Initial commit
Browse files- .gitattributes +2 -0
- README.md +67 -0
- args.yml +65 -0
- config.yml +27 -0
- env_kwargs.yml +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- train_eval_metrics.zip +3 -0
- trpo-Hopper-v3.zip +3 -0
- trpo-Hopper-v3/_stable_baselines3_version +1 -0
- trpo-Hopper-v3/data +102 -0
- trpo-Hopper-v3/policy.optimizer.pth +3 -0
- trpo-Hopper-v3/policy.pth +3 -0
- trpo-Hopper-v3/pytorch_variables.pth +3 -0
- trpo-Hopper-v3/system_info.txt +7 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -25,3 +25,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
29 |
+
vec_normalize.pkl filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- Hopper-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: TRPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 3673.27 +/- 3.75
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: Hopper-v3
|
20 |
+
type: Hopper-v3
|
21 |
+
---
|
22 |
+
|
23 |
+
# **TRPO** Agent playing **Hopper-v3**
|
24 |
+
This is a trained model of a **TRPO** agent playing **Hopper-v3**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
26 |
+
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
27 |
+
|
28 |
+
The RL Zoo is a training framework for Stable Baselines3
|
29 |
+
reinforcement learning agents,
|
30 |
+
with hyperparameter optimization and pre-trained agents included.
|
31 |
+
|
32 |
+
## Usage (with SB3 RL Zoo)
|
33 |
+
|
34 |
+
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
|
35 |
+
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
36 |
+
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
37 |
+
|
38 |
+
```
|
39 |
+
# Download model and save it into the logs/ folder
|
40 |
+
python -m utils.load_from_hub --algo trpo --env Hopper-v3 -orga sb3 -f logs/
|
41 |
+
python enjoy.py --algo trpo --env Hopper-v3 -f logs/
|
42 |
+
```
|
43 |
+
|
44 |
+
## Training (with the RL Zoo)
|
45 |
+
```
|
46 |
+
python train.py --algo trpo --env Hopper-v3 -f logs/
|
47 |
+
# Upload the model and generate video (when possible)
|
48 |
+
python -m utils.push_to_hub --algo trpo --env Hopper-v3 -f logs/ -orga sb3
|
49 |
+
```
|
50 |
+
|
51 |
+
## Hyperparameters
|
52 |
+
```python
|
53 |
+
OrderedDict([('batch_size', 128),
|
54 |
+
('cg_damping', 0.1),
|
55 |
+
('cg_max_steps', 25),
|
56 |
+
('gae_lambda', 0.95),
|
57 |
+
('gamma', 0.99),
|
58 |
+
('learning_rate', 0.001),
|
59 |
+
('n_critic_updates', 20),
|
60 |
+
('n_envs', 2),
|
61 |
+
('n_steps', 1024),
|
62 |
+
('n_timesteps', 1000000.0),
|
63 |
+
('normalize', True),
|
64 |
+
('policy', 'MlpPolicy'),
|
65 |
+
