27
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
28
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf]",
29
+ "bounded_below": "[False False False False False False False False False False False]",
30
+ "bounded_above": "[False False False False False False False False False False False]",
31
+ "_np_random": null,
32
+ "_shape": [
33
+ 11
34
+ ]
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.box.Box'>",
38
+ ":serialized:": "gASVIQwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwOFlGgKiUMMAACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEGgSSwCFlGgUh5RSlChLAUsDhZRoColDDAAAgD8AAIA/AACAP5R0lGKMDWJvdW5kZWRfYmVsb3eUaBBoEksAhZRoFIeUUpQoSwFLA4WUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQwMBAQGUdJRijA1ib3VuZGVkX2Fib3ZllGgQaBJLAIWUaBSHlFKUKEsBSwOFlGgoiUMDAQEBlHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaDiMBXN0YXRllH2UKIwDa2V5lGgQaBJLAIWUaBSHlFKUKEsBTXAChZRoB4wCdTSUiYiHlFKUKEsDaAtOTk5K/////0r/////SwB0lGKJQsAJAAAAAACAU8KznIcDtZNy7Ktb6Oay8s+2gdrVBu9hoTFNoGu1zNkT5hifdJx5L8ilG4DEeQFJng9D5F3gGJOSE1XM1EopZNIIlb400J5EcnoD8K2/CnObez7pYLEG2nUDRQtufdYWausENGaDt/P1pS9p70JjQ7Vc98J3UsxGRDctCIlu0I6ud/sYtoBPe575TzLsEti5jl6FqRnKrj12LWcrQoCexe7HH/UiAV1LzyQPzBlSZERXmHCdCvUSF7XpWt47xP9BzzqxX7aH3TPYWImqos1/ez/JlLdsD0MfMZl9G2CQq7cHHRlM3sj7jroA9c+pGt4l/iAGpRb80HbjwU71ykPTAVp531BXrc2qmIU6z9Fh4TAPx7fZ1kVF+L1Irlou+4Ckky7Ys59nB7KkciTI+N5jlb62ybZt0+ZWgIA6LKLvdx/mTQtB4k1aplT/C7L9/ybKCFn2quN/7YlIkxoH1U0xdabG6rgOrR+SHMmvUwvtKB+19Ibb07mSgVQyjNAvnyADPJf3pkxylZtn7f/OVpWEaWfl6BcLwy0grrEgUK+H+8P8XWMuBginXgwzn3sy4+ZOlr45op6TtuqX0Knz/SySGDlBIK8JqKObzB6fGt+ovJHEM8KlL4veKwkLkuuMWBaex3FBdWskry5qhslxMgnk2thh8DaXmAfbuI8j0SqHMW1kleITi9ekfXx/eSi5hX1GjA/M62Zixuay1H8zH9VjsTRcGacyJ0vh1hNReDFoNsXFbLfLqaIvbLDQjY7T289ZXsupvAxu2GVTbqWst+ckPPzwH7vLikULC+weAKwxarqm+ugAXgyz774meHOsvQYuu18nvrrunjZWDvwaKuYohEwUfSnpotE9XhX99yUTc8sGPQidTfXkzm/t8MWP8it4l4VSEgDLn8GW8t2DAh8EwFa/KOGoZEGjYqZ2IMA70E+F2LqgaZlQLFMONTIx3yuN5F2e1MT4v2wdBRK9R+lGMpxIiNldyOwwxLDBTRDMhd7APidmDwQBnvaIecKFa95btwHkRBEUT5g++/I0DDg685EX4OMO2YtTPqM3PQluS4puEhAQRVukNGSh4gYDgcBPKZl4ThNf+G+E7El9fmWJcP39Sifw6Mn+GEisM1RhHY05XZHUv5W4r8kD2jSLMY+IIL2+LtQrW7it7y28+sEicLoEfYOky9ZJF6l0fR+sXEawf+REH9LvtRJ4yzfxr7KisNpr1axv1ae5CDXS+XTzuOG/BJnHvt8arnY1XWH9SdkCOeok6MI8GBCtjTCxJ5JbpI5J0i0A66mJaRW9LMfP6Cil3/cVRQ9uN2KTtV3o7rJwY4XCnj7DJmqrUwofDDl7Ek0PoN7w0Hh8YHOy8qhPw7V8ALdjZn7eYtjCQIldQvHbM1I73RtCLQvQGFMXUCJ022pGRqTvZX5XWSizqbgX6TJmI6LDF9wcpYealB7cDwelfqdpzHRmyjRbIX9b+w4uj//aDRgP2SgiOAq/D/9/0SbgK/E0FQyclhNVAkbKwXhAxKGczpvJow0mFFUAt/5fT5KAsmQTAt8p0FsrGMDTfk4RzZgqZSm+ihVRS371Tx3twpGA1goo/AIfJh8slJC3hkR1OGCN7LAPGCwbM9rHlKSU4uuhJiff196h9q1kPMld6989MfKLVkvCl7ofCRurPUW46ceJKE951sQD1v8cK0HK1JmuBTCXAelCUCIFNLGk3tMXNVmuuFF3o3xb4V4T1IAYIfBdyEVHhIIZOE/JEY79daQw8njYEtQ6YwZ6kNCBYfrjq2OglITcRdwDmINL42ro6HnbWgLZQ8Ce/EiPVBtWHwhvGUHK1FNONzRzXgT1zKEg+WAigeuK4QVIxdITM4YvUyYvpQJuJd+xGD1no7BYIKXdV4aDlsRnWSMmS+zTyTvC0+TgBMCNpMvdChjaB/XTrMVsm0vgPmCYswn067MTYWfm5oCqqmNciqoRfFL2O2mxFT1VMcKDrxHBdBUhSG5UmAerx86KAEytbsCbn6OOj8Y02VwVynzXd0WJfLioeGMZISM1eneWfTc1mQ6CpdDxJqUmU86/KsBL3Bb0S2NAqFysFJZKxDwLej8xz+xH8IxEHzlkiiNH+2IIq0663FAwi6wg6dgcryDqQ+lNDwn898nylrcYShigDrtrFBNezKx3ZjpkPCnPUeQB4hJUrYCUJy5CyytC/x1UsByKez/aSNEWnlWnzYdJf2PoKL0YfmaR3KpXzi9ax3BHPgk1cdmgdVkqevFJ0DUdTBFQj/mhaKqcaT0rKJLgy/11AhWW4nX7+kAdgR0b1iAseI0TbMDtohBuqqUZfqMfUKsdI8v2aeUd0+IqOjPBFe7TZRC7OUYmf789SRTpw9gst4tzx7tLap8JnFt2keKhqd3vBgqpvlsxvx0DcPC+bo/qIldKiAn5D7TPjeWLzJ1gmpk1mVKOyWOv/ZzlRTfe8yEsMsRcgdPxbOuxLjlOwo1uFh9NjHoOz/xbnI62I49ZzT59GUCNtAL74UqjlRoyXZ5ELEjhTn+F5fYfEkY2TnSsgKO4Wwb/xD41S4mBL7LcUyF76ybV7Yx0L6V2QGoSfyhHFqMQJs/haLPPW18mWJb/UDl90ZN9TEzcdXvZsmCeqzCagC6YDHp3fop+5nAQSnT/Byt2j7z+6cnl/aZh6oKs5xrEMmuzpLFbXNVof9hNmX5E0DQ2M8uBqqeW95p6z8ySnOxURAO28oYWsbVyeYaNlWLZrOtIMZDRjjbecSSwMLlrBhw4mZVht4DgOQxI1+P7sPHZLMf89U+5ctf1rD0r1AXgyXjzOxKvCxWMhrz6Ah19+zal/bAIpw+0V7Pq85PRQO4UeScmMwODR8jcOfILuMmo7xXhemY/JqtOncklEaGapMeGlkiefvQkx9L5EWvLn6stI4zRP4pZXx9iOz17IKJmKOVHgCIAOiheb0bwkjNkItlfYO3LzeLLPuBDNLFg7tQu5NPWy28a4nBsE/gsyEteRvF2ECYFIOJg06dzc77IWw7o+z1Q5APxLg9uvyFniYWNuJyk7rflLCmYcg1gN657CWff8YfPr0ukKOamco94X1nFdyroxHiQlRXaP91DOqMueI1pCasyRQt0jtbWwxdEVyzP3GzUZXBWqa0xXCzwe29cxg2aiwKuuAAVfaCE/Pt1cJXq8wvliF81sMDPMbowd9+uyWuExq/e+2W3wWeV3hVofoiEySjBrJPWVJW9++UocJbC0ppNw5mtHktkZqUk6kVtUgVQ4Cj4udj/bluZzcqWjIvOCJO52M+xcQY808Ei8T/lwwS9TguuzQ3e0KR7hptgNcX1/XhCvAuUdJRijANwb3OUTXACdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YowGX3NoYXBllEsDhZR1Yi4=",
39
+ "dtype": "float32",
40
+ "low": "[-1. -1. -1.]",
