araffin commited on
Commit
a3faee5
1 Parent(s): c4fa224

Initial commit

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - Walker2DBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: TQC
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 2668.35 +/- 15.34
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: Walker2DBulletEnv-v0
20
+ type: Walker2DBulletEnv-v0
21
+ ---
22
+
23
+ # **TQC** Agent playing **Walker2DBulletEnv-v0**
24
+ This is a trained model of a **TQC** agent playing **Walker2DBulletEnv-v0**
25
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
26
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
27
+
28
+ The RL Zoo is a training framework for Stable Baselines3
29
+ reinforcement learning agents,
30
+ with hyperparameter optimization and pre-trained agents included.
31
+
32
+ ## Usage (with SB3 RL Zoo)
33
+
34
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
35
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
36
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
37
+
38
+ ```
39
+ # Download model and save it into the logs/ folder
40
+ python -m utils.load_from_hub --algo tqc --env Walker2DBulletEnv-v0 -orga sb3 -f logs/
41
+ python enjoy.py --algo tqc --env Walker2DBulletEnv-v0 -f logs/
42
+ ```
43
+
44
+ ## Training (with the RL Zoo)
45
+ ```
46
+ python train.py --algo tqc --env Walker2DBulletEnv-v0 -f logs/
47
+ # Upload the model and generate video (when possible)
48
+ python -m utils.push_to_hub --algo tqc --env Walker2DBulletEnv-v0 -f logs/ -orga sb3
49
+ ```
50
+
51
+ ## Hyperparameters
52
+ ```python
53
+ OrderedDict([('batch_size', 256),
54
+ ('buffer_size', 300000),
55
+ ('ent_coef', 'auto'),
56
+ ('env_wrapper', 'sb3_contrib.common.wrappers.TimeFeatureWrapper'),
57
+ ('gamma', 0.98),
58
+ ('gradient_steps', 64),
59
+ ('learning_rate', 'lin_7.3e-4'),
60
+ ('learning_starts', 10000),
61
+ ('n_timesteps', 1000000.0),
62
+ ('policy', 'MlpPolicy'),
63
+ ('policy_kwargs', 'dict(log_std_init=-3, net_arch=[400, 300])'),
64
+ ('tau', 0.02),
65
+ ('train_freq', 64),
66
+ ('use_sde', True),
67
+ ('normalize', False)])
68
+ ```
args.yml ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - tqc
4
+ - - env
5
+ - Walker2DBulletEnv-v0
6
+ - - env_kwargs
7
+ - null
8
+ - - eval_episodes
9
+ - 10
10
+ - - eval_freq
11
+ - 10000
12
+ - - gym_packages
13
+ - []
14
+ - - hyperparams
15
+ - null
16
+ - - log_folder
17
+ - rl-trained-agents/
18
+ - - log_interval
19
+ - -1
20
+ - - n_evaluations
21
+ - 20
22
+ - - n_jobs
23
+ - 1
24
+ - - n_startup_trials
25
+ - 10
26
+ - - n_timesteps
27
+ - -1
28
+ - - n_trials
29
+ - 10
30
+ - - num_threads
31
+ - -1
32
+ - - optimize_hyperparameters
