Initial commit
Browse files- .gitattributes +1 -0
- README.md +65 -0
- args.yml +59 -0
- config.yml +24 -0
- env_kwargs.yml +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- td3-Pendulum-v1.zip +3 -0
- td3-Pendulum-v1/_stable_baselines3_version +1 -0
- td3-Pendulum-v1/actor.optimizer.pth +3 -0
- td3-Pendulum-v1/critic.optimizer.pth +3 -0
- td3-Pendulum-v1/data +124 -0
- td3-Pendulum-v1/policy.pth +3 -0
- td3-Pendulum-v1/pytorch_variables.pth +3 -0
- td3-Pendulum-v1/system_info.txt +7 -0
- train_eval_metrics.zip +3 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- Pendulum-v1
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: TD3
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: -195.99 +/- 119.03
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: Pendulum-v1
|
20 |
+
type: Pendulum-v1
|
21 |
+
---
|
22 |
+
|
23 |
+
# **TD3** Agent playing **Pendulum-v1**
|
24 |
+
This is a trained model of a **TD3** agent playing **Pendulum-v1**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
26 |
+
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
27 |
+
|
28 |
+
The RL Zoo is a training framework for Stable Baselines3
|
29 |
+
reinforcement learning agents,
|
30 |
+
with hyperparameter optimization and pre-trained agents included.
|
31 |
+
|
32 |
+
## Usage (with SB3 RL Zoo)
|
33 |
+
|
34 |
+
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
|
35 |
+
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
36 |
+
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
37 |
+
|
38 |
+
```
|
39 |
+
# Download model and save it into the logs/ folder
|
40 |
+
python -m utils.load_from_hub --algo td3 --env Pendulum-v1 -orga sb3 -f logs/
|
41 |
+
python enjoy.py --algo td3 --env Pendulum-v1 -f logs/
|
42 |
+
```
|
43 |
+
|
44 |
+
## Training (with the RL Zoo)
|
45 |
+
```
|
46 |
+
python train.py --algo td3 --env Pendulum-v1 -f logs/
|
47 |
+
# Upload the model and generate video (when possible)
|
48 |
+
python -m utils.push_to_hub --algo td3 --env Pendulum-v1 -f logs/ -orga sb3
|
49 |
+
```
|
50 |
+
|
51 |
+
## Hyperparameters
|
52 |
+
```python
|
53 |
+
OrderedDict([('buffer_size', 200000),
|
54 |
+
('gamma', 0.98),
|
55 |
+
('gradient_steps', -1),
|
56 |
+
('learning_rate', 0.001),
|
57 |
+
('learning_starts', 10000),
|
58 |
+
('n_timesteps', 20000),
|
59 |
+
('noise_std', 0.1),
|
60 |
+
('noise_type', 'normal'),
|
61 |
+
('policy', 'MlpPolicy'),
|
62 |
+
('policy_kwargs', 'dict(net_arch=[400, 300])'),
|
63 |
+
('train_freq', [1, 'episode']),
|
64 |
+
('normalize', False)])
|
65 |
+
```
|
args.yml
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - algo
|
3 |
+
- td3
|
4 |
+
- - env
|
5 |
+
- Pendulum-v0
|
6 |
+
- - env_kwargs
|
7 |
+
- null
|
8 |
+
