araffin commited on
Commit
95667b4
1 Parent(s): fd0a8fa

Initial commit

Browse files
.gitattributes CHANGED
@@ -25,3 +25,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
29
+ vec_normalize.pkl filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - Walker2DBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 2120.20 +/- 6.34
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: Walker2DBulletEnv-v0
20
+ type: Walker2DBulletEnv-v0
21
+ ---
22
+
23
+ # **PPO** Agent playing **Walker2DBulletEnv-v0**
24
+ This is a trained model of a **PPO** agent playing **Walker2DBulletEnv-v0**
25
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
26
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
27
+
28
+ The RL Zoo is a training framework for Stable Baselines3
29
+ reinforcement learning agents,
30
+ with hyperparameter optimization and pre-trained agents included.
31
+
32
+ ## Usage (with SB3 RL Zoo)
33
+
34
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
35
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
36
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
37
+
38
+ ```
39
+ # Download model and save it into the logs/ folder
40
+ python -m utils.load_from_hub --algo ppo --env Walker2DBulletEnv-v0 -orga sb3 -f logs/
41
+ python enjoy.py --algo ppo --env Walker2DBulletEnv-v0 -f logs/
42
+ ```
43
+
44
+ ## Training (with the RL Zoo)
45
+ ```
46
+ python train.py --algo ppo --env Walker2DBulletEnv-v0 -f logs/
47
+ # Upload the model and generate video (when possible)
48
+ python -m utils.push_to_hub --algo ppo --env Walker2DBulletEnv-v0 -f logs/ -orga sb3
49
+ ```
50
+
51
+ ## Hyperparameters
52
+ ```python
53
+ OrderedDict([('batch_size', 128),
54
+ ('clip_range', 'lin_0.4'),
55
+ ('ent_coef', 0.0),
56
+ ('env_wrapper', 'sb3_contrib.common.wrappers.TimeFeatureWrapper'),
57
+ ('gae_lambda', 0.92),
58
+ ('gamma', 0.99),
59
+ ('learning_rate', 3e-05),
60
+ ('max_grad_norm', 0.5),
61
+ ('n_envs', 16),
62
+ ('n_epochs', 20),
63
+ ('n_steps', 512),
64
+ ('n_timesteps', 2000000.0),
65
+ ('normalize', True),
66
+ ('policy', 'MlpPolicy'),
67
+ ('policy_kwargs',
68
+ 'dict(log_std_init=-2, ortho_init=False, activation_fn=nn.ReLU, '
69
+ 'net_arch=[dict(pi=[256, 256], vf=[256, 256])] )'),
70
+ ('sde_sample_freq', 4),
71
+ ('use_sde', True),
72
+ ('vf_coef', 0.5),
73
+ ('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})])
74
+ ```
args.yml ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - ppo
4
+ - - env
5
+ - Walker2DBulletEnv-v0
6
+ - - env_kwargs
7
+ - null
8
+ - - eval_episodes
9
+ - 10
10
+ - - eval_freq
11
+ - 10000
12
+ - - gym_packages
13
+ - []
14
+ - - hyperparams
15
+ - null
16
+ - - log_folder
17
+ - rl-trained-agents/
18
+ - - log_interval
19
+ - -1
20
+ - - n_evaluations
21
+ - 20
22
+ - - n_jobs
23
+ - 1
24
+ - - n_startup_trials
25
+ - 10
26
+ - - n_timesteps
27
+ - -1
28
+ - - n_trials
29
+ - 10
30
+ - - num_threads
31
+ - -1
32
+ - - optimize_hyperparameters
33
+ - false
34
+ - - pruner
35
+ - median
36
+ - - sampler
37
+ - tpe
38
+ - - save_freq
39
+ - -1
40
+ - - save_replay_buffer
41
+ - false
42
+ - - seed
43
+ - 4258832375
44
+ - - storage
45
+ - null
46
+ - - study_name
47
+ - null
48
+ - - tensorboard_log
49
+ - ''
50
+ - - trained_agent
51
+ - ''
52
+ - - truncate_last_trajectory
53
+ - true
54
+ - - uuid
55
+ - true
56
+ - - vec_env
57
+ - dummy
58
+ - - verbose
59
+ - 1
config.yml ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - batch_size
3
+ - 128
4
+ - - clip_range
5
+ - lin_0.4
6
+ - - ent_coef
7
+ - 0.0
8
+ - - env_wrapper
9
+ - sb3_contrib.common.wrappers.TimeFeatureWrapper
10
+ - - gae_lambda
11
+ - 0.92
12
+ - - gamma
13
+ - 0.99
14
+ - - learning_rate
15
+ - 3.0e-05
16
+ - - max_grad_norm
17
+ - 0.5
18
+ - - n_envs
19
+ - 16
20
+ - - n_epochs
21
+ - 20
22
+ - - n_steps
23
+ - 512
24
+ - - n_timesteps
25
+ - 2000000.0
26
+ - - normalize
27
+ - true
28
+ - - policy
29
+ - MlpPolicy
30
+ - - policy_kwargs
31
+ - dict(log_std_init=-2, ortho_init=False, activation_fn=nn.ReLU, net_arch=[dict(pi=[256,
32
+ 256], vf=[256, 256])] )
33
+ - - sde_sample_freq
34
+ - 4
35
+ - - use_sde
36
+ - true
37
+ - - vf_coef
38
+ - 0.5
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
ppo-Walker2DBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b6af5caea6ad924381142e58dd9d0587f042a73a6b8f288f44d6b9e7360e9991
3
+ size 1800681
ppo-Walker2DBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.1a8
ppo-Walker2DBulletEnv-v0/data ADDED
@@ -0,0 +1,121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f96d85d7950>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f96d85d79e0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f96d85d7a70>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f96d85d7b00>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f96d85d7b90>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f96d85d7c20>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f96d85d7cb0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f96d85d7d40>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f96d85d7dd0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f96d85d7e60>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f96d85d7ef0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f96d8629840>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {
23
+ ":type:": "<class 'dict'>",
24
+ ":serialized:": "gASVjgAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA1hY3RpdmF0aW9uX2ZulIwbdG9yY2gubm4ubW9kdWxlcy5hY3RpdmF0aW9ulIwEUmVMVZSTlIwIbmV0X2FyY2iUXZR9lCiMAnBplF2UKE0AAU0AAWWMAnZmlF2UKE0AAU0AAWV1YXUu",
