araffin commited on
Commit
022732c
1 Parent(s): 35c493a

Initial commit

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - Pendulum-v1
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: TD3
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: -195.99 +/- 119.03
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: Pendulum-v1
20
+ type: Pendulum-v1
21
+ ---
22
+
23
+ # **TD3** Agent playing **Pendulum-v1**
24
+ This is a trained model of a **TD3** agent playing **Pendulum-v1**
25
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
26
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
27
+
28
+ The RL Zoo is a training framework for Stable Baselines3
29
+ reinforcement learning agents,
30
+ with hyperparameter optimization and pre-trained agents included.
31
+
32
+ ## Usage (with SB3 RL Zoo)
33
+
34
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
35
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
36
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
37
+
38
+ ```
39
+ # Download model and save it into the logs/ folder
40
+ python -m utils.load_from_hub --algo td3 --env Pendulum-v1 -orga sb3 -f logs/
41
+ python enjoy.py --algo td3 --env Pendulum-v1 -f logs/
42
+ ```
43
+
44
+ ## Training (with the RL Zoo)
45
+ ```
46
+ python train.py --algo td3 --env Pendulum-v1 -f logs/
47
+ # Upload the model and generate video (when possible)
48
+ python -m utils.push_to_hub --algo td3 --env Pendulum-v1 -f logs/ -orga sb3
49
+ ```
50
+
51
+ ## Hyperparameters
52
+ ```python
53
+ OrderedDict([('buffer_size', 200000),
54
+ ('gamma', 0.98),
55
+ ('gradient_steps', -1),
56
+ ('learning_rate', 0.001),
57
+ ('learning_starts', 10000),
58
+ ('n_timesteps', 20000),
59
+ ('noise_std', 0.1),
60
+ ('noise_type', 'normal'),
61
+ ('policy', 'MlpPolicy'),
62
+ ('policy_kwargs', 'dict(net_arch=[400, 300])'),
63
+ ('train_freq', [1, 'episode']),
64
+ ('normalize', False)])
65
+ ```
args.yml ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - td3
4
+ - - env
5
+ - Pendulum-v0
6
+ - - env_kwargs
7
+ - null
8
+ - - eval_episodes
9
+ - 10
10
+ - - eval_freq
11
+ - 10000
12
+ - - gym_packages
13
+ - []
14
+ - - hyperparams
15
+ - null
16
+ - - log_folder
17
+ - rl-trained-agents/
18
+ - - log_interval
19
+ - -1
20
+ - - n_evaluations
21
+ - 20
22
+ - - n_jobs
23
+ - 1
24
+ - - n_startup_trials
25
+ - 10
26
+ - - n_timesteps
27
+ - -1
28
+ - - n_trials
29
+ - 10
30
+ - - num_threads
31
+ - -1
32
+ - - optimize_hyperparameters
33
+ - false
34
+ - - pruner
35
+ - median
36
+ - - sampler
37