- - eval_episodes
|
9 |
+
- 10
|
10 |
+
- - eval_freq
|
11 |
+
- 10000
|
12 |
+
- - gym_packages
|
13 |
+
- []
|
14 |
+
- - hyperparams
|
15 |
+
- null
|
16 |
+
- - log_folder
|
17 |
+
- rl-trained-agents/
|
18 |
+
- - log_interval
|
19 |
+
- -1
|
20 |
+
- - n_evaluations
|
21 |
+
- 20
|
22 |
+
- - n_jobs
|
23 |
+
- 1
|
24 |
+
- - n_startup_trials
|
25 |
+
- 10
|
26 |
+
- - n_timesteps
|
27 |
+
- -1
|
28 |
+
- - n_trials
|
29 |
+
- 10
|
30 |
+
- - num_threads
|
31 |
+
- -1
|
32 |
+
- - optimize_hyperparameters
|
33 |
+
- false
|
34 |
+
- - pruner
|
35 |
+
- median
|
36 |
+
- - sampler
|
37 |
+
- tpe
|
38 |
+
- - save_freq
|
39 |
+
- -1
|
40 |
+
- - save_replay_buffer
|
41 |
+
- false
|
42 |
+
- - seed
|
43 |
+
- 4156017648
|
44 |
+
- - storage
|
45 |
+
- null
|
46 |
+
- - study_name
|
47 |
+
- null
|
48 |
+
- - tensorboard_log
|
49 |
+
- ''
|
50 |
+
- - trained_agent
|
51 |
+
- ''
|
52 |
+
- - truncate_last_trajectory
|
53 |
+
- true
|
54 |
+
- - uuid
|
55 |
+
- true
|
56 |
+
- - vec_env
|
57 |
+
- dummy
|
58 |
+
- - verbose
|
59 |
+
- 1
|
config.yml
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - buffer_size
|
3 |
+
- 200000
|
4 |
+
- - gamma
|
5 |
+
- 0.98
|
6 |
+
- - gradient_steps
|
7 |
+
- -1
|
8 |
+
- - learning_rate
|
9 |
+
- 0.001
|
10 |
+
- - learning_starts
|
11 |
+
- 10000
|
12 |
+
- - n_timesteps
|
13 |
+
- 20000
|
14 |
+
- - noise_std
|
15 |
+
- 0.1
|
16 |
+
- - noise_type
|
17 |
+
- normal
|
18 |
+
- - policy
|
19 |
+
- MlpPolicy
|
20 |
+
- - policy_kwargs
|
21 |
+
- dict(net_arch=[400, 300])
|
22 |
+
- - train_freq
|
23 |
+
- - 1
|
24 |
+
- episode
|
env_kwargs.yml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fcc20910ec9875683b3fb2d450f765628ae671fae2aa114fe29275a0e443b95e
|
3 |
+
size 293958
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -195.9938827, "std_reward": 119.03262048201839, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-02T15:09:36.336078"}
|
td3-Pendulum-v1.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9597e5a20703d74786afc8e5f48d98b378816ad8743ee62e2a278483bc565823
|
3 |
+
size 5920968
|
td3-Pendulum-v1/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.1a8
|
td3-Pendulum-v1/actor.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8401dc938f1e12e797922cc6f570daa746041f72e7821f9ae8d156efac545b01
|
3 |
+
size 980929
|
td3-Pendulum-v1/critic.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:874916fadb411303e7a3ad9cccecebf6aac72019c88c3b906cf7125cc49bb45d
|
3 |
+
size 1967965
|
td3-Pendulum-v1/data
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnRkMy5wb2xpY2llc5SMCVREM1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.td3.policies",
|
6 |
+