25
+ "log_std_init": -2,
26
+ "ortho_init": false,
27
+ "activation_fn": "<class 'torch.nn.modules.activation.ReLU'>",
28
+ "net_arch": [
29
+ {
30
+ "pi": [
31
+ 256,
32
+ 256
33
+ ],
34
+ "vf": [
35
+ 256,
36
+ 256
37
+ ]
38
+ }
39
+ ]
40
+ },
41
+ "observation_space": {
42
+ ":type:": "<class 'gym.spaces.box.Box'>",
43
+ ":serialized:": "gASVXwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxeFlGgLiUNcAACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAAACUdJRijARoaWdolGgRaBNLAIWUaBWHlFKUKEsBSxeFlGgLiUNcAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgD+UdJRijA1ib3VuZGVkX2JlbG93lGgRaBNLAIWUaBWHlFKUKEsBSxeFlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGUdJRijA1ib3VuZGVkX2Fib3ZllGgRaBNLAIWUaBWHlFKUKEsBSxeFlGgpiUMXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGUdJRijApfbnBfcmFuZG9tlE6MBl9zaGFwZZRLF4WUdWIu",
44
+ "dtype": "float32",
45
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf 0.]",
46
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf 1.]",
47
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False True]",
48
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False True]",
49
+ "_np_random": null,
50
+ "_shape": [
51
+ 23
52
+ ]
53
+ },
54
+ "action_space": {
55
+ ":type:": "<class 'gym.spaces.box.Box'>",
56
+ ":serialized:": "gASVRQwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwaFlGgLiUMYAACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEWgTSwCFlGgVh5RSlChLAUsGhZRoC4lDGAAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5R0lGKMDWJvdW5kZWRfYmVsb3eUaBFoE0sAhZRoFYeUUpQoSwFLBoWUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQwYBAQEBAQGUdJRijA1ib3VuZGVkX2Fib3ZllGgRaBNLAIWUaBWHlFKUKEsBSwaFlGgpiUMGAQEBAQEBlHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaDmMBXN0YXRllH2UKIwDa2V5lGgRaBNLAIWUaBWHlFKUKEsBTXAChZRoCIwCdTSUiYiHlFKUKEsDaAxOTk5K/////0r/////SwB0lGKJQsAJAAAAAACAU8KznIcDtZNy7Ktb6Oay8s+2gdrVBu9hoTFNoGu1zNkT5hifdJx5L8ilG4DEeQFJng9D5F3gGJOSE1XM1EopZNIIlb400J5EcnoD8K2/CnObez7pYLEG2nUDRQtufdYWausENGaDt/P1pS9p70JjQ7Vc98J3UsxGRDctCIlu0I6ud/sYtoBPe575TzLsEti5jl6FqRnKrj12LWcrQoCexe7HH/UiAV1LzyQPzBlSZERXmHCdCvUSF7XpWt47xP9BzzqxX7aH3TPYWImqos1/ez/JlLdsD0MfMZl9G2CQq7cHHRlM3sj7jroA9c+pGt4l/iAGpRb80HbjwU71ykPTAVp531BXrc2qmIU6z9Fh4TAPx7fZ1kVF+L1Irlou+4Ckky7Ys59nB7KkciTI+N5jlb62ybZt0+ZWgIA6LKLvdx/mTQtB4k1aplT/C7L9/ybKCFn2quN/7YlIkxoH1U0xdabG6rgOrR+SHMmvUwvtKB+19Ibb07mSgVQyjNAvnyADPJf3pkxylZtn7f/OVpWEaWfl6BcLwy0grrEgUK+H+8P8XWMuBginXgwzn3sy4+ZOlr45op6TtuqX0Knz/SySGDlBIK8JqKObzB6fGt+ovJHEM8KlL4veKwkLkuuMWBaex3FBdWskry5qhslxMgnk2thh8DaXmAfbuI8j0SqHMW1kleITi9ekfXx/eSi5hX1GjA/M62Zixuay1H8zH9VjsTRcGacyJ0vh1hNReDFoNsXFbLfLqaIvbLDQjY7T289ZXsupvAxu2GVTbqWst+ckPPzwH7vLikULC+weAKwxarqm+ugAXgyz774meHOsvQYuu18nvrrunjZWDvwaKuYohEwUfSnpotE9XhX99yUTc8sGPQidTfXkzm/t8MWP8it4l4VSEgDLn8GW8t2DAh8EwFa/KOGoZEGjYqZ2IMA70E+F2LqgaZlQLFMONTIx3yuN5F2e1MT4v2wdBRK9R+lGMpxIiNldyOwwxLDBTRDMhd7APidmDwQBnvaIecKFa95btwHkRBEUT5g++/I0DDg685EX4OMO2YtTPqM3PQluS4puEhAQRVukNGSh4gYDgcBPKZl4ThNf+G+E7El9fmWJcP39Sifw6Mn+GEisM1RhHY05XZHUv5W4r8kD2jSLMY+IIL2+LtQrW7it7y28+sEicLoEfYOky9ZJF6l0fR+sXEawf+REH9LvtRJ4yzfxr7KisNpr1axv1ae5CDXS+XTzuOG/BJnHvt8arnY1XWH9SdkCOeok6MI8GBCtjTCxJ5JbpI5J0i0A66mJaRW9LMfP6Cil3/cVRQ9uN2KTtV3o7rJwY4XCnj7DJmqrUwofDDl7Ek0PoN7w0Hh8YHOy8qhPw7V8ALdjZn7eYtjCQIldQvHbM1I73RtCLQvQGFMXUCJ022pGRqTvZX5XWSizqbgX6TJmI6LDF9wcpYealB7cDwelfqdpzHRmyjRbIX9b+w4uj//aDRgP2SgiOAq/D/9/0SbgK/E0FQyclhNVAkbKwXhAxKGczpvJow0mFFUAt/5fT5KAsmQTAt8p0FsrGMDTfk4RzZgqZSm+ihVRS371Tx3twpGA1goo/AIfJh8slJC3hkR1OGCN7LAPGCwbM9rHlKSU4uuhJiff196h9q1kPMld6989MfKLVkvCl7ofCRurPUW46ceJKE951sQD1v8cK0HK1JmuBTCXAelCUCIFNLGk3tMXNVmuuFF3o3xb4V4T1IAYIfBdyEVHhIIZOE/JEY79daQw8njYEtQ6YwZ6kNCBYfrjq2OglITcRdwDmINL42ro6HnbWgLZQ8Ce/EiPVBtWHwhvGUHK1FNONzRzXgT1zKEg+WAigeuK4QVIxdITM4YvUyYvpQJuJd+xGD1no7BYIKXdV4aDlsRnWSMmS+zTyTvC0+TgBMCNpMvdChjaB/XTrMVsm0vgPmCYswn067MTYWfm5oCqqmNciqoRfFL2O2mxFT1VMcKDrxHBdBUhSG5UmAerx86KAEytbsCbn6OOj8Y02VwVynzXd0WJfLioeGMZISM1eneWfTc1mQ6CpdDxJqUmU86/KsBL3Bb0S2NAqFysFJZKxDwLej8xz+xH8IxEHzlkiiNH+2IIq0663FAwi6wg6dgcryDqQ+lNDwn898nylrcYShigDrtrFBNezKx3ZjpkPCnPUeQB4hJUrYCUJy5CyytC/x1UsByKez/aSNEWnlWnzYdJf2PoKL0YfmaR3KpXzi9ax3BHPgk1cdmgdVkqevFJ0DUdTBFQj/mhaKqcaT0rKJLgy/11AhWW4nX7+kAdgR0b1iAseI0TbMDtohBuqqUZfqMfUKsdI8v2aeUd0+IqOjPBFe7TZRC7OUYmf789SRTpw9gst4tzx7tLap8JnFt2keKhqd3vBgqpvlsxvx0DcPC+bo/qIldKiAn5D7TPjeWLzJ1gmpk1mVKOyWOv/ZzlRTfe8yEsMsRcgdPxbOuxLjlOwo1uFh9NjHoOz/xbnI62I49ZzT59GUCNtAL74UqjlRoyXZ5ELEjhTn+F5fYfEkY2TnSsgKO4Wwb/xD41S4mBL7LcUyF76ybV7Yx0L6V2QGoSfyhHFqMQJs/haLPPW18mWJb/UDl90ZN9TEzcdXvZsmCeqzCagC6YDHp3fop+5nAQSnT/Byt2j7z+6cnl/aZh6oKs5xrEMmuzpLFbXNVof9hNmX5E0DQ2M8uBqqeW95p6z8ySnOxURAO28oYWsbVyeYaNlWLZrOtIMZDRjjbecSSwMLlrBhw4mZVht4DgOQxI1+P7sPHZLMf89U+5ctf1rD0r1AXgyXjzOxKvCxWMhrz6Ah19+zal/bAIpw+0V7Pq85PRQO4UeScmMwODR8jcOfILuMmo7xXhemY/JqtOncklEaGapMeGlkiefvQkx9L5EWvLn6stI4zRP4pZXx9iOz17IKJmKOVHgCIAOiheb0bwkjNkItlfYO3LzeLLPuBDNLFg7tQu5NPWy28a4nBsE/gsyEteRvF2ECYFIOJg06dzc77IWw7o+z1Q5APxLg9uvyFniYWNuJyk7rflLCmYcg1gN657CWff8YfPr0ukKOamco94X1nFdyroxHiQlRXaP91DOqMueI1pCasyRQt0jtbWwxdEVyzP3GzUZXBWqa0xXCzwe29cxg2aiwKuuAAVfaCE/Pt1cJXq8wvliF81sMDPMbowd9+uyWuExq/e+2W3wWeV3hVofoiEySjBrJPWVJW9++UocJbC0ppNw5mtHktkZqUk6kVtUgVQ4Cj4udj/bluZzcqWjIvOCJO52M+xcQY808Ei8T/lwwS9TguuzQ3e0KR7hptgNcX1/XhCvAuUdJRijANwb3OUTXACdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YowGX3NoYXBllEsGhZR1Yi4=",
57
+ "dtype": "float32",
58
+ "low": "[-1. -1. -1. -1. -1. -1.]",
59
+ "high": "[1. 1. 1. 1. 1. 1.]",
60