+ - tpe
38
+ - - save_freq
39
+ - -1
40
+ - - save_replay_buffer
41
+ - false
42
+ - - seed
43
+ - 4156017648
44
+ - - storage
45
+ - null
46
+ - - study_name
47
+ - null
48
+ - - tensorboard_log
49
+ - ''
50
+ - - trained_agent
51
+ - ''
52
+ - - truncate_last_trajectory
53
+ - true
54
+ - - uuid
55
+ - true
56
+ - - vec_env
57
+ - dummy
58
+ - - verbose
59
+ - 1
config.yml ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - buffer_size
3
+ - 200000
4
+ - - gamma
5
+ - 0.98
6
+ - - gradient_steps
7
+ - -1
8
+ - - learning_rate
9
+ - 0.001
10
+ - - learning_starts
11
+ - 10000
12
+ - - n_timesteps
13
+ - 20000
14
+ - - noise_std
15
+ - 0.1
16
+ - - noise_type
17
+ - normal
18
+ - - policy
19
+ - MlpPolicy
20
+ - - policy_kwargs
21
+ - dict(net_arch=[400, 300])
22
+ - - train_freq
23
+ - - 1
24
+ - episode
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fcc20910ec9875683b3fb2d450f765628ae671fae2aa114fe29275a0e443b95e
3
+ size 293958
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -195.9938827, "std_reward": 119.03262048201839, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-02T15:09:36.336078"}
td3-Pendulum-v1.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9597e5a20703d74786afc8e5f48d98b378816ad8743ee62e2a278483bc565823
3
+ size 5920968
td3-Pendulum-v1/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.1a8
td3-Pendulum-v1/actor.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8401dc938f1e12e797922cc6f570daa746041f72e7821f9ae8d156efac545b01
3
+ size 980929
td3-Pendulum-v1/critic.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:874916fadb411303e7a3ad9cccecebf6aac72019c88c3b906cf7125cc49bb45d
3
+ size 1967965
td3-Pendulum-v1/data ADDED
@@ -0,0 +1,124 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gASVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnRkMy5wb2xpY2llc5SMCVREM1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.td3.policies",
6
+ "__doc__": "\n Policy class (with both actor and critic) for TD3.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
7
+ "__init__": "<function TD3Policy.__init__ at 0x7fd6839e0170>",
8
+ "_build": "<function TD3Policy._build at 0x7fd6839e0200>",
9
+ "_get_constructor_parameters": "<function TD3Policy._get_constructor_parameters at 0x7fd6839e0290>",
10
+ "make_actor": "<function TD3Policy.make_actor at 0x7fd6839e0320>",
11
+ "make_critic": "<function TD3Policy.make_critic at 0x7fd6839e03b0>",
12
+ "forward": "<function TD3Policy.forward at 0x7fd6839e0440>",
13
+ "_predict": "<function TD3Policy._predict at 0x7fd6839e04d0>",