33
+ - false
34
+ - - pruner
35
+ - median
36
+ - - sampler
37
+ - tpe
38
+ - - save_freq
39
+ - -1
40
+ - - save_replay_buffer
41
+ - false
42
+ - - seed
43
+ - 1908048640
44
+ - - storage
45
+ - null
46
+ - - study_name
47
+ - null
48
+ - - tensorboard_log
49
+ - ''
50
+ - - trained_agent
51
+ - ''
52
+ - - truncate_last_trajectory
53
+ - true
54
+ - - uuid
55
+ - true
56
+ - - vec_env
57
+ - dummy
58
+ - - verbose
59
+ - 1
config.yml ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - batch_size
3
+ - 256
4
+ - - buffer_size
5
+ - 300000
6
+ - - ent_coef
7
+ - auto
8
+ - - env_wrapper
9
+ - sb3_contrib.common.wrappers.TimeFeatureWrapper
10
+ - - gamma
11
+ - 0.98
12
+ - - gradient_steps
13
+ - 64
14
+ - - learning_rate
15
+ - lin_7.3e-4
16
+ - - learning_starts
17
+ - 10000
18
+ - - n_timesteps
19
+ - 1000000.0
20
+ - - policy
21
+ - MlpPolicy
22
+ - - policy_kwargs
23
+ - dict(log_std_init=-3, net_arch=[400, 300])
24
+ - - tau
25
+ - 0.02
26
+ - - train_freq
27
+ - 64
28
+ - - use_sde
29
+ - true
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8a69723dd04f1881cc327dc6154ce1df7feccb37a8c88a047f52b17ab0da7639
3
+ size 1119135
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 2668.3509826, "std_reward": 15.3428773532956, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-02T21:57:36.007168"}
tqc-Walker2DBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9843de103343187434dc7702c0fb857a09b909983f74a9e370a339ab72e1fb3a
3
+ size 6119805
tqc-Walker2DBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.1a8
tqc-Walker2DBulletEnv-v0/actor.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:31e3c5fd5d720cfd6c5f2d1324aeca92dca136d0ab15560da7bf4ea008109084
3
+ size 1071803
tqc-Walker2DBulletEnv-v0/critic.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6a406dfffec363bab2a90503aa66b42e50635fa72964d6fa9f4087299381c31f
3
+ size 2243485
tqc-Walker2DBulletEnv-v0/data ADDED
@@ -0,0 +1,123 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gASVKgAAAAAAAACMGHNiM19jb250cmliLnRxYy5wb2xpY2llc5SMCVRRQ1BvbGljeZSTlC4=",
5
+ "__module__": "sb3_contrib.tqc.policies",
6
+ "__doc__": "\n Policy class (with both actor and critic) for TQC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the feature extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_quantiles: Number of quantiles for the critic.\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
7
+ "__init__": "<function TQCPolicy.__init__ at 0x7f4f48ec0710>",
8
+ "_build": "<function TQCPolicy._build at 0x7f4f48ec07a0>",
9
+ "_get_constructor_parameters": "<function TQCPolicy._get_constructor_parameters at 0x7f4f48ec0830>",
10
+ "reset_noise": "<function TQCPolicy.reset_noise at 0x7f4f48ec08c0>",