"__doc__": "\n Policy class (with both actor and critic) for TD3.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
|
7 |
+
"__init__": "<function TD3Policy.__init__ at 0x7fd6839e0170>",
|
8 |
+
"_build": "<function TD3Policy._build at 0x7fd6839e0200>",
|
9 |
+
"_get_constructor_parameters": "<function TD3Policy._get_constructor_parameters at 0x7fd6839e0290>",
|
10 |
+
"make_actor": "<function TD3Policy.make_actor at 0x7fd6839e0320>",
|
11 |
+
"make_critic": "<function TD3Policy.make_critic at 0x7fd6839e03b0>",
|
12 |
+
"forward": "<function TD3Policy.forward at 0x7fd6839e0440>",
|
13 |
+
"_predict": "<function TD3Policy._predict at 0x7fd6839e04d0>",
|
14 |
+
"set_training_mode": "<function TD3Policy.set_training_mode at 0x7fd6839e0560>",
|
15 |
+
"__abstractmethods__": "frozenset()",
|
16 |
+
"_abc_impl": "<_abc_data object at 0x7fd6839de1e0>"
|
17 |
+
},
|
18 |
+
"verbose": 1,
|
19 |
+
"policy_kwargs": {
|
20 |
+
"net_arch": [
|
21 |
+
400,
|
22 |
+
300
|
23 |
+
]
|
24 |
+
},
|
25 |
+
"observation_space": {
|
26 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
27 |
+
":serialized:": "gASVkQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwOFlGgKiUMMAACAvwAAgL8AAADBlHSUYowEaGlnaJRoEGgSSwCFlGgUh5RSlChLAUsDhZRoColDDAAAgD8AAIA/AAAAQZR0lGKMDWJvdW5kZWRfYmVsb3eUaBBoEksAhZRoFIeUUpQoSwFLA4WUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQwMBAQGUdJRijA1ib3VuZGVkX2Fib3ZllGgQaBJLAIWUaBSHlFKUKEsBSwOFlGgoiUMDAQEBlHSUYowKX25wX3JhbmRvbZROjAZfc2hhcGWUSwOFlHViLg==",
|
28 |
+
"dtype": "float32",
|
29 |
+
"low": "[-1. -1. -8.]",
|
30 |
+
"high": "[1. 1. 8.]",
|
31 |
+
"bounded_below": "[ True True True]",
|
32 |
+
"bounded_above": "[ True True True]",
|
33 |
+
"_np_random": null,
|
34 |
+
"_shape": [
|
35 |
+
3
|
36 |
+
]
|
37 |
+
},
|
38 |
+
"action_space": {
|
39 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
40 |
+
":serialized:": "gASVCwwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwGFlGgKiUMEAAAAwJR0lGKMBGhpZ2iUaBBoEksAhZRoFIeUUpQoSwFLAYWUaAqJQwQAAABAlHSUYowNYm91bmRlZF9iZWxvd5RoEGgSSwCFlGgUh5RSlChLAUsBhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAQGUdJRijA1ib3VuZGVkX2Fib3ZllGgQaBJLAIWUaBSHlFKUKEsBSwGFlGgoiWgrdJRijApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpRoN4wFc3RhdGWUfZQojANrZXmUaBBoEksAhZRoFIeUUpQoSwFNcAKFlGgHjAJ1NJSJiIeUUpQoSwNoC05OTkr/////Sv////9LAHSUYolCwAkAAAAAAIBTwrOchwO1k3Lsq1vo5rLyz7aB2tUG72GhMU2ga7XM2RPmGJ90nHkvyKUbgMR5AUmeD0PkXeAYk5ITVczUSilk0giVvjTQnkRyegPwrb8Kc5t7PulgsQbadQNFC2591hZq6wQ0ZoO38/WlL2nvQmNDtVz3wndSzEZENy0IiW7Qjq53+xi2gE97nvlPMuwS2LmOXoWpGcquPXYtZytCgJ7F7scf9SIBXUvPJA/MGVJkRFeYcJ0K9RIXtela3jvE/0HPOrFftofdM9hYiaqizX97P8mUt2wPQx8xmX0bYJCrtwcdGUzeyPuOugD1z6ka3iX+IAalFvzQduPBTvXKQ9MBWnnfUFetzaqYhTrP0WHhMA/Ht9nWRUX4vUiuWi77gKSTLtizn2cHsqRyJMj43mOVvrbJtm3T5laAgDosou93H+ZNC0HiTVqmVP8Lsv3/JsoIWfaq43/tiUiTGgfVTTF1psbquA6tH5Icya9TC+0oH7X0htvTuZKBVDKM0C+fIAM8l/emTHKVm2ft/85WlYRpZ+XoFwvDLSCusSBQr4f7w/xdYy4GCKdeDDOfezLj5k6WvjminpO26pfQqfP9LJIYOUEgrwmoo5vMHp8a36i8kcQzwqUvi94rCQuS64xYFp7HcUF1aySvLmqGyXEyCeTa2GHwNpeYB9u4jyPRKocxbWSV4hOL16R9fH95KLmFfUaMD8zrZmLG5rLUfzMf1WOxNFwZpzInS+HWE1F4MWg2xcVst8upoi9ssNCNjtPbz1ley6m8DG7YZVNupay35yQ8/PAfu8uKRQsL7B4ArDFquqb66ABeDLPvviZ4c6y9Bi67Xye+uu6eNlYO/Boq5iiETBR9Kemi0T1eFf33JRNzywY9CJ1N9eTOb+3wxY/yK3iXhVISAMufwZby3YMCHwTAVr8o4ahkQaNipnYgwDvQT4XYuqBpmVAsUw41MjHfK43kXZ7UxPi/bB0FEr1H6UYynEiI2V3I7DDEsMFNEMyF3sA+J2YPBAGe9oh5woVr3lu3AeREERRPmD778jQMODrzkRfg4w7Zi1M+ozc9CW5Lim4SEBBFW6Q0ZKHiBgOBwE8pmXhOE1/4b4TsSX1+ZYlw/f1KJ/Doyf4YSKwzVGEdjTldkdS/lbivyQPaNIsxj4ggvb4u1CtbuK3vLbz6wSJwugR9g6TL1kkXqXR9H6xcRrB/5EQf0u+1EnjLN/GvsqKw2mvVrG/Vp7kINdL5dPO44b8Emce+3xqudjVdYf1J2QI56iTowjwYEK2NMLEnklukjknSLQDrqYlpFb0sx8/oKKXf9xVFD243YpO1XejusnBjhcKePsMmaqtTCh8MOXsSTQ+g3vDQeHxgc7LyqE/DtXwAt2Nmft5i2MJAiV1C8dszUjvdG0ItC9AYUxdQInTbakZGpO9lfldZKLOpuBfpMmYjosMX3Bylh5qUHtwPB6V+p2nMdGbKNFshf1v7Di6P/9oNGA/ZKCI4Cr8P/3/RJuAr8TQVDJyWE1UCRsrBeEDEoZzOm8mjDSYUVQC3/l9PkoCyZBMC3ynQWysYwNN+ThHNmCplKb6KFVFLfvVPHe3CkYDWCij8Ah8mHyyUkLeGRHU4YI3ssA8YLBsz2seUpJTi66EmJ9/X3qH2rWQ8yV3r3z0x8otWS8KXuh8JG6s9Rbjpx4koT3nWxAPW/xwrQcrUma4FMJcB6UJQIgU0saTe0xc1Wa64UXejfFvhXhPUgBgh8F3IRUeEghk4T8kRjv11pDDyeNgS1DpjBnqQ0IFh+uOrY6CUhNxF3AOYg0vjaujoedtaAtlDwJ78SI9UG1YfCG8ZQcrUU043NHNeBPXMoSD5YCKB64rhBUjF0hMzhi9TJi+lAm4l37EYPWejsFggpd1XhoOWxGdZIyZL7NPJO8LT5OAEwI2ky90KGNoH9dOsxWybS+A+YJizCfTrsxNhZ+bmgKqqY1yKqhF8UvY7abEVPVUxwoOvEcF0FSFIblSYB6vHzooATK1uwJufo46PxjTZXBXKfNd3RYl8uKh4YxkhIzV6d5Z9NzWZDoKl0PEmpSZTzr8qwEvcFvRLY0CoXKwUlkrEPAt6PzHP7EfwjEQfOWSKI0f7YgirTrrcUDCLrCDp2ByvIOpD6U0PCfz3yfKWtxhKGKAOu2sUE17MrHdmOmQ8Kc9R5AHiElStgJQnLkLLK0L/HVSwHIp7P9pI0RaeVafNh0l/Y+govRh+ZpHcqlfOL1rHcEc+CTVx2aB1WSp68UnQNR1MEVCP+aFoqpxpPSsokuDL/XUCFZbidfv6QB2BHRvWICx4jRNswO2iEG6qpRl+ox9Qqx0jy/Zp5R3T4io6M8EV7tNlELs5RiZ/vz1JFOnD2Cy3i3PHu0tqnwmcW3aR4qGp3e8GCqm+WzG/HQNw8L5uj+oiV0qICfkPtM+N5YvMnWCamTWZUo7JY6/9nOVFN97zISwyxFyB0/Fs67EuOU7CjW4WH02Meg7P/FucjrYjj1nNPn0ZQI20AvvhSqOVGjJdnkQsSOFOf4Xl9h8SRjZOdKyAo7hbBv/EPjVLiYEvstxTIXvrJtXtjHQvpXZAahJ/KEcWoxAmz+Fos89bXyZYlv9QOX3Rk31MTNx1e9myYJ6rMJqALpgMend+in7mcBBKdP8HK3aPvP7pyeX9pmHqgqznGsQya7OksVtc1Wh/2E2ZfkTQNDYzy4Gqp5b3mnrPzJKc7FREA7byhhaxtXJ5ho2VYtms60gxkNGONt5xJLAwuWsGHDiZlWG3gOA5DEjX4/uw8dksx/z1T7ly1/WsPSvUBeDJePM7Eq8LFYyGvPoCHX37NqX9sAinD7RXs+rzk9FA7hR5JyYzA4NHyNw58gu4yajvFeF6Zj8mq06dySURoZqkx4aWSJ5+9CTH0vkRa8ufqy0jjNE/illfH2I7PXsgomYo5UeAIgA6KF5vRvCSM2Qi2V9g7cvN4ss+4EM0sWDu1C7k09bLbxricGwT+CzIS15G8XYQJgUg4mDTp3NzvshbDuj7PVDkA/EuD26/IWeJhY24nKTut+UsKZhyDWA3rnsJZ9/xh8+vS6Qo5qZyj3hfWcV3KujEeJCVFdo/3UM6oy54jWkJqzJFC3SO1tbDF0RXLM/cbNRlcFaprTFcLPB7b1zGDZqLAq64ABV9oIT8+3VwlerzC+WIXzWwwM8xujB3367Ja4TGr977ZbfBZ5XeFWh+iITJKMGsk9ZUlb375ShwlsLSmk3Dma0eS2RmpSTqRW1SBVDgKPi52P9uW5nNypaMi84Ik7nYz7FxBjzTwSLxP+XDBL1OC67NDd7QpHuGm2A1xfX9eEK8C5R0lGKMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVijAZfc2hhcGWUSwGFlHViLg==",