14
+ "set_training_mode": "<function TD3Policy.set_training_mode at 0x7fd6839e0560>",
15
+ "__abstractmethods__": "frozenset()",
16
+ "_abc_impl": "<_abc_data object at 0x7fd6839de1e0>"
17
+ },
18
+ "verbose": 1,
19
+ "policy_kwargs": {
20
+ "net_arch": [
21
+ 400,
22
+ 300
23
+ ]
24
+ },
25
+ "observation_space": {
26
+ ":type:": "<class 'gym.spaces.box.Box'>",
27
+ ":serialized:": "gASVkQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwOFlGgKiUMMAACAvwAAgL8AAADBlHSUYowEaGlnaJRoEGgSSwCFlGgUh5RSlChLAUsDhZRoColDDAAAgD8AAIA/AAAAQZR0lGKMDWJvdW5kZWRfYmVsb3eUaBBoEksAhZRoFIeUUpQoSwFLA4WUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQwMBAQGUdJRijA1ib3VuZGVkX2Fib3ZllGgQaBJLAIWUaBSHlFKUKEsBSwOFlGgoiUMDAQEBlHSUYowKX25wX3JhbmRvbZROjAZfc2hhcGWUSwOFlHViLg==",
28
+ "dtype": "float32",
29
+ "low": "[-1. -1. -8.]",
30
+ "high": "[1. 1. 8.]",
31
+ "bounded_below": "[ True True True]",
32
+ "bounded_above": "[ True True True]",
33
+ "_np_random": null,
34
+ "_shape": [
35
+ 3
36
+ ]
37
+ },
38
+ "action_space": {
39
+ ":type:": "<class 'gym.spaces.box.Box'>",
40
+ ":serialized:": "gASVCwwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwGFlGgKiUMEAAAAwJR0lGKMBGhpZ2iUaBBoEksAhZRoFIeUUpQoSwFLAYWUaAqJQwQAAABAlHSUYowNYm91bmRlZF9iZWxvd5RoEGgSSwCFlGgUh5RSlChLAUsBhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAQGUdJRijA1ib3VuZGVkX2Fib3ZllGgQaBJLAIWUaBSHlFKUKEsBSwGFlGgoiWgrdJRijApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpRoN4wFc3RhdGWUfZQojANrZXmUaBBoEksAhZRoFIeUUpQoSwFNcAKFlGgHjAJ1NJSJiIeUUpQoSwNoC05OTkr/////Sv////9LAHSUYolCwAkAAAAAAIBTwrOchwO1k3Lsq1vo5rLyz7aB2tUG72GhMU2ga7XM2RPmGJ90nHkvyKUbgMR5AUmeD0PkXeAYk5ITVczUSilk0giVvjTQnkRyegPwrb8Kc5t7PulgsQbadQNFC2591hZq6wQ0ZoO38/WlL2nvQmNDtVz3wndSzEZENy0IiW7Qjq53+xi2gE97nvlPMuwS2LmOXoWpGcquPXYtZytCgJ7F7scf9SIBXUvPJA/MGVJkRFeYcJ0K9RIXtela3jvE/0HPOrFftofdM9hYiaqizX97P8mUt2wPQx8xmX0bYJCrtwcdGUzeyPuOugD1z6ka3iX+IAalFvzQduPBTvXKQ9MBWnnfUFetzaqYhTrP0WHhMA/Ht9nWRUX4vUiuWi77gKSTLtizn2cHsqRyJMj43mOVvrbJtm3T5laAgDosou93H+ZNC0HiTVqmVP8Lsv3/JsoIWfaq43/tiUiTGgfVTTF1psbquA6tH5Icya9TC+0oH7X0htvTuZKBVDKM0C+fIAM8l/emTHKVm2ft/85WlYRpZ+XoFwvDLSCusSBQr4f7w/xdYy4GCKdeDDOfezLj5k6WvjminpO26pfQqfP9LJIYOUEgrwmoo5vMHp8a36i8kcQzwqUvi94rCQuS64xYFp7HcUF1aySvLmqGyXEyCeTa2GHwNpeYB9u4jyPRKocxbWSV4hOL16R9fH95KLmFfUaMD8zrZmLG5rLUfzMf1WOxNFwZpzInS+HWE1F4MWg2xcVst8upoi9ssNCNjtPbz1ley6m8DG7YZVNupay35yQ8/PAfu8uKRQsL7B4ArDFquqb66ABeDLPvviZ4c6y9Bi67Xye+uu6eNlYO/Boq5iiETBR9Kemi0T1eFf33JRNzywY9CJ1N9eTOb+3wxY/yK3iXhVISAMufwZby3YMCHwTAVr8o4ahkQaNipnYgwDvQT4XYuqBpmVAsUw41MjHfK43kXZ7UxPi/bB0FEr1H6UYynEiI2V3I7DDEsMFNEMyF3sA+J2YPBAGe9oh5woVr3lu3AeREERRPmD778jQMODrzkRfg4w7Zi1M+ozc9CW5Lim4SEBBFW6Q0ZKHiBgOBwE8pmXhOE1/4b4TsSX1+ZYlw/f1KJ/Doyf4YSKwzVGEdjTldkdS/lbivyQPaNIsxj4ggvb4u1CtbuK3vLbz6wSJwugR9g6TL1kkXqXR9H6xcRrB/5EQf0u+1EnjLN/GvsqKw2mvVrG/Vp7kINdL5dPO44b8Emce+3xqudjVdYf1J2QI56iTowjwYEK2NMLEnklukjknSLQDrqYlpFb0sx8/oKKXf9xVFD243YpO1XejusnBjhcKePsMmaqtTCh8MOXsSTQ+g3vDQeHxgc7LyqE/DtXwAt2Nmft5i2MJAiV1C8dszUjvdG0ItC9AYUxdQInTbakZGpO9lfldZKLOpuBfpMmYjosMX3Bylh5qUHtwPB6V+p2nMdGbKNFshf1v7Di6P/9oNGA/ZKCI4Cr8P/3/RJuAr8TQVDJyWE1UCRsrBeEDEoZzOm8mjDSYUVQC3/l9PkoCyZBMC3ynQWysYwNN+ThHNmCplKb6KFVFLfvVPHe3CkYDWCij8Ah8mHyyUkLeGRHU4YI3ssA8YLBsz2seUpJTi66EmJ9/X3qH2rWQ8yV3r3z0x8otWS8KXuh8JG6s9Rbjpx4koT3nWxAPW/xwrQcrUma4FMJcB6UJQIgU0saTe0xc1Wa64UXejfFvhXhPUgBgh8F3IRUeEghk4T8kRjv11pDDyeNgS1DpjBnqQ0IFh+uOrY6CUhNxF3AOYg0vjaujoedtaAtlDwJ78SI9UG1YfCG8ZQcrUU043NHNeBPXMoSD5YCKB64rhBUjF0hMzhi9TJi+lAm4l37EYPWejsFggpd1XhoOWxGdZIyZL7NPJO8LT5OAEwI2ky90KGNoH9dOsxWybS+A+YJizCfTrsxNhZ+bmgKqqY1yKqhF8UvY7abEVPVUxwoOvEcF0FSFIblSYB6vHzooATK1uwJufo46PxjTZXBXKfNd3RYl8uKh4YxkhIzV6d5Z9NzWZDoKl0PEmpSZTzr8qwEvcFvRLY0CoXKwUlkrEPAt6PzHP7EfwjEQfOWSKI0f7YgirTrrcUDCLrCDp2ByvIOpD6U0PCfz3yfKWtxhKGKAOu2sUE17MrHdmOmQ8Kc9R5AHiElStgJQnLkLLK0L/HVSwHIp7P9pI0RaeVafNh0l/Y+govRh+ZpHcqlfOL1rHcEc+CTVx2aB1WSp68UnQNR1MEVCP+aFoqpxpPSsokuDL/XUCFZbidfv6QB2BHRvWICx4jRNswO2iEG6qpRl+ox9Qqx0jy/Zp5R3T4io6M8EV7tNlELs5RiZ/vz1JFOnD2Cy3i3PHu0tqnwmcW3aR4qGp3e8GCqm+WzG/HQNw8L5uj+oiV0qICfkPtM+N5YvMnWCamTWZUo7JY6/9nOVFN97zISwyxFyB0/Fs67EuOU7CjW4WH02Meg7P/FucjrYjj1nNPn0ZQI20AvvhSqOVGjJdnkQsSOFOf4Xl9h8SRjZOdKyAo7hbBv/EPjVLiYEvstxTIXvrJtXtjHQvpXZAahJ/KEcWoxAmz+Fos89bXyZYlv9QOX3Rk31MTNx1e9myYJ6rMJqALpgMend+in7mcBBKdP8HK3aPvP7pyeX9pmHqgqznGsQya7OksVtc1Wh/2E2ZfkTQNDYzy4Gqp5b3mnrPzJKc7FREA7byhhaxtXJ5ho2VYtms60gxkNGONt5xJLAwuWsGHDiZlWG3gOA5DEjX4/uw8dksx/z1T7ly1/WsPSvUBeDJePM7Eq8LFYyGvPoCHX37NqX9sAinD7RXs+rzk9FA7hR5JyYzA4NHyNw58gu4yajvFeF6Zj8mq06dySURoZqkx4aWSJ5+9CTH0vkRa8ufqy0jjNE/illfH2I7PXsgomYo5UeAIgA6KF5vRvCSM2Qi2V9g7cvN4ss+4EM0sWDu1C7k09bLbxricGwT+CzIS15G8XYQJgUg4mDTp3NzvshbDuj7PVDkA/EuD26/IWeJhY24nKTut+UsKZhyDWA3rnsJZ9/xh8+vS6Qo5qZyj3hfWcV3KujEeJCVFdo/3UM6oy54jWkJqzJFC3SO1tbDF0RXLM/cbNRlcFaprTFcLPB7b1zGDZqLAq64ABV9oIT8+3VwlerzC+WIXzWwwM8xujB3367Ja4TGr977ZbfBZ5XeFWh+iITJKMGsk9ZUlb375ShwlsLSmk3Dma0eS2RmpSTqRW1SBVDgKPi52P9uW5nNypaMi84Ik7nYz7FxBjzTwSLxP+XDBL1OC67NDd7QpHuGm2A1xfX9eEK8C5R0lGKMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVijAZfc2hhcGWUSwGFlHViLg==",
41
+ "dtype": "float32",
42
+ "low": "[-2.]",
43