11
+ "make_actor": "<function TQCPolicy.make_actor at 0x7f4f48ec0950>",
12
+ "make_critic": "<function TQCPolicy.make_critic at 0x7f4f48ec09e0>",
13
+ "forward": "<function TQCPolicy.forward at 0x7f4f48ec0a70>",
14
+ "_predict": "<function TQCPolicy._predict at 0x7f4f48ec0b00>",
15
+ "set_training_mode": "<function TQCPolicy.set_training_mode at 0x7f4f48ec0b90>",
16
+ "__abstractmethods__": "frozenset()",
17
+ "_abc_impl": "<_abc_data object at 0x7f4f48f1f690>"
18
+ },
19
+ "verbose": 1,
20
+ "policy_kwargs": {
21
+ "log_std_init": -3,
22
+ "net_arch": [
23
+ 400,
24
+ 300
25
+ ],
26
+ "use_sde": true
27
+ },
28
+ "observation_space": {
29
+ ":type:": "<class 'gym.spaces.box.Box'>",
30
+ ":serialized:": "gASVXwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxeFlGgLiUNcAACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAAACUdJRijARoaWdolGgRaBNLAIWUaBWHlFKUKEsBSxeFlGgLiUNcAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgD+UdJRijA1ib3VuZGVkX2JlbG93lGgRaBNLAIWUaBWHlFKUKEsBSxeFlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGUdJRijA1ib3VuZGVkX2Fib3ZllGgRaBNLAIWUaBWHlFKUKEsBSxeFlGgpiUMXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGUdJRijApfbnBfcmFuZG9tlE6MBl9zaGFwZZRLF4WUdWIu",
31
+ "dtype": "float32",
32
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf 0.]",
33
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf 1.]",
34
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False True]",
35
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False True]",
36
+ "_np_random": null,
37
+ "_shape": [
38
+ 23
39
+ ]
40
+ },
41
+ "action_space": {
42
+ ":type:": "<class 'gym.spaces.box.Box'>",
43
+ ":serialized:": "gASVRQwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwaFlGgLiUMYAACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEWgTSwCFlGgVh5RSlChLAUsGhZRoC4lDGAAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5R0lGKMDWJvdW5kZWRfYmVsb3eUaBFoE0sAhZRoFYeUUpQoSwFLBoWUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQwYBAQEBAQGUdJRijA1ib3VuZGVkX2Fib3ZllGgRaBNLAIWUaBWHlFKUKEsBSwaFlGgpiUMGAQEBAQEBlHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaDmMBXN0YXRllH2UKIwDa2V5lGgRaBNLAIWUaBWHlFKUKEsBTXAChZRoCIwCdTSUiYiHlFKUKEsDaAxOTk5K/////0r/////SwB0lGKJQsAJAAAAAACAU8KznIcDtZNy7Ktb6Oay8s+2gdrVBu9hoTFNoGu1zNkT5hifdJx5L8ilG4DEeQFJng9D5F3gGJOSE1XM1EopZNIIlb400J5EcnoD8K2/CnObez7pYLEG2nUDRQtufdYWausENGaDt/P1pS9p70JjQ7Vc98J3UsxGRDctCIlu0I6ud/sYtoBPe575TzLsEti5jl6FqRnKrj12LWcrQoCexe7HH/UiAV1LzyQPzBlSZERXmHCdCvUSF7XpWt47xP9BzzqxX7aH3TPYWImqos1/ez/JlLdsD0MfMZl9G2CQq7cHHRlM3sj7jroA9c+pGt4l/iAGpRb80HbjwU71ykPTAVp531BXrc2qmIU6z9Fh4TAPx7fZ1kVF+L1Irlou+4Ckky7Ys59nB7KkciTI+N5jlb62ybZt0+ZWgIA6LKLvdx/mTQtB4k1aplT/C7L9/ybKCFn2quN/7YlIkxoH1U0xdabG6rgOrR+SHMmvUwvtKB+19Ibb07mSgVQyjNAvnyADPJf3pkxylZtn7f/OVpWEaWfl6BcLwy0grrEgUK+H+8P8XWMuBginXgwzn3sy4+ZOlr45op6TtuqX0Knz/SySGDlBIK8JqKObzB6fGt+ovJHEM8KlL4veKwkLkuuMWBaex3FBdWskry5qhslxMgnk2thh8DaXmAfbuI8j0SqHMW1kleITi9ekfXx/eSi5hX1GjA/M62Zixuay1H8zH9VjsTRcGacyJ0vh1hNReDFoNsXFbLfLqaIvbLDQjY7T289ZXsupvAxu2GVTbqWst+ckPPzwH7vLikULC+weAKwxarqm+ugAXgyz774meHOsvQYuu18nvrrunjZWDvwaKuYohEwUfSnpotE9XhX99yUTc8sGPQidTfXkzm/t8MWP8it4l4VSEgDLn8GW8t2DAh8EwFa/KOGoZEGjYqZ2IMA70E+F2LqgaZlQLFMONTIx3yuN5F2e1MT4v2wdBRK9R+lGMpxIiNldyOwwxLDBTRDMhd7APidmDwQBnvaIecKFa95btwHkRBEUT5g++/I0DDg685EX4OMO2YtTPqM3PQluS4puEhAQRVukNGSh4gYDgcBPKZl4ThNf+G+E7El9fmWJcP39Sifw6Mn+GEisM1RhHY05XZHUv5W4r8kD2jSLMY+IIL2+LtQrW7it7y28+sEicLoEfYOky9ZJF6l0fR+sXEawf+REH9LvtRJ4yzfxr7KisNpr1axv1ae5CDXS+XTzuOG/BJnHvt8arnY1XWH9SdkCOeok6MI8GBCtjTCxJ5JbpI5J0i0A66mJaRW9LMfP6Cil3/cVRQ9uN2KTtV3o7rJwY4XCnj7DJmqrUwofDDl7Ek0PoN7w0Hh8YHOy8qhPw7V8ALdjZn7eYtjCQIldQvHbM1I73RtCLQvQGFMXUCJ022pGRqTvZX5XWSizqbgX6TJmI6LDF9wcpYealB7cDwelfqdpzHRmyjRbIX9b+w4uj//aDRgP2SgiOAq/D/9/0SbgK/E0FQyclhNVAkbKwXhAxKGczpvJow0mFFUAt/5fT5KAsmQTAt8p0FsrGMDTfk4RzZgqZSm+ihVRS371Tx3twpGA1goo/AIfJh8slJC3hkR1OGCN7LAPGCwbM9rHlKSU4uuhJiff196h9q1kPMld6989MfKLVkvCl7ofCRurPUW46ceJKE951sQD1v8cK0HK1JmuBTCXAelCUCIFNLGk3tMXNVmuuFF3o3xb4V4T1IAYIfBdyEVHhIIZOE/JEY79daQw8njYEtQ6YwZ6kNCBYfrjq2OglITcRdwDmINL42ro6HnbWgLZQ8Ce/EiPVBtWHwhvGUHK1FNONzRzXgT1zKEg+WAigeuK4QVIxdITM4YvUyYvpQJuJd+xGD1no7BYIKXdV4aDlsRnWSMmS+zTyTvC0+TgBMCNpMvdChjaB/XTrMVsm0vgPmCYswn067MTYWfm5oCqqmNciqoRfFL2O2mxFT1VMcKDrxHBdBUhSG5UmAerx86KAEytbsCbn6OOj8Y02VwVynzXd0WJfLioeGMZISM1eneWfTc1mQ6CpdDxJqUmU86/KsBL3Bb0S2NAqFysFJZKxDwLej8xz+xH8IxEHzlkiiNH+2IIq0663FAwi6wg6dgcryDqQ+lNDwn898nylrcYShigDrtrFBNezKx3ZjpkPCnPUeQB4hJUrYCUJy5CyytC/x1UsByKez/aSNEWnlWnzYdJf2PoKL0YfmaR3KpXzi9ax3BHPgk1cdmgdVkqevFJ0DUdTBFQj/mhaKqcaT0rKJLgy/11AhWW4nX7+kAdgR0b1iAseI0TbMDtohBuqqUZfqMfUKsdI8v2aeUd0+IqOjPBFe7TZRC7OUYmf789SRTpw9gst4tzx7tLap8JnFt2keKhqd3vBgqpvlsxvx0DcPC+bo/qIldKiAn5D7TPjeWLzJ1gmpk1mVKOyWOv/ZzlRTfe8yEsMsRcgdPxbOuxLjlOwo1uFh9NjHoOz/xbnI62I49ZzT59GUCNtAL74UqjlRoyXZ5ELEjhTn+F5fYfEkY2TnSsgKO4Wwb/xD41S4mBL7LcUyF76ybV7Yx0L6V2QGoSfyhHFqMQJs/haLPPW18mWJb/UDl90ZN9TEzcdXvZsmCeqzCagC6YDHp3fop+5nAQSnT/Byt2j7z+6cnl/aZh6oKs5xrEMmuzpLFbXNVof9hNmX5E0DQ2M8uBqqeW95p6z8ySnOxURAO28oYWsbVyeYaNlWLZrOtIMZDRjjbecSSwMLlrBhw4mZVht4DgOQxI1+P7sPHZLMf89U+5ctf1rD0r1AXgyXjzOxKvCxWMhrz6Ah19+zal/bAIpw+0V7Pq85PRQO4UeScmMwODR8jcOfILuMmo7xXhemY/JqtOncklEaGapMeGlkiefvQkx9L5EWvLn6stI4zRP4pZXx9iOz17IKJmKOVHgCIAOiheb0bwkjNkItlfYO3LzeLLPuBDNLFg7tQu5NPWy28a4nBsE/gsyEteRvF2ECYFIOJg06dzc77IWw7o+z1Q5APxLg9uvyFniYWNuJyk7rflLCmYcg1gN657CWff8YfPr0ukKOamco94X1nFdyroxHiQlRXaP91DOqMueI1pCasyRQt0jtbWwxdEVyzP3GzUZXBWqa0xXCzwe29cxg2aiwKuuAAVfaCE/Pt1cJXq8wvliF81sMDPMbowd9+uyWuExq/e+2W3wWeV3hVofoiEySjBrJPWVJW9++UocJbC0ppNw5mtHktkZqUk6kVtUgVQ4Cj4udj/bluZzcqWjIvOCJO52M+xcQY808Ei8T/lwwS9TguuzQ3e0KR7hptgNcX1/XhCvAuUdJRijANwb3OUTXACdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YowGX3NoYXBllEsGhZR1Yi4=",