|
41 |
+
"dtype": "float32",
|
42 |
+
"low": "[-2.]",
|
43 |
+
"high": "[2.]",
|
44 |
+
"bounded_below": "[ True]",
|
45 |
+
"bounded_above": "[ True]",
|
46 |
+
"_np_random": "RandomState(MT19937)",
|
47 |
+
"_shape": [
|
48 |
+
1
|
49 |
+
]
|
50 |
+
},
|
51 |
+
"n_envs": 1,
|
52 |
+
"num_timesteps": 20000,
|
53 |
+
"_total_timesteps": 20000,
|
54 |
+
"_num_timesteps_at_start": 0,
|
55 |
+
"seed": 0,
|
56 |
+
"action_noise": {
|
57 |
+
":type:": "<class 'stable_baselines3.common.noise.NormalActionNoise'>",
|
58 |
+
":serialized:": "gASVBAEAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5ub2lzZZSMEU5vcm1hbEFjdGlvbk5vaXNllJOUKYGUfZQojANfbXWUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5SMBW51bXB5lIwHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsBhZRoCYwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKJQwgAAAAAAAAAAJR0lGKMBl9zaWdtYZRoCGgLSwCFlGgNh5RSlChLAUsBhZRoFYlDCJqZmZmZmbk/lHSUYnViLg==",
|
59 |
+
"_mu": "[0.]",
|
60 |
+
"_sigma": "[0.1]"
|
61 |
+
},
|
62 |
+
"start_time": 1614621345.191944,
|
63 |
+
"learning_rate": {
|
64 |
+
":type:": "<class 'function'>",
|
65 |
+
":serialized:": "gASV2QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxVL3ZvbHVtZS9VU0VSU1RPUkUvcmFmZl9hbi9wcm9qZWN0cy90b3JjaHktYmFzZWxpbmVzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS3xDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVS92b2x1bWUvVVNFUlNUT1JFL3JhZmZfYW4vcHJvamVjdHMvdG9yY2h5LWJhc2VsaW5lcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP1BiTdLxqfyFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
66 |
+
},
|
67 |
+
"tensorboard_log": null,
|
68 |
+
"lr_schedule": {
|
69 |
+
":type:": "<class 'function'>",
|
70 |
+
":serialized:": "gASV2QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxVL3ZvbHVtZS9VU0VSU1RPUkUvcmFmZl9hbi9wcm9qZWN0cy90b3JjaHktYmFzZWxpbmVzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS3xDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVS92b2x1bWUvVVNFUlNUT1JFL3JhZmZfYW4vcHJvamVjdHMvdG9yY2h5LWJhc2VsaW5lcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP1BiTdLxqfyFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
71 |
+
},
|
72 |
+
"_last_obs": null,
|
73 |
+
"_last_episode_starts": null,
|
74 |
+
"_last_original_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gASVlgAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwFLA4aUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUMMbu9/P0c2uLwPLhW9lHSUYi4="
|
77 |
+
},
|