+ "high": "[2.]",
44
+ "bounded_below": "[ True]",
45
+ "bounded_above": "[ True]",
46
+ "_np_random": "RandomState(MT19937)",
47
+ "_shape": [
48
+ 1
49
+ ]
50
+ },
51
+ "n_envs": 1,
52
+ "num_timesteps": 20000,
53
+ "_total_timesteps": 20000,
54
+ "_num_timesteps_at_start": 0,
55
+ "seed": 0,
56
+ "action_noise": {
57
+ ":type:": "<class 'stable_baselines3.common.noise.NormalActionNoise'>",
58
+ ":serialized:": "gASVBAEAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5ub2lzZZSMEU5vcm1hbEFjdGlvbk5vaXNllJOUKYGUfZQojANfbXWUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5SMBW51bXB5lIwHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsBhZRoCYwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKJQwgAAAAAAAAAAJR0lGKMBl9zaWdtYZRoCGgLSwCFlGgNh5RSlChLAUsBhZRoFYlDCJqZmZmZmbk/lHSUYnViLg==",
59
+ "_mu": "[0.]",
60
+ "_sigma": "[0.1]"
61
+ },
62
+ "start_time": 1614621345.191944,
63
+ "learning_rate": {
64
+ ":type:": "<class 'function'>",
65
+ ":serialized:": "gASV2QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxVL3ZvbHVtZS9VU0VSU1RPUkUvcmFmZl9hbi9wcm9qZWN0cy90b3JjaHktYmFzZWxpbmVzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS3xDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVS92b2x1bWUvVVNFUlNUT1JFL3JhZmZfYW4vcHJvamVjdHMvdG9yY2h5LWJhc2VsaW5lcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP1BiTdLxqfyFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
66
+ },
67
+ "tensorboard_log": null,
68
+ "lr_schedule": {
69
+ ":type:": "<class 'function'>",
70
+ ":serialized:": "gASV2QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxVL3ZvbHVtZS9VU0VSU1RPUkUvcmFmZl9hbi9wcm9qZWN0cy90b3JjaHktYmFzZWxpbmVzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS3xDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVS92b2x1bWUvVVNFUlNUT1JFL3JhZmZfYW4vcHJvamVjdHMvdG9yY2h5LWJhc2VsaW5lcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP1BiTdLxqfyFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
71
+ },
72
+ "_last_obs": null,
73
+ "_last_episode_starts": null,
74
+ "_last_original_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gASVlgAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwFLA4aUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUMMbu9/P0c2uLwPLhW9lHSUYi4="
77
+ },
78
+ "_episode_num": 100,
79
+ "use_sde": false,
80
+ "sde_sample_freq": -1,
81
+ "_current_progress_remaining": 0.0,
82