44
+ "dtype": "float32",
45
+ "low": "[-1. -1. -1. -1. -1. -1.]",
46
+ "high": "[1. 1. 1. 1. 1. 1.]",
47
+ "bounded_below": "[ True True True True True True]",
48
+ "bounded_above": "[ True True True True True True]",
49
+ "_np_random": "RandomState(MT19937)",
50
+ "_shape": [
51
+ 6
52
+ ]
53
+ },
54
+ "n_envs": 1,
55
+ "num_timesteps": 1000000,
56
+ "_total_timesteps": 1000000,
57
+ "_num_timesteps_at_start": 0,
58
+ "seed": 0,
59
+ "action_noise": null,
60
+ "start_time": 1614621441.9669518,
61
+ "learning_rate": {
62
+ ":type:": "<class 'function'>",
63
+ ":serialized:": "gASVngMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsCSxNDCHwAiAAUAFMAlIyECiAgICAgICAgUHJvZ3Jlc3Mgd2lsbCBkZWNyZWFzZSBmcm9tIDEgKGJlZ2lubmluZykgdG8gMAogICAgICAgIDpwYXJhbSBwcm9ncmVzc19yZW1haW5pbmc6IChmbG9hdCkKICAgICAgICA6cmV0dXJuOiAoZmxvYXQpCiAgICAgICAglIWUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjFovdm9sdW1lL1VTRVJTVE9SRS9yYWZmX2FuL3Byb2plY3RzL2V4cGVyaW1lbnRzL3JlbGVhc2UxLjAvcmwtYmFzZWxpbmVzMy16b28vdXRpbHMvdXRpbHMucHmUjARmdW5jlEv+QwIABpSMDWluaXRpYWxfdmFsdWWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjAV1dGlsc5SMCF9fbmFtZV9flIwLdXRpbHMudXRpbHOUjAhfX2ZpbGVfX5SMWi92b2x1bWUvVVNFUlNUT1JFL3JhZmZfYW4vcHJvamVjdHMvZXhwZXJpbWVudHMvcmVsZWFzZTEuMC9ybC1iYXNlbGluZXMzLXpvby91dGlscy91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGghfZR9lChoGGgPjAxfX3F1YWxuYW1lX1+UjB1saW5lYXJfc2NoZWR1bGUuPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lCiMEnByb2dyZXNzX3JlbWFpbmluZ5SMCGJ1aWx0aW5zlIwFZmxvYXSUk5SMBnJldHVybpRoLnWMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flGgKjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/R+uvECNjsoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
64
+ },
65
+ "tensorboard_log": null,
66
+ "lr_schedule": {
67
+ ":type:": "<class 'function'>",
68
+ ":serialized:": "gASVngMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsCSxNDCHwAiAAUAFMAlIyECiAgICAgICAgUHJvZ3Jlc3Mgd2lsbCBkZWNyZWFzZSBmcm9tIDEgKGJlZ2lubmluZykgdG8gMAogICAgICAgIDpwYXJhbSBwcm9ncmVzc19yZW1haW5pbmc6IChmbG9hdCkKICAgICAgICA6cmV0dXJuOiAoZmxvYXQpCiAgICAgICAglIWUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjFovdm9sdW1lL1VTRVJTVE9SRS9yYWZmX2FuL3Byb2plY3RzL2V4cGVyaW1lbnRzL3JlbGVhc2UxLjAvcmwtYmFzZWxpbmVzMy16b28vdXRpbHMvdXRpbHMucHmUjARmdW5jlEv+QwIABpSMDWluaXRpYWxfdmFsdWWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjAV1dGlsc5SMCF9fbmFtZV9flIwLdXRpbHMudXRpbHOUjAhfX2ZpbGVfX5SMWi92b2x1bWUvVVNFUlNUT1JFL3JhZmZfYW4vcHJvamVjdHMvZXhwZXJpbWVudHMvcmVsZWFzZTEuMC9ybC1iYXNlbGluZXMzLXpvby91dGlscy91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGghfZR9lChoGGgPjAxfX3F1YWxuYW1lX1+UjB1saW5lYXJfc2NoZWR1bGUuPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lCiMEnByb2dyZXNzX3JlbWFpbmluZ5SMCGJ1aWx0aW5zlIwFZmxvYXSUk5SMBnJldHVybpRoLnWMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flGgKjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/R+uvECNjsoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
69
+ },
70
+ "_last_obs": null,
71
+ "_last_episode_starts": null,
72
+ "_last_original_obs": {
73
+ ":type:": "<class 'numpy.ndarray'>",
74
+ ":serialized:": "gASV5gAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwFLF4aUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUNc0UKYvgAAAAAAAIA/jjdEPwAAAABCk3y8AAAAAEjqdr9DAoA/r64PuuqvG71Pkjg/2kIdP2l0uz4mQDA9+CWuO6sKqD7T8QS+LF/GPrFq/74AAAAAAACAPzeJAT+UdJRiLg=="
75
+ },
76
+ "_episode_num": 2892,
77
+ "use_sde": true,
78
+ "sde_sample_freq": -1,
79
+ "_current_progress_remaining": 0.0,
80
+ "ep_info_buffer": {
81
+ ":type:": "<class 'collections.deque'>",
82
+ ":serialized:": "gASVJQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIPuk5CF9KGMAWyUTQoBjAF0lEdA0a4enQpnYnV9lChoBkdAgR2NL127nWgHS/JoCEdA0a9BK0UoKHV9lChoBkdApCqNX7tRemgHTegDaAhHQNGzhtBF/hF1fZQoaAZHQHQh9fLLZBdoB0uQaAhHQNG0XClnAZd1fZQoaAZHQKQO1OXVsk9oB03oA2gIR0DRvSz4GlhxdX2UKGgGR0CkXYygPEsKaAdN6ANoCEdA0cGzgBLf13V9lChoBkdAd0+Ue+23KGgHS6doCEdA0cKKra/RFHV9lChoBkdAiOiX9aUzK2gHTUMBaAhHQNHD+vuLJjl1fZQoaAZHQFRNwTM7lq9oB0swaAhHQNHEARVyWAx1fZQoaAZHQKQ0P6SDAahoB03oA2gIR0DRyJWU3XI2dX2UKGgGR0CJCt77bcoIaAdNQwFoCEdA0coGVT72tnV9lChoBkdAnAqMVYZEUmgHTb4CaAhHQNHNJqSgXdl1fZQoaAZHQKKDEuh9LHxoB02YA2gIR0DR0RqMLncMdX2UKGgGR0CMq/0VafSQaAdNegFoCEdA0dLD60pmVnV9lChoBkdAhbt6YE4ecWgHTSABaAhHQNHUJnscABF1fZQoaAZHQKQRTupCKJloB03oA2gIR0DR2GmH58BudX2UKGgGR0CkH6NcfNiZaAdN6ANoCEdA0dztRmK64HV9lChoBkdApDUn1zySWGgHTegDaAhHQNHhcd03fhx1fZQoaAZHQKQ/kA6Mir1oB03oA2gIR0DR5bHFS88LdX2UKGgGR0CchOHZK3/haAdNwgJoCEdA0e0wc1fmcXV9lChoBkdApC2idhAnlWgHTegDaAhHQNHxxnUDuBt1fZQoaAZHQKQgEW+GoJloB03oA2gIR0DR9lDTTfBOdX2UKGgGR0CCVYjwhGH6aAdL9mgIR0DR9zO+pOvddX2UKGgGR0BgUJeb/ffoaAdLSGgIR0DR97xoSL62dX2UKGgGR0CKnENrj5sTaAdNUwFoCEdA0fktgUUO/nV9lChoBkdApEFBrJr+HmgHTegDaAhHQNH9fTCP6sR1fZQoaAZHQH3VfwAlv61oB0vOaAhHQNH+l0O3DvV1fZQoaAZHQJ4eXrX18LNoB03xAmgIR0DSAbRC+lCUdX2UKGgGR0CkS7VbiZOSaAdN6ANoCEdA0gY7U0Nz83V9lChoBkdATRwdXDFZPmgHSyNoCEdA0gaBb5/LDHV9lChoBkdAZKkjgQ6IWWgHS1VoCEdA0gbNTURWcXV9lChoBkdApE4zw4KhMGgHTegDaAhHQNILXqpPykN1fZQoaAZHQKRuH94NZvFoB03oA2gIR0DSD6bLxI8RdX2UKGgGR