78 |
+
"_episode_num": 100,
|
79 |
+
"use_sde": false,
|
80 |
+
"sde_sample_freq": -1,
|
81 |
+
"_current_progress_remaining": 0.0,
|
82 |
+
"ep_info_buffer": {
|
83 |
+
":type:": "<class 'collections.deque'>",
|
84 |
+
":serialized:": "gASVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMISQ7Y1ST7k8CUhpRSlIwBbJRLyIwBdJRHP7rMC9ytFKF1fZQoaAZoCWgPQwjScqCHui2MwJSGlFKUaBVLyGgWRz/Fc2zfJmuldX2UKGgGaAloD0MIzF1LyCf5jcCUhpRSlGgVS8hoFkc/zZBsyi22HHV9lChoBmgJaA9DCPWEJR5gBJnAlIaUUpRoFUvIaBZHP9K2phnanJl1fZQoaAZoCWgPQwjLEMe6+B6KwJSGlFKUaBVLyGgWRz/WphWo3rD7dX2UKGgGaAloD0MIXfsCelHEkMCUhpRSlGgVS8hoFkc/2pCfHxSYPXV9lChoBmgJaA9DCDLlQ1CVZo/AlIaUUpRoFUvIaBZHP956po9LYf51fZQoaAZoCWgPQwi3RgTjwLCOwJSGlFKUaBVLyGgWRz/hMkyDZlFudX2UKGgGaAloD0MI1Ce5w1YgmcCUhpRSlGgVS8hoFkc/4yW7e2uxKXV9lChoBmgJaA9DCBrBxvUPf43AlIaUUpRoFUvIaBZHP+UU4aP0Zm91fZQoaAZoCWgPQwiARunSfzSOwJSGlFKUaBVLyGgWRz/nB4t6HCXQdX2UKGgGaAloD0MIFsJqLCELjMCUhpRSlGgVS8hoFkc/6P5xiobXH3V9lChoBmgJaA9DCLUX0XaMZo3AlIaUUpRoFUvIaBZHP+rv73wkPc11fZQoaAZoCWgPQwhszOuIQxuQwJSGlFKUaBVLyGgWRz/s3yI55qubdX2UKGgGaAloD0MIqN+FrUlKk8CUhpRSlGgVS8hoFkc/7s9fTkQwsXV9lChoBmgJaA9DCBqIZTM3DpXAlIaUUpRoFUvIaBZHP/Bfp2U0Nz91fZQoaAZoCWgPQwj4+8VsSWyPwJSGlFKUaBVLyGgWRz/xWKqGUOd5dX2UKGgGaAloD0MI499nXGgcm8CUhpRSlGgVS8hoFkc/8lDtw71ZknV9lChoBmgJaA9DCNJvXweOhYvAlIaUUpRoFUvIaBZHP/NJSR8twrF1fZQoaAZoCWgPQwindRvUzv6WwJSGlFKUaBVLyGgWRz/0QTh5xBE8dX2UKGgGaAloD0MIDoKOVnUSkMCUhpRSlGgVS8hoFkc/9ToSteUpu3V9lChoBmgJaA9DCH9PrFOFzJTAlIaUUpRoFUvIaBZHP/YxJ/XoTwl1fZQoaAZoCWgPQwhb0eY4B6CUwJSGlFKUaBVLyGgWRz/3KfOD8LrpdX2UKGgGaAloD0MIC7WmebfDmcCUhpRSlGgVS8hoFkc/+CHUMG5c1XV9lChoBmgJaA9DCORO6WANjpDAlIaUUpRoFUvIaBZHP/ka+evpyIZ1fZQoaAZoCWgPQwjRBmAD4gOSwJSGlFKUaBVLyGgWRz/6EwrUb1h9dX2UKGgGaAloD0MIsHH9u54ajsCUhpRSlGgVS8hoFkc/+xeruIAOrnV9lChoBmgJaA9DCFD7rZ0Ig4nAlIaUUpRoFUvIaBZHP/wRJ2+wkgR1fZQoaAZoCWgPQwilLhnHyGKOwJSGlFKUaBVLyGgWRz/9Cyt3fQ8fdX2UKGgGaAloD0MI+yKhLcdOjsCUhpRSlGgVS8hoFkc//gKjSG8Em3V9lChoBmgJaA9DCIlEoWW9fJjAlIaUUpRoFUvIaBZHP/74ubqhUR51fZQoaAZoCWgPQwh0Quigq4mQwJSGlFKUaBVLyGgWRz//7jtG/etTdX2UKGgGaAloD0MIsKw0KcUDkMCUhpRSlGgVS8hoFkdAAHN6gM+eOHV9lChoBmgJaA9DCGuduBw/j5TAlIaUUpRoFUvIaBZHQADv0h/y5I91fZQoaAZoCWgPQwiJCWr4ps+UwJSGlFKUaBVLyGgWR0ABbMs6JZW8dX2UKGgGaAloD0MIl8RZEQXckMCUhpRSlGgVS8hoFkdAAeiKziS7oXV9lChoBmgJaA9DCCCWzRzSqY/AlIaUUpRoFUvIaBZHQAJk3CKrJbN1fZQoaAZoCWgPQwjooiHjUSqbwJSGlFKUaBVLyGgWR0AC4ZydWhh6dX2UKGgGaAloD0MI5nlwdzYci8CUhpRSlGgVS8hoFkdAA12ys0YTCnV9lChoBmgJaA9DCGeeXFNgO5HAlIaUUpRoFUvIaBZHQAPZTqB3A211fZQoaAZoCWgPQwhw7URJCG6NwJSGlFKUaBVLyGgWR0AEVd3Sro4ddX2UKGgGaAloD0MI6Nms+hw+jsCUhpRSlGgVS8hoFkdABNmr8zhxYXV9lChoBmgJaA9DCBnJHqFmjJXAlIaUUpRoFUvIaBZHQAVubRWtEG91fZQoaAZoCWgPQwj2RNeF/wyOwJSGlFKUaBVLyGgWR0AGAWP91loUdX2UKGgGaAloD0MIZ9Km6p65j8CUhpRSlGgVS8hoFkdABpKyOaOPvXV9lChoBmgJaA9DCGU3M/ohopPAlIaUUpRoFUvIaBZHQAcOEmICU5d1fZQoaAZoCWgPQwhUG5yIfnuYwJSGlFKUaBVLyGgWR0AHiiGnGbTddX2UKGgGaAloD0MI7Sk5J4ZhlsCUhpRSlGgVS8hoFkdACAWrwOOKfnV9lChoBmgJaA9DCCTwh58/YpjAlIaUUpRoFUvIaBZHQAiBqKxcE/11fZQoaAZoCWgPQwh40VeQhl2LwJSGlFKUaBVLyGgWR0AI/WpZOi35dX2UKGgGaAloD0MInFHzVeKfl8CUhpRSlGgVS8hoFkdAEOXMQmNR33V9lChoBmgJaA9DCBTq6SOg4ZzAlIaUUpRoFUvIaBZHQBjuHnEETxp1fZQoaAZoCWgPQwi0HVN39bCawJSGlFKUaBVLyGgWR0AgexxDLKV6dX2UKGgGaAloD0MIkdCWc+kvmcCUhpRSlGgVS8hoFkdAJHVTaTOgQHV9lChoBmgJaA9DCMQ/bOnBH5XAlIaUUpRoFUvIaBZHQCitBQemvW91fZQoaAZoCWgPQwifkQiNwK2XwJSGlFKUaBVLyGgWR0AtD7MxGlQ/dX2UKGgGaAloD0MIZVWEmzznl8CUhpRSlGgVS8hoFkdAMLWg3974SHV9lChoBmgJaA9DCHgLJCj+h5fAlIaUUpRoFUvIaBZHQDL4RVZLZjB1fZQoaAZoCWgPQwi+3CdHEQmYwJSGlFKUaBVLyGgWR0A1amb9ZRsNdX2UKGgGaAloD0MI3bbvUX+cl8CUhpRSlGgVS8hoFkdAN6EIsyzolnV9lChoBmgJaA9DCKBQTx+BDZPAlIaUUpRoFUvIaBZHQDnS1Aqur6t1fZQoaAZoCWgPQwho5zQLdOGTwJSGlFKUaBVLyGgWR0A8BH+IdlundX2UKGgGaAloD0MIPusaLZdFksCUhpRSlGgVS8hoFkdAPjtd3Sro4nV9lChoBmgJaA9DCKbydoQztpHAlIaUUpRoFUvIaBZHQEBD8+iaiK11fZQoaAZoCWgPQwhJZYo5OL6XwJSGlFKUaBVLyGgWR0BBaHBciW3SdX2UKGgGaAloD0MIbmk1JG6jkMCUhpRSlGgVS8hoFkdAQpAs/Y8MeHV9lChoBmgJaA9DCMLZrWVy/IzAlIaUUpRoFUvIaBZHQEOsvmHP/rB1fZQoaAZoCWgPQwhaYmU0UpeNwJSGlFKUaBVLyGgWR0BE4RRVIZqEdX2UKGgGaAloD0MIKII4D+dHkMCUhpRSlGgVS8hoFkdARgMz67/XG3V9lChoBmgJaA9DCLX5f9UxJInAlIaUUpRoFUvIaBZHQEcghM8HObB1fZQoaAZoCWgPQwgZARWOgLKHwJSGlFKUaBVLyGgWR0BIP1p0wJw9dX2UKGgGaAloD0MIdm7ajJPWicCUhpRSlGgVS8hoFkdASVwy44Ia+HV9lChoBmgJaA9DCBAiGXJs1XbAlIaUUpRoFUvIaBZHQEp3FwT/Q0J1fZQoaAZoCWgPQwjwF7MlK8t4wJSGlFKUaBVLyGgWR0BLk45cTrVwdX2UKGgGaAloD0MIy0xp/e2ncMCUhpRSlGgVS8hoFkdATK9pXZGrj3V9lChoBmgJaA9DCDP9EvFW/WHAlIaUUpRoFUvIaBZHQE3OjM3ZPEd1fZQoaAZoCWgPQwhzTBb3nwyAwJSGlFKUaBVLyGgWR0BO7pg1FYuCdX2UKGgGaAloD0MIyERKs3lfYcCUhpRSlGgVS8hoFkdAUAW+nIhhY3V9lChoBmgJaA9DCAk3GVUGmnDAlIaUUpRoFUvIaBZHQFCUVPva11J1fZQoaAZoCWgPQwiCVIodTax3wJSGlFKUaBVLyGgWR0BRI0t7KJVKdX2UKGgGaAloD0MIJlEv+LRyYcCUhpRSlGgVS8hoFkdAUbDkmx+rl3V9lChoBmgJaA9DCNYe9kKBPmDAlIaUUpRoFUvIaBZHQFI+ay8jAzp1fZQoaAZoCWgPQwh9JZASu5YAwJSGlFKUaBVLyGgWR0BSzwJLM9r5dX2UKGgGaAloD0MIxy5RvTWw0L+UhpRSlGgVS8hoFkdAU14uPFNtZXV9lChoBmgJaA9DCLDL8J/uRWDAlIaUUpRoFUvIaBZHQFPtQ+EAYHh1fZQoaAZoCWgPQwiy9QzhmOXgv5SGlFKUaBVLyGgWR0BUfFc+qzZ6dX2UKGgGaAloD0MIYKsEi8OqX8CUhpRSlGgVS8hoFkdAVQrLV4HHFXV9lChoBmgJaA9DCH2zzY3pdF/AlIaUUpRoFUvIaBZHQFWZNFjNILB1fZQoaAZoCWgPQwg74pANJIdtwJSGlFKUaBVLyGgWR0BWKRXjlxOtdX2UKGgGaAloD0MIxedOsP8RYMCUhpRSlGgVS8hoFkdAVrdVktmL+HV9lChoBmgJaA9DCMe7I2O1hl/AlIaUUpRoFUvIaBZHQFdFXnhbW3B1fZQoaAZoCWgPQwgj+UogJTdgwJSGlFKUaBVLyGgWR0BX06ClJpWWdX2UKGgGaAloD0MIdLSqJR1PXsCUhpRSlGgVS8hoFkdAWGGoXKr7wnV9lChoBmgJaA9DCA2MvKwJEGDAlIaUUpRoFUvIaBZHQFjwnF5v9+B1fZQoaAZoCWgPQwh6qG3DqG1twJSGlFKUaBVLyGgWR0BZfxrrPdEcdX2UKGgGaAloD0MITUpBt5cydsCUhpRSlGgVS8hoFkdAWg4dp7CzknV9lChoBmgJaA9DCPbOaKuSwF7AlIaUUpRoFUvIaBZHQFqb5jYqXnh1fZQoaAZoCWgPQwivtfepqrduwJSGlFKUaBVLyGgWR0BbKc1O0svqdX2UKGgGaAloD0MIcEIhAg6hX8CUhpRSlGgVS8hoFkdAW7iBiCrcTXV9lChoBmgJaA9DCKX4+IRsU27AlIaUUpRoFUvIaBZHQFxHrpJPIn11ZS4="