+ "ep_info_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gASVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMISQ7Y1ST7k8CUhpRSlIwBbJRLyIwBdJRHP7rMC9ytFKF1fZQoaAZoCWgPQwjScqCHui2MwJSGlFKUaBVLyGgWRz/Fc2zfJmuldX2UKGgGaAloD0MIzF1LyCf5jcCUhpRSlGgVS8hoFkc/zZBsyi22HHV9lChoBmgJaA9DCPWEJR5gBJnAlIaUUpRoFUvIaBZHP9K2phnanJl1fZQoaAZoCWgPQwjLEMe6+B6KwJSGlFKUaBVLyGgWRz/WphWo3rD7dX2UKGgGaAloD0MIXfsCelHEkMCUhpRSlGgVS8hoFkc/2pCfHxSYPXV9lChoBmgJaA9DCDLlQ1CVZo/AlIaUUpRoFUvIaBZHP956po9LYf51fZQoaAZoCWgPQwi3RgTjwLCOwJSGlFKUaBVLyGgWRz/hMkyDZlFudX2UKGgGaAloD0MI1Ce5w1YgmcCUhpRSlGgVS8hoFkc/4yW7e2uxKXV9lChoBmgJaA9DCBrBxvUPf43AlIaUUpRoFUvIaBZHP+UU4aP0Zm91fZQoaAZoCWgPQwiARunSfzSOwJSGlFKUaBVLyGgWRz/nB4t6HCXQdX2UKGgGaAloD0MIFsJqLCELjMCUhpRSlGgVS8hoFkc/6P5xiobXH3V9lChoBmgJaA9DCLUX0XaMZo3AlIaUUpRoFUvIaBZHP+rv73wkPc11fZQoaAZoCWgPQwhszOuIQxuQwJSGlFKUaBVLyGgWRz/s3yI55qubdX2UKGgGaAloD0MIqN+FrUlKk8CUhpRSlGgVS8hoFkc/7s9fTkQwsXV9lChoBmgJaA9DCBqIZTM3DpXAlIaUUpRoFUvIaBZHP/Bfp2U0Nz91fZQoaAZoCWgPQwj4+8VsSWyPwJSGlFKUaBVLyGgWRz/xWKqGUOd5dX2UKGgGaAloD0MI499nXGgcm8CUhpRSlGgVS8hoFkc/8lDtw71ZknV9lChoBmgJaA9DCNJvXweOhYvAlIaUUpRoFUvIaBZHP/NJSR8twrF1fZQoaAZoCWgPQwindRvUzv6WwJSGlFKUaBVLyGgWRz/0QTh5xBE8dX2UKGgGaAloD0MIDoKOVnUSkMCUhpRSlGgVS8hoFkc/9ToSteUpu3V9lChoBmgJaA9DCH9PrFOFzJTAlIaUUpRoFUvIaBZHP/YxJ/XoTwl1fZQoaAZoCWgPQwhb0eY4B6CUwJSGlFKUaBVLyGgWRz/3KfOD8LrpdX2UKGgGaAloD0MIC7WmebfDmcCUhpRSlGgVS8hoFkc/+CHUMG5c1XV9lChoBmgJaA9DCORO6WANjpDAlIaUUpRoFUvIaBZHP/ka+evpyIZ1fZQoaAZoCWgPQwjRBmAD4gOSwJSGlFKUaBVLyGgWRz/6EwrUb1h9dX2UKGgGaAloD0MIsHH9u54ajsCUhpRSlGgVS8hoFkc/+xeruIAOrnV9lChoBmgJaA9DCFD7rZ0Ig4nAlIaUUpRoFUvIaBZHP/wRJ2+wkgR1fZQoaAZoCWgPQwilLhnHyGKOwJSGlFKUaBVLyGgWRz/9Cyt3fQ8fdX2UKGgGaAloD0MI+yKhLcdOjsCUhpRSlGgVS8hoFkc//gKjSG8Em3V9lChoBmgJaA9DCIlEoWW9fJjAlIaUUpRoFUvIaBZHP/74ubqhUR51fZQoaAZoCWgPQwh0Quigq4mQwJSGlFKUaBVLyGgWRz//7jtG/etTdX2UKGgGaAloD0MIsKw0KcUDkMCUhpRSlGgVS8hoFkdAAHN6gM+eOHV9lChoBmgJaA9DCGuduBw/j5TAlIaUUpRoFUvIaBZHQADv0h/y5I91fZQoaAZoCWgPQwiJCWr4ps+UwJSGlFKUaBVLyGgWR0ABbMs6JZW8dX2UKGgGaAloD0MIl8RZEQXckMCUhpRSlGgVS8hoFkdAAeiKziS7oXV9lChoBmgJaA9DCCCWzRzSqY/AlIaUUpRoFUvIaBZHQAJk3CKrJbN1fZQoaAZoCWgPQwjooiHjUSqbwJSGlFKUaBVLyGgWR0AC4ZydWhh6dX2UKGgGaAloD0MI5nlwdzYci8CUhpRSlGgVS8hoFkdAA12ys0YTCnV9lChoBmgJaA9DCGeeXFNgO5HAlIaUUpRoFUvIaBZHQAPZTqB3A211fZQoaAZoCWgPQwhw7URJCG6NwJSGlFKUaBVLyGgWR0AEVd3Sro4ddX2UKGgGaAloD0MI6Nms+hw+jsCUhpRSlGgVS8hoFkdABNmr8zhxYXV9lChoBmgJaA9DCBnJHqFmjJXAlIaUUpRoFUvIaBZHQAVubRWtEG91fZQoaAZoCWgPQwj2RNeF/wyOwJSGlFKUaBVLyGgWR0AGAWP91loUdX2UKGgGaAloD0MIZ9Km6p65j8CUhpRSlGgVS8hoFkdABpKyOaOPvXV9lChoBmgJaA9DCGU3M/ohopPAlIaUUpRoFUvIaBZHQAcOEmICU5d1fZQoaAZoCWgPQwhUG5yIfnuYwJSGlFKUaBVLyGgWR0AHiiGnGbTddX2UKGgGaAloD0MI7Sk5J4ZhlsCUhpRSlGgVS8hoFkdACAWrwOOKfnV9lChoBmgJaA9DCCTwh58/YpjAlIaUUpRoFUvIaBZHQAiBqKxcE/11fZQoaAZoCWgPQwh40VeQhl2LwJSGlFKUaBVLyGgWR0AI/WpZOi35dX2UKGgGaAloD0MInFHzVeKfl8CUhpRSlGgVS8hoFkdAEOXMQmNR33V9lChoBmgJaA9DCBTq6SOg4ZzAlIaUUpRoFUvIaBZHQBjuHnEETxp1fZQoaAZoCWgPQwi0HVN39bCawJSGlFKUaBVLyGgWR0AgexxDLKV6dX2UKGgGaAloD0MIkdCWc+kvmcCUhpRSlGgVS8hoFkdAJHVTaTOgQHV9lChoBmgJaA9DCMQ/bOnBH5XAlIaUUpRoFUvIaBZHQCitBQemvW91fZQoaAZoCWgPQwifkQiNwK2XwJSGlFKUaBVLyGgWR0AtD7MxGlQ/dX2UKGgGaAloD0MIZVWEmzznl8CUhpRSlGgVS8hoFkdAMLWg3974SHV9lChoBmgJaA9DCHgLJCj+h5fAlIaUUpRoFUvIaBZHQDL4RVZLZjB1fZQoaAZoCWgPQwi+3CdHEQmYwJSGlFKUaBVLyGgWR0A1amb9ZRsNdX2UKGgGaAloD0MI3bbvUX+cl8CUhpRSlGgVS8hoFkdAN6EIsyzolnV9lChoBmgJaA9DCKBQTx+BDZPAlIaUUpRoFUvIaBZHQDnS1Aqur6t1fZQoaAZoCWgPQwho5zQLdOGTwJSGlFKUaBVLyGgWR0A8BH+IdlundX2UKGgGaAloD0MIPusaLZdFksCUhpRSlGgVS8hoFkdAPjtd3Sro4nV9lChoBmgJaA9DCKbydoQztpHAlIaUUpRoFUvIaBZHQEBD8+iaiK11fZQoaAZoCWgPQwhJZYo5OL6XwJSGlFKUaBVLyGgWR0BBaHBciW3SdX2UKGgGaAloD0MIbmk1JG6jkMCUhpRSlGgVS8hoFkdAQpAs/Y8MeHV9lChoBmgJaA9DCMLZrWVy/IzAlIaUUpRoFUvIaBZHQEOsvmHP/rB1fZQoaAZoCWgPQwhaYmU0UpeNwJSGlFKUaBVLyGgWR0BE4RRVIZqEdX2UKGgGaAloD0MIKII4D+dHkMCUhpRSlGgVS8hoFkdARgMz67/XG3V9lChoBmgJaA9DCLX5f9UxJInAlIaUUpRoFUvIaBZHQEcghM8HObB1fZQoaAZoCWgPQwgZARWOgLKHwJSGlFKUaBVLyGgWR0BIP1p0wJw9dX2UKGgGaAloD0MIdm7ajJPWicCUhpRSlGgVS8hoFkdASVwy44Ia+HV9lChoBmgJaA9DCBAiGXJs1XbAlIaUUpRoFUvIaBZHQEp3FwT/Q0J1fZQoaAZoCWgPQwjwF7MlK8t4wJSGlFKUaBVLyGgWR0BLk45cTrVwdX2UKGgGaAloD0MIy0xp/e2ncMCUhpRSlGgVS8hoFkdATK9pXZGrj3V9lChoBmgJaA9DCDP9EvFW/WHAlIaUUpRoFUvIaBZHQE3OjM3ZPEd1fZQoaAZoCWgPQwhzTBb3nwyAwJSGlFKUaBVLyGgWR0BO7pg1FYuCdX2UKGgGaAloD0MIyERKs3lfYcCUhpRSlGgVS8hoFkdAUAW+nIhhY3V9lChoBmgJaA9DCAk3GVUGmnDAlIaUUpRoFUvIaBZHQFCUVPva11J1fZQoaAZoCWgPQwiCVIodTax3wJSGlFKUaBVLyGgWR0BRI0t7KJVKdX2UKGgGaAloD0MIJlEv+LRyYcCUhpRSlGgVS8hoFkdAUbDkmx+rl3V9lChoBmgJaA9DCNYe9kKBPmDAlIaUUpRoFUvIaBZHQFI+ay8jAzp1fZQoaAZoCWgPQwh9JZASu5YAwJSGlFKUaBVLyGgWR0BSzwJLM9r5dX2UKGgGaAloD0MIxy5RvTWw0L+UhpRSlGgVS8hoFkdAU14uPFNtZXV9lChoBmgJaA9DCLDL8J/uRWDAlIaUUpRoFUvIaBZHQFPtQ+EAYHh1fZQoaAZoCWgPQwiy9QzhmOXgv5SGlFKUaBVLyGgWR0BUfFc+qzZ6dX2UKGgGaAloD0MIYKsEi8OqX8CUhpRSlGgVS8hoFkdAVQrLV4HHFXV9lChoBmgJaA9DCH2zzY3pdF/AlIaUUpRoFUvIaBZHQFWZNFjNILB1fZQoaAZoCWgPQwg74pANJIdtwJSGlFKUaBVLyGgWR0BWKRXjlxOtdX2UKGgGaAloD0MIxedOsP8RYMCUhpRSlGgVS8hoFkdAVrdVktmL+HV9lChoBmgJaA9DCMe7I2O1hl/AlIaUUpRoFUvIaBZHQFdFXnhbW3B1fZQoaAZoCWgPQwgj+UogJTdgwJSGlFKUaBVLyGgWR0BX06ClJpWWdX2UKGgGaAloD0MIdLSqJR1PXsCUhpRSlGgVS8hoFkdAWGGoXKr7wnV9lChoBmgJaA9DCA2MvKwJEGDAlIaUUpRoFUvIaBZHQFjwnF5v9+B1fZQoaAZoCWgPQwh6qG3DqG1twJSGlFKUaBVLyGgWR0BZfxrrPdEcdX2UKGgGaAloD0MITUpBt5cydsCUhpRSlGgVS8hoFkdAWg4dp7CzknV9lChoBmgJaA9DCPbOaKuSwF7AlIaUUpRoFUvIaBZHQFqb5jYqXnh1fZQoaAZoCWgPQwivtfepqrduwJSGlFKUaBVLyGgWR0BbKc1O0svqdX2UKGgGaAloD0MIcEIhAg6hX8CUhpRSlGgVS8hoFkdAW7iBiCrcTXV9lChoBmgJaA9DCKX4+IRsU27AlIaUUpRoFUvIaBZHQFxHrpJPIn11ZS4="