0BDlRYq5LAYaAdLHWgIR0DSD+xFLFn7dX2UKGgGR0CkfFo0ZWJaaAdN6ANoCEdA0hQqfR/mT3V9lChoBkdApClrnPmgamgHTegDaAhHQNIYs7eMyad1fZQoaAZHQIV9dea8YhtoB00dAWgIR0DSHnmTTvy9dX2UKGgGR0CCUzew9q1xaAdNAwFoCEdA0h+e88s+V3V9lChoBkdAUW+QLeANG2gHSypoCEdA0h/mA7xNI3V9lChoBkdApGbMkyDZlGgHTegDaAhHQNIkYbwWnCR1fZQoaAZHQICVbWPLgXNoB0vaaAhHQNIlOHIQvpR1fZQoaAZHQKQ7ECnxaxJoB03oA2gIR0DSKcQ6V+qjdX2UKGgGR0Cb6cujh1klaAdNtAJoCEdA0izgea8Yh3V9lChoBkdAYhenndO6/mgHS0poCEdA0i0pOmBOHnV9lChoBkdAN8OVLSNOumgHSxBoCEdA0i0rSh8IA3V9lChoBkdAmyctLpRoAWgHTaMCaAhHQNIv+CUxEfF1fZQoaAZHQHGXvoNd7fJoB0uIaAhHQNIwxrux8lZ1fZQoaAZHQH6yLA+IM0BoB0vPaAhHQNIxpI4p+c91fZQoaAZHQGdiDkuHvc9oB0tdaAhHQNIx8Y4EOiF1fZQoaAZHQKRILbDdgv1oB03oA2gIR0DSNmO8DjiodX2UKGgGR0CVdVwsoUi7aAdNGQJoCEdA0ji1nlnyu3V9lChoBkdApEey/fwZwWgHTegDaAhHQNI9PjhDPWx1fZQoaAZHQH86z15B1LdoB0vWaAhHQNI+EgB91EF1fZQoaAZHQHG2HCsOoYNoB0uCaAhHQNI+pEGzKLd1fZQoaAZHQKR51sgMc6xoB03oA2gIR0DSQzRoSL62dX2UKGgGR0Cj8zKMWGh3aAdN6ANoCEdA0kfLTrVvuXV9lChoBkdApGVIG0NSZWgHTegDaAhHQNJQ7tmxt551fZQoaAZHQKQFnubZvk1oB03oA2gIR0DSVZJ6+nIidX2UKGgGR0CkG2/dZaFFaAdN6ANoCEdA0lnxGXokiXV9lChoBkdAenZz7di2D2gHS7doCEdA0lrMOO8013V9lChoBkdApERixFAmiWgHTegDaAhHQNJfa5wbVBl1fZQoaAZHQKR42NMoMKFoB03oA2gIR0DSY/AH7gsLdX2UKGgGR0CkHYZssQNDaAdN6ANoCEdA0mhRt9QXRHV9lChoBkdApE9kNvwVkGgHTegDaAhHQNJs6wVoHs11fZQoaAZHQKRHEjXWe6JoB03oA2gIR0DScUPw3HaOdX2UKGgGR0CQ7xwvxpcpaAdNtwFoCEdA0nNJQwblzXV9lChoBkdAdB26HTI/7mgHS41oCEdA0nPSHOKO1nV9lChoBkdAfnWIcinpCGgHS9RoCEdA0nT6Dej2z3V9lChoBkdApDMMr9VFQWgHTegDaAhHQNJ5UkNnXd11fZQoaAZHQHOyLxNIsiBoB0uLaAhHQNJ6KJn+Q2d1fZQoaAZHQJxCRKf4AS5oB03JAmgIR0DSgh4Q5FPSdX2UKGgGR0A4IxoqTbFkaAdLEWgIR0DSgiBGPPszdX2UKGgGR0BjlgLRa5f/aAdLUGgIR0DSgm0HQhOhdX2UKGgGR0CkSk5bILgGaAdN6ANoCEdA0obzJ6IFeXV9lChoBkdApEouBSUC72gHTegDaAhHQNKLQtBWxQl1fZQoaAZHQKQuAnLJSzhoB03oA2gIR0DSj/nRiPQwdX2UKGgGR0BdGnvQWvbHaAdLPmgIR0DSkDuFuejEdX2UKGgGR0CkA9EC3gDSaAdN6ANoCEdA0pTWG6f8M3V9lChoBkdAZDyV4X40uWgHS1JoCEdA0pUhomXw9nV9lChoBkdAh5sLx7RfGGgHTToBaAhHQNKWg9oexOd1fZQoaAZHQKRhKYFaB7NoB03oA2gIR0DSmvs2606YdX2UKGgGR0CkIvG3WnTBaAdN6ANoCEdA0p82jzqbB3V9lChoBkdApEFu4NI9T2gHTegDaAhHQNKjvJswco91fZQoaAZHQKQ8TLq2SdRoB03oA2gIR0DSp/oMSbpedX2UKGgGR0CkNvi9Zid8aAdN6ANoCEdA0qyKiO/+KnV9lChoBkdApH22u/1xsGgHTegDaAhHQNK1qQgow251fZQoaAZHQKQ0bxHXmNloB03oA2gIR0DSufaYTj//dX2UKGgGR0CkWaZ7ojfOaAdN6ANoCEdA0r6mB7u2JHV9lChoBkdApDwsWO6un2gHTegDaAhHQNLDNvLLZBd1fZQoaAZHQKQlnwEyLydoB03oA2gIR0DSx4EDSw4bdX2UKGgGR0B1tnHXEqDsaAdLnGgIR0DSyFqsA/9pdX2UKGgGR0CHtxFkxyn2aAdNNAFoCEdA0smI57w8XHV9lChoBkdApENIGdI5HWgHTegDaAhHQNLN8krGza91fZQoaAZHQGV+1II4VARoB0tXaAhHQNLOP7BCUot1fZQoaAZHQIzH7kZJkG1oB01sAWgIR0DSz+5uyeI3dX2UKGgGR0B9Za7K7qY7aAdLymgIR0DS0MkPatcOdX2UKGgGR0BxvJsj3VTaaAdLiGgIR0DS0U7FaSs9dX2UKGgGR0CjxRUoa1kUaAdN6ANoCEdA0tXhqG1x83V9lChoBkdApEpS3ocJdGgHTegDaAhHQNLacLDZUUB1fZQoaAZHQIoJadhAnlZoB01LAWgIR0DS2+CzollcdWUu"