('sub_sampling_factor', 1),
|
66 |
+
('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})])
|
67 |
+
```
|
args.yml
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - algo
|
3 |
+
- trpo
|
4 |
+
- - env
|
5 |
+
- Hopper-v3
|
6 |
+
- - env_kwargs
|
7 |
+
- null
|
8 |
+
- - eval_episodes
|
9 |
+
- 20
|
10 |
+
- - eval_freq
|
11 |
+
- 50000
|
12 |
+
- - gym_packages
|
13 |
+
- []
|
14 |
+
- - hyperparams
|
15 |
+
- null
|
16 |
+
- - log_folder
|
17 |
+
- logs
|
18 |
+
- - log_interval
|
19 |
+
- 10
|
20 |
+
- - n_eval_envs
|
21 |
+
- 10
|
22 |
+
- - n_evaluations
|
23 |
+
- 20
|
24 |
+
- - n_jobs
|
25 |
+
- 1
|
26 |
+
- - n_startup_trials
|
27 |
+
- 10
|
28 |
+
- - n_timesteps
|
29 |
+
- -1
|
30 |
+
- - n_trials
|
31 |
+
- 10
|
32 |
+
- - no_optim_plots
|
33 |
+
- false
|
34 |
+
- - num_threads
|
35 |
+
- -1
|
36 |
+
- - optimization_log_path
|
37 |
+
- null
|
38 |
+
- - optimize_hyperparameters
|
39 |
+
- false
|
40 |
+
- - pruner
|
41 |
+
- median
|
42 |
+
- - sampler
|
43 |
+
- tpe
|
44 |
+
- - save_freq
|
45 |
+
- -1
|
46 |
+
- - save_replay_buffer
|
47 |
+
- false
|
48 |
+
- - seed
|
49 |
+
- 52924509
|
50 |
+
- - storage
|
51 |
+
- null
|
52 |
+
- - study_name
|
53 |
+
- null
|
54 |
+
- - tensorboard_log
|
55 |
+
- ''
|
56 |
+
- - trained_agent
|
57 |
+
- ''
|
58 |
+
- - truncate_last_trajectory
|
59 |
+
- true
|
60 |
+
- - uuid
|
61 |
+
- false
|
62 |
+
- - vec_env
|
63 |
+
- dummy
|
64 |
+
- - verbose
|
65 |
+
- 1
|
config.yml
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - batch_size
|
3 |
+
- 128
|
4 |
+
- - cg_damping
|
5 |
+
- 0.1
|
6 |
+
- - cg_max_steps
|
7 |
+
- 25
|
8 |
+
- - gae_lambda
|
9 |
+
- 0.95
|
10 |
+
- - gamma
|
11 |
+
- 0.99
|
12 |
+
- - learning_rate
|
13 |
+
- 0.001
|
14 |
+
- - n_critic_updates
|
15 |
+
- 20
|
16 |
+
- - n_envs
|
17 |
+
- 2
|
18 |
+
- - n_steps
|
19 |
+
- 1024
|
20 |
+
- - n_timesteps
|
21 |
+
- 1000000.0
|
22 |
+
- - normalize
|
23 |
+
- true
|
24 |
+
- - policy
|
25 |
+
- MlpPolicy
|
26 |
+
- - sub_sampling_factor
|
27 |
+
- 1
|
env_kwargs.yml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ec02c8c2854ddea7615eee2a985c30dcff550be3d8acccac83bbe1a94f0fd8cf
|
3 |
+
size 1701335
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 3673.2705594, "std_reward": 3.7529195494912075, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-02T13:00:31.312482"}
|
train_eval_metrics.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfada781ab3db7f8682cd166fc6d94ce2938ac40d73cbb3625dd83b8e1b6e95a
|
3 |
+
size 65340
|