+ "bounded_below": "[ True True True True True True]",
61
+ "bounded_above": "[ True True True True True True]",
62
+ "_np_random": "RandomState(MT19937)",
63
+ "_shape": [
64
+ 6
65
+ ]
66
+ },
67
+ "n_envs": 16,
68
+ "num_timesteps": 2007040,
69
+ "_total_timesteps": 2000000,
70
+ "_num_timesteps_at_start": 0,
71
+ "seed": 0,
72
+ "action_noise": null,
73
+ "start_time": 1614621250.5323632,
74
+ "learning_rate": {
75
+ ":type:": "<class 'function'>",
76
+ ":serialized:": "gASV2QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxVL3ZvbHVtZS9VU0VSU1RPUkUvcmFmZl9hbi9wcm9qZWN0cy90b3JjaHktYmFzZWxpbmVzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS3xDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVS92b2x1bWUvVVNFUlNUT1JFL3JhZmZfYW4vcHJvamVjdHMvdG9yY2h5LWJhc2VsaW5lcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPv91EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
77
+ },
78
+ "tensorboard_log": null,
79
+ "lr_schedule": {
80
+ ":type:": "<class 'function'>",
81
+ ":serialized:": "gASV2QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxVL3ZvbHVtZS9VU0VSU1RPUkUvcmFmZl9hbi9wcm9qZWN0cy90b3JjaHktYmFzZWxpbmVzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS3xDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVS92b2x1bWUvVVNFUlNUT1JFL3JhZmZfYW4vcHJvamVjdHMvdG9yY2h5LWJhc2VsaW5lcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPv91EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
82
+ },
83
+ "_last_obs": null,
84
+ "_last_episode_starts": null,
85
+ "_last_original_obs": {
86
+ ":type:": "<class 'numpy.ndarray'>",
87
+ ":serialized:": "gASVTQYAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLF4aUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULABQAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAn7Gw/AAAAAC0egj8AAAAAO4fBvQAAAAAA5IE/AAAAABnkdD8AAAAA94lCPAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJPghj8AAAAAd9OHPwAAAACcSjy9AAAAAEG/cT8AAAAAU/p+PwAAAABJ/VO9AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAZ1CCPwAAAACWxno/AAAAAKqixT0AAAAAOpiEPwAAAABCl24/AAAAAHcXMjwAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIB4cHY/AAAAAM3DbT8AAAAAs7yLvQAAAAApEXI/AAAAAD1agz8AAAAALRjsPQAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgIDEdD8AAAAAnZSDPwAAAAAUbXQ9AAAAAG+xdj8AAAAA4ux6PwAAAAC8F2y9AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACA/omEPwAAAAANoW0/AAAAACpIaj0AAAAAggmAPwAAAACU7Hw/AAAAAFln3r0AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIB1Y4I/AAAAAL/Ghj8AAAAAk9F+PQAAAACEf4I/AAAAAC/Cez8AAAAAlBGLPQAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgF81hT8AAAAA/PqEPwAAAACQfnY9AAAAABp9hD8AAAAAHBlwPwAAAACsTNc9AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAx/V3PwAAAAAAUG8/AAAAANE20j0AAAAAB+1xPwAAAADtoIU/AAAAAKOKaLkAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBxqX4/AAAAADOAgT8AAAAAtgA5uwAAAACT5XA/AAAAAGmRbT8AAAAAEcPSOgAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgHMshT8AAAAAzcp2PwAAAAC2kq29AAAAAGKYbT8AAAAAo7qDPwAAAAClH/i9AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAO193PwAAAAD5G4Y/AAAAAOAdPT0AAAAA5PN5PwAAAABOvnQ/AAAAAMDB5T0AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICLr4I/AAAAAMZ6cz8AAAAAcP/LvQAAAAAIc4I/AAAAAHXlgz8AAAAARzFrPQAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgELfhz8AAAAATRuDPwAAAACdDrS9AAAAANHbdz8AAAAAzZGIPwAAAACMFtA8AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACA/IuCPwAAAADi0nY/AAAAAO571bwAAAAAjXN0PwAAAABF3H8/AAAAAP0FtbsAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDpLIQ/AAAAACXAiT8AAAAAjxhUvQAAAABCGns/AAAAAET2gj8AAAAAQET2PAAAAAAAAAAAAAAAAAAAgD+UdJRiLg=="
88
+ },
89
+ "_episode_num": 0,
90
+ "use_sde": true,
91
+ "sde_sample_freq": 4,
92
+ "_current_progress_remaining": -0.0035199999999999676,
93
+ "ep_info_buffer": {
94
+ ":type:": "<class 'collections.deque'>",
95
+ ":serialized:": "gASVOgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ1OAw8GLUGMAWyUTegDjAF0lEdA0iYnkOZssXV9lChoBkdAnl0HSOR1YGgHTegDaAhHQNIuZOD8Lrp1fZQoaAZHQJ3iPQyAQQNoB03oA2gIR0DSLqInSfDldX2UKGgGR0CedjnxJ/XoaAdN6ANoCEdA0i79at9x63V9lChoBkdAjw+aOxSpBGgHTT4CaAhHQNIvICBGx2V1fZQoaAZHQJ34TluFYdRoB03UA2gIR0DSL4Jkc0cfdX2UKGgGR0CePuTkhib2aAdN6ANoCEdA0jDynzQNTnV9lChoBkdAecoSIgvDg2gHTQ8BaAhHQNIw+aFEiMZ1fZQoaAZHQJ7phkiD/VBoB03oA2gIR0DSO+zu4PPLdX2UKGgGR0CfN3rNGEwnaAdN6ANoCEdA0kTF7PIGQnV9lChoBkdAgiDLnLaEjGgHTVABaAhHQNJFcRS9/SZ1fZQoaAZHQJmzkhKUVzpoB01lA2gIR0DSRqzm4iHJdX2UKGgGR0CejDbBGhEjaAdN6ANoCEdA0kbC0o0ALnV9lChoBkdAm70PSMLncWgHTZkDaAhHQNJG+wf2bod1fZQoaAZHQJ5C+VmjCYVoB03oA2gIR0DSRy81EVnFdX2UKGgGR0CexOYLsruqaAdN6ANoCEdA0kcvVMEidXV9lChoBkdAnxi9kvsZ52gHTegDaAhHQNJHPagh8pl1fZQoaAZHQJs7O4FzMidoB02JA2gIR0DSR4yqPwNLdX2UKGgGR0CYefyRjjJdaAdNPQNoCEdA0khU4/eLvXV9lChoBkdAdX5GSZBsymgHS85oCEdA0lIwVf/m1nV9lChoBkdAnhZIGyHEdmgHTegDaAhHQNJSRob83uN1fZQoaAZHQJ9oTpcHGCJoB03oA2gIR0DSWrjZ8KG+dX2UKGgGR0Cd74blzU7TaAdN6ANoCEdA0lsTjDsMRnV9lChoBkdAgCh2/JvHcWgHTUUBaAhHQNJbi81n/T91fZQoaAZHQJ4RFEiMYMxoB03oA2gIR0DSW5gO2AoYdX2UKGgGR0CedGvo/zJ7aAdN6ANoCEdA0l0T6KLsKXV9lChoBkdAkxzaTfR/mWgHTZICaAhHQNJeTyxNZeR1fZQoaAZHQJ2nnRWtEG9oB03oA2gIR0DSXtFLTQVsdX2UKGgGR0CQvA/M4cWCaAdNQwJoCEdA0l8dBqKxcHV9lChoBkdAndyfwqiGnGgHTegDaAhHQNJntkn1Fph1fZQoaAZHQJ5UfBi1AqxoB03oA2gIR0DScY2n5zo2dX2UKGgGR0BWdl/x2B8QaAdLSmgIR0DScZdo11nvdX2UKGgGR0CTkdChvitJaAdNnwJoCEdA0nLFIjW07nV9lChoBkdAnnGoxDb8FmgHTegDaAhHQNJyxURjBmB1fZQoaAZHQEL+W1MM7U5oB0sfaAhHQNJzEL0nPVx1fZQoaAZHQJ61UTdtVJdoB03oA2gIR0DSc0Xtnf2sdX2UKGgGR0CexrPqs2ehaAdN6ANoCEdA0nNUF3Y+S3V9lChoBkdAnnGpQLux8mgHTegDaAhHQNJzoYf0Vah1fZQoaAZHQIh+yKvV3EBoB024AWgIR0DSdEldu5z6dX2UKGgGR0Cef4p1ie/YaAdN6ANoCEdA0nUFT/ACXHV9lChoBkdAnV2F/x2B8WgHTegDaAhHQNJ1G1QAMlV1fZQoaAZHQJ3Q3vkRzzVoB03oA2gIR0DSdYpjTa0ydX2UKGgGR0CeKaFYMfA9aAdN6ANoCEdA0n5zRK6FunV9lChoBkdAnrqtAHE/B2gHTegDaAhHQNJ+f5lOGj91fZQoaAZHQGFkfChvitJoB0uHaAhHQNKI/oC6pYN1fZQoaAZHQIsMUWl/H5toB03vAWgIR0DSiRIazeGgdX2UKGgGR0Cd2HZE2HclaAdN6ANoCEdA0oku9wm3OXV9lChoBkdAhcSWXb/OuGgHTX4BaAhHQNKJ9emvW6N1fZQoaAZHQJ2gB+UhV2loB03oA2gIR0DSimf+85CGdX2UKGgGR0CePeIe5nUUaAdN6ANoCEdA0oszsNlRQHV9lChoBkdAlsRjU3GXHGgHTf0CaAhHQNKUPxqCYkV1fZQoaAZHQJyI+LBKtgdoB03oA2gIR0DSlGQuIyj6dX2UKGgGR0Ceg+Q+2VmjaAdN6ANoCEdA0pRuAv+OwXV9lChoBkdAnrgEALiMpGgHTegDaAhHQNKVobeZXuF1fZQoaAZHQJ66WKZUkv9oB03oA2gIR0DSliQNx2jgdX2UKGgGR0CeDG7JnxrjaAdN6ANoCEdA0pYycLSeAnV9lChoBkdAYnMsVclgMWgHS2RoCEdA0qBb++dsi3V9lChoBkdAnjr4C+10DGgHTegDaAhHQNKgXv29L6F1fZQoaAZHQJ5n8kX1rZdoB03oA2gIR0DSoTHAgxJvdX2UKGgGR0CevQH+ZPVNaAdN6ANoCEdA0qGfGcWj5HV9lChoBkdAnpACcG1QZWgHTegDaAhHQNKqdHSOR1Z1fZQoaAZHQJYB54NZvDRoB03mAmgIR0DSqsCraM72dX2UKGgGR0B1OlXeWOZLaAdLyWgIR0DSq48xL0z1dX2UKGgGR0CecoSpzcREaAdN6ANoCEdA0qvMk2P1c3V9lChoBkdAng3D3VTaTWgHTegDaAhHQNKr4EOVgQZ1fZQoaAZHQJ1Fym51/2FoB03oA2gIR0DSq/15LRKIdX2UKGgGR0CMLFOfukULaAdNHwJoCEdA0qyMf+jubHV9lChoBkdAnioEKeCkGmgHTegDaAhHQNKsxvozN2V1fZQoaAZHQJ6NPEuQIUtoB03oA2gIR0DSt0RtHhCMdX2UKGgGR0CeD0wUg0TDaAdN6ANoCEdA0sBfqqwQlXV9lChoBkdAnlFARChN/WgHTegDaAhHQNLAhQXl8w51fZQoaAZHQJ5AsMvysjpoB03oA2gIR0DSwI7wNLDidX2UKGgGR0CeZMqd6LOzaAdN6ANoCEdA0sHCDArQPnV9lChoBkdAnjjcjRlYl2gHTegDaAhHQNLDQvChvit1fZQoaAZHQJ5DRvS+g15oB03oA2gIR0DSw0XvBrN4dX2UKGgGR0CcjSFeOXE7aAdNrQNoCEdA0sOJOuJUHnV9lChoBkdARLc4R28qWmgHSy1oCEdA0sOysu3+dnV9lChoBkdANw9LYf4h2WgHSxpoCEdA0sPIL876pHV9lChoBkdAiMmKbKA8S2gHTcABaAhHQNLOBG7rcCZ1fZQoaAZHQJ0aY0IkZ75oB03oA2gIR0DS1p/qptJndX2UKGgGR0CeJufmLcbjaAdN6ANoCEdA0tbsN2TxG3V9lChoBkdAnqOEQbuMM2gHTegDaAhHQNLXuevUz9F1fZQoaAZHQJ7eJm4AjptoB03oA2gIR0DS1/dTAFgVdX2UKGgGR0CTVQg6U7jlaAdNlwJoCEdA0tf5gHu7YnV9lChoBkdAnTsj/ZM+NmgHTegDaAhHQNLYCyZa3Zx1fZQoaAZHQJ5JExsVLzxoB03oA2gIR0DS2CiLS/j9dX2UKGgGR0Cdye580DU3aAdN6ANoCEdA0ti3+6y0KXV9lChoBkdAngoOpOvdM2gHTegDaAhHQNLY8pNbkfd1fZQoaAZHQJ65gUmD15BoB03oA2gIR0DS2jVtwaR7dX2UKGgGR0CSSrsXizcAaAdNfAJoCEdA0tqg9m6GxnV9lChoBkdAniT4PXkHU2gHTegDaAhHQNLjX5zHS4R1fZQoaAZHQGpG9i2DxsloB0uNaAhHQNLtMUZ75VR1fZQoaAZHQJ5wGI3zcypoB03oA2gIR0DS7c8DdP+GdX2UKGgGR0CGluH8CPp7aAdNnAFoCEdA0u3isJIDo3V9lChoBkdAiABmdAgPmWgHTawBaAhHQNLuRJcxCY11fZQoaAZHQJCtURvm5lRoB01iAmgIR0DS7wmTnq3WdX2UKGgGR0BAmzWf9P1taAdLIGgIR0DS71gOUdJbdX2UKGgGR0Cb8ijKxLTQaAdNuANoCEdA0u9mdGAkLXV9lChoBkdAnz1Nq59Vm2gHTegDaAhHQNLvxo//vOR1fZQoaAZHQJ6jkTPBzmxoB03oA2gIR0DS8Og0DU3GdWUu"
96
+ },
97
+ "ep_success_buffer": {
98
+ ":type:": "<class 'collections.deque'>",
99
+ ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
100
+ },
101
+ "_n_updates": 4900,
102
+ "n_steps": 512,
103
+ "gamma": 0.99,
104
+ "gae_lambda": 0.92,
105
+ "ent_coef": 0.0,
106