41
+ "high": "[1. 1. 1.]",
42
+ "bounded_below": "[ True True True]",
43
+ "bounded_above": "[ True True True]",
44
+ "_np_random": "RandomState(MT19937)",
45
+ "_shape": [
46
+ 3
47
+ ]
48
+ },
49
+ "n_envs": 2,
50
+ "num_timesteps": 1001472,
51
+ "_total_timesteps": 1000000,
52
+ "_num_timesteps_at_start": 0,
53
+ "seed": 0,
54
+ "action_noise": null,
55
+ "start_time": 1640687580.2150793,
56
+ "learning_rate": {
57
+ ":type:": "<class 'function'>",
58
+ ":serialized:": "gASV0QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxRL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS1iYXNlbGluZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxRL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS1iYXNlbGluZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
59
+ },
60
+ "tensorboard_log": null,
61
+ "lr_schedule": {
62
+ ":type:": "<class 'function'>",
63
+ ":serialized:": "gASV0QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxRL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS1iYXNlbGluZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxRL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS1iYXNlbGluZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
64
+ },
65
+ "_last_obs": null,
66
+ "_last_episode_starts": {
67
+ ":type:": "<class 'numpy.ndarray'>",
68
+ ":serialized:": "gASVigAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwKFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAgAAlHSUYi4="
69
+ },
70
+ "_last_original_obs": {
71
+ ":type:": "<class 'numpy.ndarray'>",
72
+ ":serialized:": "gASVOgEAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwJLC4aUaAOMBWR0eXBllJOUjAJmOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUOwQMHZUPgB9D9Nu7QTcNVgv2e9X8HHx2S/rUF1639fdD+IPan3egRDP0I/vR9IqlW/17+fPzKvcL/5M3xdz3NyPwA+qLtarBy/UISzNpgtPT/Ihjgjchdjv3GaZVdvDPQ/ugqoQ9cNYz/EQv469y9bP/AaPX9mclQ/UfUAmqtXcD/Tw5EWPwtyP4kkKgrMFXE/5mR6a1jQar9LvPMOvx9zP0ETQ9XNXnQ/Un81vopyX7+UdJRiLg=="