trpo-Hopper-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6a187bb13dc75d4625d1462b07076d4287728db0f6fcadf06d98fe6f6503e62a
|
3 |
+
size 108315
|
trpo-Hopper-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.1a8
|
trpo-Hopper-v3/data
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f9288f9b950>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9288f9b9e0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9288f9ba70>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9288f9bb00>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f9288f9bb90>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f9288f9bc20>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9288f9bcb0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f9288f9bd40>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9288f9bdd0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9288f9be60>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9288f9bef0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f9288fec840>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gASVOQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwuFlGgKiUNYAAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/5R0lGKMBGhpZ2iUaBBoEksAhZRoFIeUUpQoSwFLC4WUaAqJQ1gAAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/lHSUYowNYm91bmRlZF9iZWxvd5RoEGgSSwCFlGgUh5RSlChLAUsLhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCwAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEGgSSwCFlGgUh5RSlChLAUsLhZRoKIlDCwAAAAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROjAZfc2hhcGWUSwuFlHViLg==",
|
26 |
+
"dtype": "float64",
|
27 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
28 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf]",
|
29 |
+
"bounded_below": "[False False False False False False False False False False False]",
|
30 |
+
"bounded_above": "[False False False False False False False False False False False]",
|
31 |
+
"_np_random": null,
|
32 |
+
"_shape": [
|
33 |
+
11
|
34 |
+
]
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
38 |
+
":serialized:": "gASVIQwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwOFlGgKiUMMAACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEGgSSwCFlGgUh5RSlChLAUsDhZRoColDDAAAgD8AAIA/AACAP5R0lGKMDWJvdW5kZWRfYmVsb3eUaBBoEksAhZRoFIeUUpQoSwFLA4WUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQwMBAQGUdJRijA1ib3VuZGVkX2Fib3ZllGgQaBJLAIWUaBSHlFKUKEsBSwOFlGgoiUMDAQEBlHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaDiMBXN0YXRllH2UKIwDa2V5lGgQaBJLAIWUaBSHlFKUKEsBTXAChZRoB4wCdTSUiYiHlFKUKEsDaAtOTk5K/////0r/////SwB0lGKJQsAJAAAAAACAU8KznIcDtZNy7Ktb6Oay8s+2gdrVBu9hoTFNoGu1zNkT5hifdJx5L8ilG4DEeQFJng9D5F3gGJOSE1XM1EopZNIIlb400J5EcnoD8K2/CnObez7pYLEG2nUDRQtufdYWausENGaDt/P1pS9p70JjQ7Vc98J3UsxGRDctCIlu0I6ud/sYtoBPe575TzLsEti5jl6FqRnKrj12LWcrQoCexe7HH/UiAV1LzyQPzBlSZERXmHCdCvUSF7XpWt47xP9BzzqxX7aH3TPYWImqos1/ez/JlLdsD0MfMZl9G2CQq7cHHRlM3sj7jroA9c+pGt4l/iAGpRb80HbjwU71ykPTAVp531BXrc2qmIU6z9Fh4TAPx7fZ1kVF+L1Irlou+4Ckky7Ys59nB7KkciTI+N5jlb62ybZt0+ZWgIA6LKLvdx/mTQtB4k1aplT/C7L9/ybKCFn2quN/7YlIkxoH1U0xdabG6rgOrR+SHMmvUwvtKB+19Ibb07mSgVQyjNAvnyADPJf3pkxylZtn7f/OVpWEaWfl6BcLwy0grrEgUK+H+8P8XWMuBginXgwzn3sy4+ZOlr45op6TtuqX0Knz/SySGDlBIK8JqKObzB6fGt+ovJHEM8KlL4veKwkLkuuMWBaex3FBdWskry5qhslxMgnk2thh8DaXmAfbuI8j0SqHMW1kleITi9ekfXx/eSi5hX1GjA/M62Zixuay1H8zH9VjsTRcGacyJ0vh1hNReDFoNsXFbLfLqaIvbLDQjY7T289ZXsupvAxu2GVTbqWst+ckPPzwH7vLikULC+weAKwxarqm+ugAXgyz774meHOsvQYuu18nvrrunjZWDvwaKuYohEwUfSnpotE9XhX99yUTc8sGPQidTfXkzm/t8MWP8it4l4VSEgDLn8GW8t2DAh8EwFa/KOGoZEGjYqZ2IMA70E+F2LqgaZlQLFMONTIx3yuN5F2e1MT4v2wdBRK9R+lGMpxIiNldyOwwxLDBTRDMhd7APidmDwQBnvaIecKFa95btwHkRBEUT5g++/I0DDg685EX4OMO2YtTPqM3PQluS4puEhAQRVukNGSh4gYDgcBPKZl4ThNf+G+E7El9fmWJcP39Sifw6Mn+GEisM1RhHY05XZHUv5W4r8kD2jSLMY+IIL2+LtQrW7it7y28+sEicLoEfYOky9ZJF6l0fR+sXEawf+REH9LvtRJ4yzfxr7KisNpr1axv1ae5CDXS+XTzuOG/BJnHvt8arnY1XWH9SdkCOeok6MI8GBCtjTCxJ5JbpI5J0i0A66mJaRW9LMfP6Cil3/cVRQ9uN2KTtV3o7rJwY4XCnj7DJmqrUwofDDl7Ek0PoN7w0Hh8YHOy8qhPw7V8ALdjZn7eYtjCQIldQvHbM1I73RtCLQvQGFMXUCJ022pGRqTvZX5XWSizqbgX6TJmI6LDF9wcpYealB7cDwelfqdpzHRmyjRbIX9b+w4uj//aDRgP2SgiOAq/D/9/0SbgK/E0FQyclhNVAkbKwXhAxKGczpvJow0mFFUAt/5fT5KAsmQTAt8p0FsrGMDTfk4RzZgqZSm+ihVRS371Tx3twpGA1goo/AIfJh8slJC3hkR1OGCN7LAPGCwbM9rHlKSU4uuhJiff196h9q1kPMld6989MfKLVkvCl7ofCRurPUW46ceJKE951sQD1v8cK0HK1JmuBTCXAelCUCIFNLGk3tMXNVmuuFF3o3xb4V4T1IAYIfBdyEVHhIIZOE/JEY79daQw8njYEtQ6YwZ6kNCBYfrjq2OglITcRdwDmINL42ro6HnbWgLZQ8Ce/EiPVBtWHwhvGUHK1FNONzRzXgT1zKEg+WAigeuK4QVIxdITM4YvUyYvpQJuJd+xGD1no7BYIKXdV4aDlsRnWSMmS+zTyTvC0+TgBMCNpMvdChjaB/XTrMVsm0vgPmCYswn067MTYWfm5oCqqmNciqoRfFL2O2mxFT1VMcKDrxHBdBUhSG5UmAerx86KAEytbsCbn6OOj8Y02VwVynzXd0WJfLioeGMZISM1eneWfTc1mQ6CpdDxJqUmU86/KsBL3Bb0S2NAqFysFJZKxDwLej8xz+xH8IxEHzlkiiNH+2IIq0663FAwi6wg6dgcryDqQ+lNDwn898nylrcYShigDrtrFBNezKx3ZjpkPCnPUeQB4hJUrYCUJy5CyytC/x1UsByKez/aSNEWnlWnzYdJf2PoKL0YfmaR3KpXzi9ax3BHPgk1cdmgdVkqevFJ0DUdTBFQj/mhaKqcaT0rKJLgy/11AhWW4nX7+kAdgR0b1iAseI0TbMDtohBuqqUZfqMfUKsdI8v2aeUd0+IqOjPBFe7TZRC7OUYmf789SRTpw9gst4tzx7tLap8JnFt2keKhqd3vBgqpvlsxvx0DcPC+bo/qIldKiAn5D7TPjeWLzJ1gmpk1mVKOyWOv/ZzlRTfe8yEsMsRcgdPxbOuxLjlOwo1uFh9NjHoOz/xbnI62I49ZzT59GUCNtAL74UqjlRoyXZ5ELEjhTn+F5fYfEkY2TnSsgKO4Wwb/xD41S4mBL7LcUyF76ybV7Yx0L6V2QGoSfyhHFqMQJs/haLPPW18mWJb/UDl90ZN9TEzcdXvZsmCeqzCagC6YDHp3fop+5nAQSnT/Byt2j7z+6cnl/aZh6oKs5xrEMmuzpLFbXNVof9hNmX5E0DQ2M8uBqqeW95p6z8ySnOxURAO28oYWsbVyeYaNlWLZrOtIMZDRjjbecSSwMLlrBhw4mZVht4DgOQxI1+P7sPHZLMf89U+5ctf1rD0r1AXgyXjzOxKvCxWMhrz6Ah19+zal/bAIpw+0V7Pq85PRQO4UeScmMwODR8jcOfILuMmo7xXhemY/JqtOncklEaGapMeGlkiefvQkx9L5EWvLn6stI4zRP4pZXx9iOz17IKJmKOVHgCIAOiheb0bwkjNkItlfYO3LzeLLPuBDNLFg7tQu5NPWy28a4nBsE/gsyEteRvF2ECYFIOJg06dzc77IWw7o+z1Q5APxLg9uvyFniYWNuJyk7rflLCmYcg1gN657CWff8YfPr0ukKOamco94X1nFdyroxHiQlRXaP91DOqMueI1pCasyRQt0jtbWwxdEVyzP3GzUZXBWqa0xXCzwe29cxg2aiwKuuAAVfaCE/Pt1cJXq8wvliF81sMDPMbowd9+uyWuExq/e+2W3wWeV3hVofoiEySjBrJPWVJW9++UocJbC0ppNw5mtHktkZqUk6kVtUgVQ4Cj4udj/bluZzcqWjIvOCJO52M+xcQY808Ei8T/lwwS9TguuzQ3e0KR7hptgNcX1/XhCvAuUdJRijANwb3OUTXACdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YowGX3NoYXBllEsDhZR1Yi4=",
|
39 |
+
"dtype": "float32",
|
40 |
+
"low": "[-1. -1. -1.]",
|
41 |
+
"high": "[1. 1. 1.]",
|
42 |
+
"bounded_below": "[ True True True]",
|
43 |
+
"bounded_above": "[ True True True]",
|
44 |
+
"_np_random": "RandomState(MT19937)",
|
45 |
+
"_shape": [
|
46 |
+
3
|
47 |
+
]
|
48 |
+
},
|
49 |
+
"n_envs": 2,
|
50 |
+
"num_timesteps": 1001472,
|
51 |
+
"_total_timesteps": 1000000,
|
52 |
+
"_num_timesteps_at_start": 0,
|
53 |
+
"seed": 0,
|
54 |
+
"action_noise": null,
|
55 |
+
"start_time": 1640687580.2150793,
|
56 |
+
"learning_rate": {
|
57 |
+
":type:": "<class 'function'>",
|
58 |
+
":serialized:": "gASV0QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxRL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS1iYXNlbGluZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxRL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS1iYXNlbGluZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
59 |
+
},
|
60 |
+
"tensorboard_log": null,
|
61 |
+
"lr_schedule": {
|
62 |
+
":type:": "<class 'function'>",
|
63 |
+
":serialized:": "gASV0QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxRL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS1iYXNlbGluZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxRL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS1iYXNlbGluZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
64 |
+
},
|
65 |
+
"_last_obs": null,
|
66 |
+
"_last_episode_starts": {
|
67 |
+
":type:": "<class 'numpy.ndarray'>",
|
68 |
+
":serialized:": "gASVigAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwKFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAgAAlHSUYi4="
|
69 |
+
},
|
70 |
+
"_last_original_obs": {
|
71 |
+
":type:": "<class 'numpy.ndarray'>",