+ "vf_coef": 0.5,
107
+ "max_grad_norm": 0.5,
108
+ "batch_size": 128,
109
+ "n_epochs": 20,
110
+ "clip_range": {
111
+ ":type:": "<class 'function'>",
112
+ ":serialized:": "gASVngMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsCSxNDCHwAiAAUAFMAlIyECiAgICAgICAgUHJvZ3Jlc3Mgd2lsbCBkZWNyZWFzZSBmcm9tIDEgKGJlZ2lubmluZykgdG8gMAogICAgICAgIDpwYXJhbSBwcm9ncmVzc19yZW1haW5pbmc6IChmbG9hdCkKICAgICAgICA6cmV0dXJuOiAoZmxvYXQpCiAgICAgICAglIWUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjFovdm9sdW1lL1VTRVJTVE9SRS9yYWZmX2FuL3Byb2plY3RzL2V4cGVyaW1lbnRzL3JlbGVhc2UxLjAvcmwtYmFzZWxpbmVzMy16b28vdXRpbHMvdXRpbHMucHmUjARmdW5jlEv+QwIABpSMDWluaXRpYWxfdmFsdWWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjAV1dGlsc5SMCF9fbmFtZV9flIwLdXRpbHMudXRpbHOUjAhfX2ZpbGVfX5SMWi92b2x1bWUvVVNFUlNUT1JFL3JhZmZfYW4vcHJvamVjdHMvZXhwZXJpbWVudHMvcmVsZWFzZTEuMC9ybC1iYXNlbGluZXMzLXpvby91dGlscy91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGghfZR9lChoGGgPjAxfX3F1YWxuYW1lX1+UjB1saW5lYXJfc2NoZWR1bGUuPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lCiMEnByb2dyZXNzX3JlbWFpbmluZ5SMCGJ1aWx0aW5zlIwFZmxvYXSUk5SMBnJldHVybpRoLnWMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flGgKjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/2ZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
113
+ },
114
+ "clip_range_vf": null,
115
+ "normalize_advantage": true,
116
+ "target_kl": null,
117
+ "_last_dones": {
118
+ ":type:": "<class 'numpy.ndarray'>",
119
+ ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="
120
+ }
121
+ }
ppo-Walker2DBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0031b94c0f03f8647740b6eebe12ee6dd3e0dae72a156765b84b7faf563f9dab
3
+ size 1184663
ppo-Walker2DBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fe892215a83f99c4b3607101c9b80c8c797fb6d9627889ed6c7dfa92be259674
3
+ size 593150
ppo-Walker2DBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-Walker2DBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.13.0-44-generic-x86_64-with-debian-bullseye-sid #49~20.04.1-Ubuntu SMP Wed May 18 18:44:28 UTC 2022
2
+ Python: 3.7.10
3
+ Stable-Baselines3: 1.5.1a8
4
+ PyTorch: 1.11.0
5
+ GPU Enabled: True
6
+ Numpy: 1.21.2
7
+ Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4a3aca6f30b599e5551c19de9a7223fd47d02e974181092cc9e0b0c5edd4ce95
3
+ size 1103932
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 2120.196074, "std_reward": 6.344277244758598, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-02T14:57:38.456770"}
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e7482c5b9340a7a5f7f961ed69aea011ef68a7fce5aec10ec6b44b8dc935b5b8
3
+ size 245111
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:44fb5e7991a81f5e12634c4244fc9a04cb56ad44f3e9d41d79a2db3374cd970f
3
+ size 6426