|
85 |
+
},
|
86 |
+
"ep_success_buffer": {
|
87 |
+
":type:": "<class 'collections.deque'>",
|
88 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
89 |
+
},
|
90 |
+
"_n_updates": 10000,
|
91 |
+
"buffer_size": 1,
|
92 |
+
"batch_size": 100,
|
93 |
+
"learning_starts": 10000,
|
94 |
+
"tau": 0.005,
|
95 |
+
"gamma": 0.98,
|
96 |
+
"gradient_steps": -1,
|
97 |
+
"optimize_memory_usage": false,
|
98 |
+
"replay_buffer_class": {
|
99 |
+
":type:": "<class 'abc.ABCMeta'>",
|
100 |
+
":serialized:": "gASVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
|
101 |
+
"__module__": "stable_baselines3.common.buffers",
|
102 |
+
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
|
103 |
+
"__init__": "<function ReplayBuffer.__init__ at 0x7fd683e5db90>",
|
104 |
+
"add": "<function ReplayBuffer.add at 0x7fd683e5dc20>",
|
105 |
+
"sample": "<function ReplayBuffer.sample at 0x7fd6839c47a0>",
|
106 |
+
"_get_samples": "<function ReplayBuffer._get_samples at 0x7fd6839c4830>",
|
107 |
+
"__abstractmethods__": "frozenset()",
|
108 |
+
"_abc_impl": "<_abc_data object at 0x7fd683eb55d0>"
|
109 |
+
},
|
110 |
+
"replay_buffer_kwargs": {},
|
111 |
+
"train_freq": {
|
112 |
+
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
|
113 |
+
":serialized:": "gASVZAAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMB2VwaXNvZGWUhZRSlIaUgZQu"
|
114 |
+
},
|
115 |
+
"use_sde_at_warmup": false,
|
116 |
+
"policy_delay": 2,
|
117 |
+
"target_noise_clip": 0.5,
|
118 |
+
"target_policy_noise": 0.2,
|
119 |
+
"_last_dones": {
|
120 |
+
":type:": "<class 'numpy.ndarray'>",
|
121 |
+
":serialized:": "gASViQAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwGFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAQCUdJRiLg=="
|
122 |
+
},
|
123 |
+
"remove_time_limit_termination": false
|
124 |
+
}
|
td3-Pendulum-v1/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e8793693a0db571c5f9ee5df192ea18d4e6aee70989e5a0e26a91b1a3d9df592
|
3 |
+
size 2951289
|
td3-Pendulum-v1/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
td3-Pendulum-v1/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.13.0-44-generic-x86_64-with-debian-bullseye-sid #49~20.04.1-Ubuntu SMP Wed May 18 18:44:28 UTC 2022
|
2 |
+
Python: 3.7.10
|
3 |
+
Stable-Baselines3: 1.5.1a8
|
4 |
+
PyTorch: 1.11.0
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.2
|
7 |
+
Gym: 0.21.0
|
train_eval_metrics.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:668860a76a08a8f769fd2f754d68dcb141774a52a3d4b8db20609a0d470d2c52
|
3 |
+
size 4072
|