|
72 |
+
":serialized:": "gASVOgEAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwJLC4aUaAOMBWR0eXBllJOUjAJmOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUOwQMHZUPgB9D9Nu7QTcNVgv2e9X8HHx2S/rUF1639fdD+IPan3egRDP0I/vR9IqlW/17+fPzKvcL/5M3xdz3NyPwA+qLtarBy/UISzNpgtPT/Ihjgjchdjv3GaZVdvDPQ/ugqoQ9cNYz/EQv469y9bP/AaPX9mclQ/UfUAmqtXcD/Tw5EWPwtyP4kkKgrMFXE/5mR6a1jQar9LvPMOvx9zP0ETQ9XNXnQ/Un81vopyX7+UdJRiLg=="
|
73 |
+
},
|
74 |
+
"_episode_num": 0,
|
75 |
+
"use_sde": false,
|
76 |
+
"sde_sample_freq": -1,
|
77 |
+
"_current_progress_remaining": -0.0014719999999999178,
|
78 |
+
"ep_info_buffer": {
|
79 |
+
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gASVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMINdO9TuKGrECUhpRSlIwBbJRN6AOMAXSUR0CVB422oegddX2UKGgGaAloD0MIQiPYuDaUrECUhpRSlGgVTegDaBZHQJUNWanaWX11fZQoaAZoCWgPQwgf2scK3q6cQJSGlFKUaBVN+wFoFkdAlQ4z2OAAhnV9lChoBmgJaA9DCDwSL09fYaxAlIaUUpRoFU3oA2gWR0CVGOloUSIydX2UKGgGaAloD0MIeh1xyO6AqkCUhpRSlGgVTYsDaBZHQJUY/FVDKHR1fZQoaAZoCWgPQwis4LchNlWqQJSGlFKUaBVNgANoFkdAlSJVU2kzoHV9lChoBmgJaA9DCA8om3KFT6xAlIaUUpRoFU3oA2gWR0CVI6JeVs1sdX2UKGgGaAloD0MI0/VE17UGm0CUhpRSlGgVTd4BaBZHQJUmT0J4SpR1fZQoaAZoCWgPQwjgvDjxVf6lQJSGlFKUaBVN+gJoFkdAlSjeq3mV7nV9lChoBmgJaA9DCDT2JRsHvaxAlIaUUpRoFU3oA2gWR0CVMKCv5gw5dX2UKGgGaAloD0MIU1xV9lWErECUhpRSlGgVTegDaBZHQJU1iwTufEp1fZQoaAZoCWgPQwil+WNao82sQJSGlFKUaBVN6ANoFkdAlUGZAprk83V9lChoBmgJaA9DCAXEJFxQEaxAlIaUUpRoFU3oA2gWR0CVRcZLIxQBdX2UKGgGaAloD0MIRaD6B2EOkECUhpRSlGgVTSUBaBZHQJVLfilzltF1fZQoaAZoCWgPQwj36XjMwGqsQJSGlFKUaBVN6ANoFkdAlU5axX4j8nV9lChoBmgJaA9DCKyNsRN2eqxAlIaUUpRoFU3oA2gWR0CVWglGwzLwdX2UKGgGaAloD0MIGxL3WHpypkCUhpRSlGgVTQcDaBZHQJVa0sDnvDx1fZQoaAZoCWgPQwiOrtLd5aSfQJSGlFKUaBVNIwJoFkdAlV4rLhaTwHV9lChoBmgJaA9DCMaJr3bsQaxAlIaUUpRoFU3oA2gWR0CVZ98g6ltTdX2UKGgGaAloD0MI7fDXZP2grECUhpRSlGgVTegDaBZHQJVsOaw2VFB1fZQoaAZoCWgPQwg+Qs2QOnSsQJSGlFKUaBVN6ANoFkdAlXM8slLOA3V9lChoBmgJaA9DCOG2tvAEdKxAlIaUUpRoFU3oA2gWR0CVdmps41gqdX2UKGgGaAloD0MIkzmWd23OqkCUhpRSlGgVTa8DaBZHQJV+O8zyjHp1fZQoaAZoCWgPQwgapOApBEWsQJSGlFKUaBVN6ANoFkdAlYIKF7D2rXV9lChoBmgJaA9DCHdmguFEkaxAlIaUUpRoFU3oA2gWR0CViEZi/fwadX2UKGgGaAloD0MIZVQZxl16rECUhpRSlGgVTegDaBZHQJWMyCUX5311fZQoaAZoCWgPQwie0sH67zmgQJSGlFKUaBVNLwJoFkdAlY0NNnGsFXV9lChoBmgJaA9DCGdl+5D/zqBAlIaUUpRoFU1WAmgWR0CVk32mHgxbdX2UKGgGaAloD0MIAKsjRxKJrECUhpRSlGgVTegDaBZHQJWWikwevIR1fZQoaAZoCWgPQwg0FHe8aXmsQJSGlFKUaBVN6ANoFkdAlZ3wwTM7l3V9lChoBmgJaA9DCOaQ1ELRbKxAlIaUUpRoFU3oA2gWR0CVoQ0yP+4tdX2UKGgGaAloD0MIqU2c3F+ZrECUhpRSlGgVTegDaBZHQJWpCasp5NZ1fZQoaAZoCWgPQwiT36KTBVWFQJSGlFKUaBVL0mgWR0CVq6cVxjridX2UKGgGaAloD0MIg6EOK4xnrECUhpRSlGgVTegDaBZHQJWuWOsDGLl1fZQoaAZoCWgPQwgknBa8uHmsQJSGlFKUaBVN6ANoFkdAlbc5avA443V9lChoBmgJaA9DCFZmSuvXhqxAlIaUUpRoFU3oA2gWR0CVuP5v99+gdX2UKGgGaAloD0MIRUlIpCWHrECUhpRSlGgVTegDaBZHQJXCVFPSDyx1fZQoaAZoCWgPQwitMlNa9/msQJSGlFKUaBVN4wNoFkdAlcPUQGwA2nV9lChoBmgJaA9DCENyMnGLuo9AlIaUUpRoFU0kAWgWR0CVxFS2H+IedX2UKGgGaAloD0MIBFlPrc6lrECUhpRSlGgVTegDaBZHQJXPE5Jbt7d1fZQoaAZoCWgPQwjBVDNrQY2sQJSGlFKUaBVN6ANoFkdAlc+LCN0eVHV9lChoBmgJaA9DCE7udyia7qVAlIaUUpRoFU3nAmgWR0CV/yE+PikwdX2UKGgGaAloD0MIeEZblRxorECUhpRSlGgVTegDaBZHQJYAlthuwX91fZQoaAZoCWgPQwihZd0/pl+hQJSGlFKUaBVNYgJoFkdAlgQHiiqQzXV9lChoBmgJaA9DCJeMYyR7oaxAlIaUUpRoFU3oA2gWR0CWEGGLDQ7cdX2UKGgGaAloD0MIrS8S2nrSrECUhpRSlGgVTegDaBZHQJYU8jcEeQx1fZQoaAZoCWgPQwjjqUca3D1wQJSGlFKUaBVLamgWR0CWFd5LRKHxdX2UKGgGaAloD0MI7L/OTSuSoECUhpRSlGgVTT0CaBZHQJYZy11GLDR1fZQoaAZoCWgPQwi+aI8XMh6rQJSGlFKUaBVNmQNoFkdAliI2ICU5dXV9lChoBmgJaA9DCBdhinLxjqxAlIaUUpRoFU3oA2gWR0CWI0RvWH1wdX2UKGgGaAloD0MI24e85frCrECUhpRSlGgVTegDaBZHQJYweJsO5J91fZQoaAZoCWgPQwiTV+cYMDKsQJSGlFKUaBVN6ANoFkdAljFx8c+7lXV9lChoBmgJaA9DCERq2sVEkKxAlIaUUpRoFU3oA2gWR0CWPZMSsbNsdX2UKGgGaAloD0MIxofZy27ZrECUhpRSlGgVTegDaBZHQJY+oAYHgP51fZQoaAZoCWgPQwgpIsMqviGtQJSGlFKUaBVN6ANoFkdAlkt72g398HV9lChoBmgJaA9DCIs1XOSWrKxAlIaUUpRoFU3oA2gWR0CWTGXfqHGkdX2UKGgGaAloD0MIqtOBrI++rECUhpRSlGgVTegDaBZHQJZYEf/3nIR1fZQoaAZoCWgPQwjFyf0OBZWsQJSGlFKUaBVN6ANoFkdAllkfp+tr9HV9lChoBmgJaA9DCFvPEI6x+qFAlIaUUpRoFU1tAmgWR0CWYvm7J4jbdX2UKGgGaAloD0MIgxYSMHrtrECUhpRSlGgVTegDaBZHQJZlQRHww0x1fZQoaAZoCWgPQwgnEkw1G5OsQJSGlFKUaBVN6ANoFkdAlm/wCCBf8nV9lChoBmgJaA9DCGXjwRa7QlxAlIaUUpRoFUs9aBZHQJZweXAuZkV1fZQoaAZoCWgPQwgyWdx/lLWsQJSGlFKUaBVN6ANoFkdAlnHvfoA4oHV9lChoBmgJaA9DCGovou1Y4ptAlIaUUpRoFU3uAWgWR0CWeRQT238XdX2UKGgGaAloD0MIntMs0O5JVkCUhpRSlGgVSzNoFkdAlnmQLux8lXV9lChoBmgJaA9DCDfGTngZvqxAlIaUUpRoFU3oA2gWR0CWe3/oaDPGdX2UKGgGaAloD0MIgLqBAjeNrECUhpRSlGgVTegDaBZHQJaEYY51eSl1fZQoaAZoCWgPQwgIHAk0+K2sQJSGlFKUaBVN6ANoFkdAlobUXHim23V9lChoBmgJaA9DCBYW3A/Y/6xAlIaUUpRoFU3oA2gWR0CWj/kEcKgJdX2UKGgGaAloD0MIGVWGcTetrECUhpRSlGgVTegDaBZHQJaR3UnXumd1fZQoaAZoCWgPQwhiLT4FYCShQJSGlFKUaBVNUwJoFkdAlpQmj0th/nV9lChoBmgJaA9DCNAlHHqbcKxAlIaUUpRoFU3oA2gWR0CWnpWvKU3XdX2UKGgGaAloD0MIou9uZWlirECUhpRSlGgVTegDaBZHQJahT9R77bd1fZQoaAZoCWgPQwhD/wQXw5msQJSGlFKUaBVN6ANoFkdAlqqCUC7sfXV9lChoBmgJaA9DCEcdHVdL2qxAlIaUUpRoFU3oA2gWR0CWrSoaUA1fdX2UKGgGaAloD0MI/Wg4ZSbirECUhpRSlGgVTegDaBZHQJa1PMLWqcV1fZQoaAZoCWgPQwjYf52bppGnQJSGlFKUaBVNJgNoFkdAlrZOQIUrTnV9lChoBmgJaA9DCHxinSqv0KxAlIaUUpRoFU3oA2gWR0CWwGrE9+w1dX2UKGgGaAloD0MIQfM5d3PRrECUhpRSlGgVTegDaBZHQJbBZ3hXKbN1fZQoaAZoCWgPQwi1+1WAL8ysQJSGlFKUaBVN6ANoFkdAls6yo4uK43V9lChoBmgJaA9DCJw24zQEDa1AlIaUUpRoFU3oA