85
+ },
86
+ "ep_success_buffer": {
87
+ ":type:": "<class 'collections.deque'>",
88
+ ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
89
+ },
90
+ "_n_updates": 10000,
91
+ "buffer_size": 1,
92
+ "batch_size": 100,
93
+ "learning_starts": 10000,
94
+ "tau": 0.005,
95
+ "gamma": 0.98,
96
+ "gradient_steps": -1,
97
+ "optimize_memory_usage": false,
98
+ "replay_buffer_class": {
99
+ ":type:": "<class 'abc.ABCMeta'>",
100
+ ":serialized:": "gASVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
101
+ "__module__": "stable_baselines3.common.buffers",
102
+ "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
103
+ "__init__": "<function ReplayBuffer.__init__ at 0x7fd683e5db90>",
104
+ "add": "<function ReplayBuffer.add at 0x7fd683e5dc20>",
105
+ "sample": "<function ReplayBuffer.sample at 0x7fd6839c47a0>",
106
+ "_get_samples": "<function ReplayBuffer._get_samples at 0x7fd6839c4830>",
107
+ "__abstractmethods__": "frozenset()",
108
+ "_abc_impl": "<_abc_data object at 0x7fd683eb55d0>"
109
+ },
110
+ "replay_buffer_kwargs": {},
111
+ "train_freq": {
112
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
113
+ ":serialized:": "gASVZAAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMB2VwaXNvZGWUhZRSlIaUgZQu"
114
+ },
115
+ "use_sde_at_warmup": false,
116
+ "policy_delay": 2,
117
+ "target_noise_clip": 0.5,
118
+ "target_policy_noise": 0.2,
119
+ "_last_dones": {
120
+ ":type:": "<class 'numpy.ndarray'>",
121
+ ":serialized:": "gASViQAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwGFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAQCUdJRiLg=="
122
+ },
123
+ "remove_time_limit_termination": false
124
+ }
td3-Pendulum-v1/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e8793693a0db571c5f9ee5df192ea18d4e6aee70989e5a0e26a91b1a3d9df592
3
+ size 2951289
td3-Pendulum-v1/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
td3-Pendulum-v1/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.13.0-44-generic-x86_64-with-debian-bullseye-sid #49~20.04.1-Ubuntu SMP Wed May 18 18:44:28 UTC 2022
2
+ Python: 3.7.10
3
+ Stable-Baselines3: 1.5.1a8
4
+ PyTorch: 1.11.0
5
+ GPU Enabled: True
6
+ Numpy: 1.21.2
7
+ Gym: 0.21.0
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:668860a76a08a8f769fd2f754d68dcb141774a52a3d4b8db20609a0d470d2c52
3
+ size 4072