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": -0.0014719999999999178,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gASVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMINdO9TuKGrECUhpRSlIwBbJRN6AOMAXSUR0CVB422oegddX2UKGgGaAloD0MIQiPYuDaUrECUhpRSlGgVTegDaBZHQJUNWanaWX11fZQoaAZoCWgPQwgf2scK3q6cQJSGlFKUaBVN+wFoFkdAlQ4z2OAAhnV9lChoBmgJaA9DCDwSL09fYaxAlIaUUpRoFU3oA2gWR0CVGOloUSIydX2UKGgGaAloD0MIeh1xyO6AqkCUhpRSlGgVTYsDaBZHQJUY/FVDKHR1fZQoaAZoCWgPQwis4LchNlWqQJSGlFKUaBVNgANoFkdAlSJVU2kzoHV9lChoBmgJaA9DCA8om3KFT6xAlIaUUpRoFU3oA2gWR0CVI6JeVs1sdX2UKGgGaAloD0MI0/VE17UGm0CUhpRSlGgVTd4BaBZHQJUmT0J4SpR1fZQoaAZoCWgPQwjgvDjxVf6lQJSGlFKUaBVN+gJoFkdAlSjeq3mV7nV9lChoBmgJaA9DCDT2JRsHvaxAlIaUUpRoFU3oA2gWR0CVMKCv5gw5dX2UKGgGaAloD0MIU1xV9lWErECUhpRSlGgVTegDaBZHQJU1iwTufEp1fZQoaAZoCWgPQwil+WNao82sQJSGlFKUaBVN6ANoFkdAlUGZAprk83V9lChoBmgJaA9DCAXEJFxQEaxAlIaUUpRoFU3oA2gWR0CVRcZLIxQBdX2UKGgGaAloD0MIRaD6B2EOkECUhpRSlGgVTSUBaBZHQJVLfilzltF1fZQoaAZoCWgPQwj36XjMwGqsQJSGlFKUaBVN6ANoFkdAlU5axX4j8nV9lChoBmgJaA9DCKyNsRN2eqxAlIaUUpRoFU3oA2gWR0CVWglGwzLwdX2UKGgGaAloD0MIGxL3WHpypkCUhpRSlGgVTQcDaBZHQJVa0sDnvDx1fZQoaAZoCWgPQwiOrtLd5aSfQJSGlFKUaBVNIwJoFkdAlV4rLhaTwHV9lChoBmgJaA9DCMaJr3bsQaxAlIaUUpRoFU3oA2gWR0CVZ98g6ltTdX2UKGgGaAloD0MI7fDXZP2grECUhpRSlGgVTegDaBZHQJVsOaw2VFB1fZQoaAZoCWgPQwg+Qs2QOnSsQJSGlFKUaBVN6ANoFkdAlXM8slLOA3V9lChoBmgJaA9DCOG2tvAEdKxAlIaUUpRoFU3oA2gWR0CVdmps41gqdX2UKGgGaAloD0MIkzmWd23OqkCUhpRSlGgVTa8DaBZHQJV+O8zyjHp1fZQoaAZoCWgPQwgapOApBEWsQJSGlFKUaBVN6ANoFkdAlYIKF7D2rXV9lChoBmgJaA9DCHdmguFEkaxAlIaUUpRoFU3oA2gWR0CViEZi/fwadX2UKGgGaAloD0MIZVQZxl16rECUhpRSlGgVTegDaBZHQJWMyCUX5311fZQoaAZoCWgPQwie0sH67zmgQJSGlFKUaBVNLwJoFkdAlY0NNnGsFXV9lChoBmgJaA9DCGdl+5D/zqBAlIaUUpRoFU1WAmgWR0CVk32mHgxbdX2UKGgGaAloD0MIAKsjRxKJrECUhpRSlGgVTegDaBZHQJWWikwevIR1fZQoaAZoCWgPQwg0FHe8aXmsQJSGlFKUaBVN6ANoFkdAlZ3wwTM7l3V9lChoBmgJaA9DCOaQ1ELRbKxAlIaUUpRoFU3oA2gWR0CVoQ0yP+4tdX2UKGgGaAloD0MIqU2c3F+ZrECUhpRSlGgVTegDaBZHQJWpCasp5NZ1fZQoaAZoCWgPQwiT36KTBVWFQJSGlFKUaBVL0mgWR0CVq6cVxjridX2UKGgGaAloD0MIg6EOK4xnrECUhpRSlGgVTegDaBZHQJWuWOsDGLl1fZQoaAZoCWgPQwgknBa8uHmsQJSGlFKUaBVN6ANoFkdAlbc5avA443V9lChoBmgJaA9DCFZmSuvXhqxAlIaUUpRoFU3oA2gWR0CVuP5v99+gdX2UKGgGaAloD0MIRUlIpCWHrECUhpRSlGgVTegDaBZHQJXCVFPSDyx1fZQoaAZoCWgPQwitMlNa9/msQJSGlFKUaBVN4wNoFkdAlcPUQGwA2nV9lChoBmgJaA9DCENyMnGLuo9AlIaUUpRoFU0kAWgWR0CVxFS2H+IedX2UKGgGaAloD0MIBFlPrc6lrECUhpRSlGgVTegDaBZHQJXPE5Jbt7d1fZQoaAZoCWgPQwjBVDNrQY2sQJSGlFKUaBVN6ANoFkdAlc+LCN0eVHV9lChoBmgJaA9DCE7udyia7qVAlIaUUpRoFU3nAmgWR0CV/yE+PikwdX2UKGgGaAloD0MIeEZblRxorECUhpRSlGgVTegDaBZHQJYAlthuwX91fZQoaAZoCWgPQwihZd0/pl+hQJSGlFKUaBVNYgJoFkdAlgQHiiqQzXV9lChoBmgJaA9DCJeMYyR7oaxAlIaUUpRoFU3oA2gWR0CWEGGLDQ7cdX2UKGgGaAloD0MIrS8S2nrSrECUhpRSlGgVTegDaBZHQJYU8jcEeQx1fZQoaAZoCWgPQwjjqUca3D1wQJSGlFKUaBVLamgWR0CWFd5LRKHxdX2UKGgGaAloD0MI7L/OTSuSoECUhpRSlGgVTT0CaBZHQJYZy11GLDR1fZQoaAZoCWgPQwi+aI8XMh6rQJSGlFKUaBVNmQNoFkdAliI2ICU5dXV9lChoBmgJaA9DCBdhinLxjqxAlIaUUpRoFU3oA2gWR0CWI0RvWH1wdX2UKGgGaAloD0MI24e85frCrECUhpRSlGgVTegDaBZHQJYweJsO5J91fZQoaAZoCWgPQwiTV+cYMDKsQJSGlFKUaBVN6ANoFkdAljFx8c+7lXV9lChoBmgJaA9DCERq2sVEkKxAlIaUUpRoFU3oA2gWR0CWPZMSsbNsdX2UKGgGaAloD0MIxofZy27ZrECUhpRSlGgVTegDaBZHQJY+oAYHgP51fZQoaAZoCWgPQwgpIsMqviGtQJSGlFKUaBVN6ANoFkdAlkt72g398HV9lChoBmgJaA9DCIs1XOSWrKxAlIaUUpRoFU3oA2gWR0CWTGXfqHGkdX2UKGgGaAloD0MIqtOBrI++rECUhpRSlGgVTegDaBZHQJZYEf/3nIR1fZQoaAZoCWgPQwjFyf0OBZWsQJSGlFKUaBVN6ANoFkdAllkfp+tr9HV9lChoBmgJaA9DCFvPEI6x+qFAlIaUUpRoFU1tAmgWR0CWYvm7J4jbdX2UKGgGaAloD0MIgxYSMHrtrECUhpRSlGgVTegDaBZHQJZlQRHww0x1fZQoaAZoCWgPQwgnEkw1G5OsQJSGlFKUaBVN6ANoFkdAlm/wCCBf8nV9lChoBmgJaA9DCGXjwRa7QlxAlIaUUpRoFUs9aBZHQJZweXAuZkV1fZQoaAZoCWgPQwgyWdx/lLWsQJSGlFKUaBVN6ANoFkdAlnHvfoA4oHV9lChoBmgJaA9DCGovou1Y4ptAlIaUUpRoFU3uAWgWR0CWeRQT238XdX2UKGgGaAloD0MIntMs0O5JVkCUhpRSlGgVSzNoFkdAlnmQLux8lXV9lChoBmgJaA9DCDfGTngZvqxAlIaUUpRoFU3oA2gWR0CWe3/oaDPGdX2UKGgGaAloD0MIgLqBAjeNrECUhpRSlGgVTegDaBZHQJaEYY51eSl1fZQoaAZoCWgPQwgIHAk0+K2sQJSGlFKUaBVN6ANoFkdAlobUXHim23V9lChoBmgJaA9DCBYW3A/Y/6xAlIaUUpRoFU3oA2gWR0CWj/kEcKgJdX2UKGgGaAloD0MIGVWGcTetrECUhpRSlGgVTegDaBZHQJaR3UnXumd1fZQoaAZoCWgPQwhiLT4FYCShQJSGlFKUaBVNUwJoFkdAlpQmj0th/nV9lChoBmgJaA9DCNAlHHqbcKxAlIaUUpRoFU3oA2gWR0CWnpWvKU3XdX2UKGgGaAloD0MIou9uZWlirECUhpRSlGgVTegDaBZHQJahT9R77bd1fZQoaAZoCWgPQwhD/wQXw5msQJSGlFKUaBVN6ANoFkdAlqqCUC7sfXV9lChoBmgJaA9DCEcdHVdL2qxAlIaUUpRoFU3oA2gWR0CWrSoaUA1fdX2UKGgGaAloD0MI/Wg4ZSbirECUhpRSlGgVTegDaBZHQJa1PMLWqcV1fZQoaAZoCWgPQwjYf52bppGnQJSGlFKUaBVNJgNoFkdAlrZOQIUrTnV9lChoBmgJaA9DCHxinSqv0KxAlIaUUpRoFU3oA2gWR0CWwGrE9+w1dX2UKGgGaAloD0MIQfM5d3PRrECUhpRSlGgVTegDaBZHQJbBZ3hXKbN1fZQoaAZoCWgPQwi1+1WAL8ysQJSGlFKUaBVN6ANoFkdAls6yo4uK43V9lChoBmgJaA9DCJw24zQEDa1AlIaUUpRoFU3oA2gWR0CWz9R3NcGDdX2UKGgGaAloD0MIT1q4rJKUrECUhpRSlGgVTegDaBZHQJbb5LQHAyp1fZQoaAZoCWgPQwjl8bT8kLesQJSGlFKUaBVN6ANoFkdAlt087p3X7XV9lChoBmgJaA9DCBmRKLQMm6xAlIaUUpRoFU3oA2gWR0CW5haMJhOQdX2UKGgGaAloD0MIUiegiZgvrECUhpRSlGgVTcQDaBZHQJbm0n6VMVV1fZQoaAZoCWgPQwjpRe1+ZcqhQJSGlFKUaBVNgQJoFkdAlu8ALZzxPXV9lChoBmgJaA9DCCI5mbhNyqxAlIaUUpRoFU3oA2gWR0CW8NyprDZUdX2UKGgGaAloD0MIEsE4uFSWlkCUhpRSlGgVTZYBaBZHQJbx3BWPtD51fZQoaAZoCWgPQwjFqkGYk1uiQJSGlFKUaBVNkAJoFkdAlvVt43WFvnV9lChoBmgJaA9DCIPDCyJauKxAlIaUUpRoFU3oA2gWR0CW/gnEl3QldX2UKGgGaAloD0MIDamieF1qpkCUhpRSlGgVTfgCaBZHQJb/z7MxGlR1fZQoaAZoCWgPQwhmpN5TsdmsQJSGlFKUaBVN6ANoFkdAlwddWMju8nV9lChoBmgJaA9DCKzJU1bL0axAlIaUUpRoFU3oA2gWR0CXCZsxO+IudX2UKGgGaAloD0MIY5gTtAmLrECUhpRSlGgVTegDaBZHQJcSCx6fJ3h1fZQoaAZoCWgPQwh/bJIf4cSsQJSGlFKUaBVN6ANoFkdAlxPaFVT723V9lChoBmgJaA9DCFOxMa+zuqxAlIaUUpRoFU3oA2gWR0CXHDTxoZhsdX2UKGgGaAloD0MIQMBatWvLrECUhpRSlGgVTegDaBZHQJcd8R6F/QV1fZQoaAZoCWgPQwgHmWTkzJyRQJSGlFKUaBVNOQFoFkdAlyAFK9PDYXV9lChoBmgJaA9DCKrzqPgnlqxAlIaUUpRoFU3oA2gWR0CXRWkO7QLNdX2UKGgGaAloD0MIa32R0B6qrECUhpRSlGgVTegDaBZHQJdJI3fhuO11ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 489,
87
+ "n_steps": 1024,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 0.95,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.0,
92
+ "max_grad_norm": 0.0,
93
+ "normalize_advantage": true,
94
+ "batch_size": 128,
95
+ "cg_max_steps": 25,
96
+ "cg_damping": 0.1,
97
+ "line_search_shrinking_factor": 0.8,
98
+ "line_search_max_iter": 10,
99
+ "target_kl": 0.01,
100
+ "n_critic_updates": 20,
101
+ "sub_sampling_factor": 1
102
+ }
trpo-Hopper-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c82b8bbe99bc74b6c7c7fa26fcfcbad802cec7978db838768abbaa197b1aeaec
3
+ size 43265
trpo-Hopper-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d5b388786e820ef4d4a6f14db093594caad12ca8a921eac0abc80f53c59324d8
3
+ size 44798
trpo-Hopper-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
trpo-Hopper-v3/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.13.0-44-generic-x86_64-with-debian-bullseye-sid #49~20.04.1-Ubuntu SMP Wed May 18 18:44:28 UTC 2022
2
+ Python: 3.7.10
3
+ Stable-Baselines3: 1.5.1a8
4
+ PyTorch: 1.11.0
5
+ GPU Enabled: True
6
+ Numpy: 1.21.2
7
+ Gym: 0.21.0
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d44fbb6a89ee9b873c467485afa1aea1c82616e5a268ea1b71213073cada76ef
3
+ size 4822