2gWR0CWz9R3NcGDdX2UKGgGaAloD0MIT1q4rJKUrECUhpRSlGgVTegDaBZHQJbb5LQHAyp1fZQoaAZoCWgPQwjl8bT8kLesQJSGlFKUaBVN6ANoFkdAlt087p3X7XV9lChoBmgJaA9DCBmRKLQMm6xAlIaUUpRoFU3oA2gWR0CW5haMJhOQdX2UKGgGaAloD0MIUiegiZgvrECUhpRSlGgVTcQDaBZHQJbm0n6VMVV1fZQoaAZoCWgPQwjpRe1+ZcqhQJSGlFKUaBVNgQJoFkdAlu8ALZzxPXV9lChoBmgJaA9DCCI5mbhNyqxAlIaUUpRoFU3oA2gWR0CW8NyprDZUdX2UKGgGaAloD0MIEsE4uFSWlkCUhpRSlGgVTZYBaBZHQJbx3BWPtD51fZQoaAZoCWgPQwjFqkGYk1uiQJSGlFKUaBVNkAJoFkdAlvVt43WFvnV9lChoBmgJaA9DCIPDCyJauKxAlIaUUpRoFU3oA2gWR0CW/gnEl3QldX2UKGgGaAloD0MIDamieF1qpkCUhpRSlGgVTfgCaBZHQJb/z7MxGlR1fZQoaAZoCWgPQwhmpN5TsdmsQJSGlFKUaBVN6ANoFkdAlwddWMju8nV9lChoBmgJaA9DCKzJU1bL0axAlIaUUpRoFU3oA2gWR0CXCZsxO+IudX2UKGgGaAloD0MIY5gTtAmLrECUhpRSlGgVTegDaBZHQJcSCx6fJ3h1fZQoaAZoCWgPQwh/bJIf4cSsQJSGlFKUaBVN6ANoFkdAlxPaFVT723V9lChoBmgJaA9DCFOxMa+zuqxAlIaUUpRoFU3oA2gWR0CXHDTxoZhsdX2UKGgGaAloD0MIQMBatWvLrECUhpRSlGgVTegDaBZHQJcd8R6F/QV1fZQoaAZoCWgPQwgHmWTkzJyRQJSGlFKUaBVNOQFoFkdAlyAFK9PDYXV9lChoBmgJaA9DCKrzqPgnlqxAlIaUUpRoFU3oA2gWR0CXRWkO7QLNdX2UKGgGaAloD0MIa32R0B6qrECUhpRSlGgVTegDaBZHQJdJI3fhuO11ZS4="
|
81 |
+
},
|
82 |
+
"ep_success_buffer": {
|
83 |
+
":type:": "<class 'collections.deque'>",
|
84 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
+
},
|
86 |
+
"_n_updates": 489,
|
87 |
+
"n_steps": 1024,
|
88 |
+
"gamma": 0.99,
|
89 |
+
"gae_lambda": 0.95,
|
90 |
+
"ent_coef": 0.0,
|
91 |
+
"vf_coef": 0.0,
|
92 |
+
"max_grad_norm": 0.0,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"batch_size": 128,
|
95 |
+
"cg_max_steps": 25,
|
96 |
+
"cg_damping": 0.1,
|
97 |
+
"line_search_shrinking_factor": 0.8,
|
98 |
+
"line_search_max_iter": 10,
|
99 |
+
"target_kl": 0.01,
|
100 |
+
"n_critic_updates": 20,
|
101 |
+
"sub_sampling_factor": 1
|
102 |
+
}
|
trpo-Hopper-v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c82b8bbe99bc74b6c7c7fa26fcfcbad802cec7978db838768abbaa197b1aeaec
|
3 |
+
size 43265
|
trpo-Hopper-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d5b388786e820ef4d4a6f14db093594caad12ca8a921eac0abc80f53c59324d8
|
3 |
+
size 44798
|
trpo-Hopper-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
trpo-Hopper-v3/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.13.0-44-generic-x86_64-with-debian-bullseye-sid #49~20.04.1-Ubuntu SMP Wed May 18 18:44:28 UTC 2022
|
2 |
+
Python: 3.7.10
|
3 |
+
Stable-Baselines3: 1.5.1a8
|
4 |
+
PyTorch: 1.11.0
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.2
|
7 |
+
Gym: 0.21.0
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d44fbb6a89ee9b873c467485afa1aea1c82616e5a268ea1b71213073cada76ef
|
3 |
+
size 4822
|