83
+ },
84
+ "ep_success_buffer": {
85
+ ":type:": "<class 'collections.deque'>",
86
+ ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
87
+ },
88
+ "_n_updates": 990016,
89
+ "buffer_size": 1,
90
+ "batch_size": 256,
91
+ "learning_starts": 10000,
92
+ "tau": 0.02,
93
+ "gamma": 0.98,
94
+ "gradient_steps": 64,
95
+ "optimize_memory_usage": false,
96
+ "replay_buffer_class": {
97
+ ":type:": "<class 'abc.ABCMeta'>",
98
+ ":serialized:": "gASVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
99
+ "__module__": "stable_baselines3.common.buffers",
100
+ "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
101
+ "__init__": "<function ReplayBuffer.__init__ at 0x7f4f49699b90>",
102
+ "add": "<function ReplayBuffer.add at 0x7f4f49699c20>",
103
+ "sample": "<function ReplayBuffer.sample at 0x7f4f492007a0>",
104
+ "_get_samples": "<function ReplayBuffer._get_samples at 0x7f4f49200830>",
105
+ "__abstractmethods__": "frozenset()",
106
+ "_abc_impl": "<_abc_data object at 0x7f4f496f15d0>"
107
+ },
108
+ "replay_buffer_kwargs": {},
109
+ "train_freq": {
110
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
111
+ ":serialized:": "gASVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLQGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
112
+ },
113
+ "use_sde_at_warmup": false,
114
+ "target_entropy": -6.0,
115
+ "ent_coef": "auto",
116
+ "target_update_interval": 1,
117
+ "top_quantiles_to_drop_per_net": 2,
118
+ "_last_dones": {
119
+ ":type:": "<class 'numpy.ndarray'>",
120
+ ":serialized:": "gASViQAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwGFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAQCUdJRiLg=="
121
+ },
122
+ "remove_time_limit_termination": false
123
+ }
tqc-Walker2DBulletEnv-v0/ent_coef_optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d7f5db40906451dea629edcd762fc18dc05d4d43290b2c6611f9ce08268d8557
3
+ size 1255
tqc-Walker2DBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:57d7368c8d9d6a48f5cf7f5cb4dbacb15ac02eb1b17fede0e33fda97fa46088f
3
+ size 2781448
tqc-Walker2DBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ae89a75e9ce7f7a1f2254189e14e0c9436136abb04cb5cec0d28f17ff0849644
3
+ size 747
tqc-Walker2DBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.13.0-44-generic-x86_64-with-debian-bullseye-sid #49~20.04.1-Ubuntu SMP Wed May 18 18:44:28 UTC 2022
2
+ Python: 3.7.10
3
+ Stable-Baselines3: 1.5.1a8
4
+ PyTorch: 1.11.0
5
+ GPU Enabled: True
6
+ Numpy: 1.21.2
7
+ Gym: 0.21.0
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:03570c634757a8e48c5f7fc747d3b1ab65636993a6d180adc9df3edeb40e309d
3
+ size 95481