Initial commit
Browse files- .gitattributes +2 -0
- README.md +59 -0
- args.yml +65 -0
- config.yml +11 -0
- env_kwargs.yml +1 -0
- ppo-Swimmer-v3.zip +3 -0
- ppo-Swimmer-v3/_stable_baselines3_version +1 -0
- ppo-Swimmer-v3/data +99 -0
- ppo-Swimmer-v3/policy.optimizer.pth +3 -0
- ppo-Swimmer-v3/policy.pth +3 -0
- ppo-Swimmer-v3/pytorch_variables.pth +3 -0
- ppo-Swimmer-v3/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
- train_eval_metrics.zip +3 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -25,3 +25,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
29 |
+
vec_normalize.pkl filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- Swimmer-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 281.78 +/- 11.86
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: Swimmer-v3
|
20 |
+
type: Swimmer-v3
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **Swimmer-v3**
|
24 |
+
This is a trained model of a **PPO** agent playing **Swimmer-v3**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
26 |
+
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
27 |
+
|
28 |
+
The RL Zoo is a training framework for Stable Baselines3
|
29 |
+
reinforcement learning agents,
|
30 |
+
with hyperparameter optimization and pre-trained agents included.
|
31 |
+
|
32 |
+
## Usage (with SB3 RL Zoo)
|
33 |
+
|
34 |
+
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
|
35 |
+
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
36 |
+
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
37 |
+
|
38 |
+
```
|
39 |
+
# Download model and save it into the logs/ folder
|
40 |
+
python -m utils.load_from_hub --algo ppo --env Swimmer-v3 -orga sb3 -f logs/
|
41 |
+
python enjoy.py --algo ppo --env Swimmer-v3 -f logs/
|
42 |
+
```
|
43 |
+
|
44 |
+
## Training (with the RL Zoo)
|
45 |
+
```
|
46 |
+
python train.py --algo ppo --env Swimmer-v3 -f logs/
|
47 |
+
# Upload the model and generate video (when possible)
|
48 |
+
python -m utils.push_to_hub --algo ppo --env Swimmer-v3 -f logs/ -orga sb3
|
49 |
+
```
|
50 |
+
|
51 |
+
## Hyperparameters
|
52 |
+
```python
|
53 |
+
OrderedDict([('env_wrapper', 'sb3_contrib.common.wrappers.TimeFeatureWrapper'),
|
54 |
+
('gamma', 0.9999),
|
55 |
+
('n_timesteps', 1000000.0),
|
56 |
+
('normalize', True),
|
57 |
+
('policy', 'MlpPolicy'),
|
58 |
+
('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})])
|
59 |
+
```
|
args.yml
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - algo
|
3 |
+
- ppo
|
4 |
+
- - env
|
5 |
+
- Swimmer-v3
|
6 |
+
- - env_kwargs
|
7 |
+
- null
|
8 |
+
- - eval_episodes
|
9 |
+
- 20
|
10 |
+
- - eval_freq
|
11 |
+
- 10000
|
12 |
+
- - gym_packages
|
13 |
+
- []
|
14 |
+
- - hyperparams
|
15 |
+
- null
|
16 |
+
- - log_folder
|
17 |
+
- logs/
|
18 |
+
- - log_interval
|
19 |
+
- 10
|
20 |
+
- - n_eval_envs
|
21 |
+
- 5
|
22 |
+
- - n_evaluations
|
23 |
+
- 20
|
24 |
+
- - n_jobs
|
25 |
+
- 1
|
26 |
+
- - n_startup_trials
|
27 |
+
- 10
|
28 |
+
- - n_timesteps
|
29 |
+
- -1
|
30 |
+
- - n_trials
|
31 |
+
- 10
|
32 |
+
- - no_optim_plots
|
33 |
+
- false
|
34 |
+
- - num_threads
|
35 |
+
- 2
|
36 |
+
- - optimization_log_path
|
37 |
+
- null
|
38 |
+
- - optimize_hyperparameters
|
39 |
+
- false
|
40 |
+
- - pruner
|
41 |
+
- median
|
42 |
+
- - sampler
|
43 |
+
- tpe
|
44 |
+
- - save_freq
|
45 |
+
- -1
|
46 |
+
- - save_replay_buffer
|
47 |
+
- false
|
48 |
+
- - seed
|
49 |
+
- 594371
|
50 |
+
- - storage
|
51 |
+
- null
|
52 |
+
- - study_name
|
53 |
+
- null
|
54 |
+
- - tensorboard_log
|
55 |
+
- ''
|
56 |
+
- - trained_agent
|
57 |
+
- ''
|
58 |
+
- - truncate_last_trajectory
|
59 |
+
- true
|
60 |
+
- - uuid
|
61 |
+
- true
|
62 |
+
- - vec_env
|
63 |
+
- dummy
|
64 |
+
- - verbose
|
65 |
+
- 1
|
config.yml
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - env_wrapper
|
3 |
+
- sb3_contrib.common.wrappers.TimeFeatureWrapper
|
4 |
+
- - gamma
|
5 |
+
- 0.9999
|
6 |
+
- - n_timesteps
|
7 |
+
- 1000000.0
|
8 |
+
- - normalize
|
9 |
+
- true
|
10 |
+
- - policy
|
11 |
+
- MlpPolicy
|
env_kwargs.yml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
ppo-Swimmer-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0d4de3596420b347673a24c302789b2598db625bc843a0a98825b07a7813fb30
|
3 |
+
size 148668
|
ppo-Swimmer-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.1a8
|
ppo-Swimmer-v3/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f00482f9950>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f00482f99e0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f00482f9a70>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f00482f9b00>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f00482f9b90>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f00482f9c20>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f00482f9cb0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f00482f9d40>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f00482f9dd0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f00482f9e60>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f00482f9ef0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f004834a840>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gASVzQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwmFlGgKiUMkAACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAAAAlHSUYowEaGlnaJRoEGgSSwCFlGgUh5RSlChLAUsJhZRoColDJAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAP5R0lGKMDWJvdW5kZWRfYmVsb3eUaBBoEksAhZRoFIeUUpQoSwFLCYWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQwkAAAAAAAAAAAGUdJRijA1ib3VuZGVkX2Fib3ZllGgQaBJLAIWUaBSHlFKUKEsBSwmFlGgoiUMJAAAAAAAAAAABlHSUYowKX25wX3JhbmRvbZROjAZfc2hhcGWUSwmFlHViLg==",
|
26 |
+
"dtype": "float32",
|
27 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf 0.]",
|
28 |
+
"high": "[inf inf inf inf inf inf inf inf 1.]",
|
29 |
+
"bounded_below": "[False False False False False False False False True]",
|
30 |
+
"bounded_above": "[False False False False False False False False True]",
|
31 |
+
"_np_random": null,
|
32 |
+
"_shape": [
|
33 |
+
9
|
34 |
+
]
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
38 |
+
":serialized:": "gASVFwwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwKFlGgKiUMIAACAvwAAgL+UdJRijARoaWdolGgQaBJLAIWUaBSHlFKUKEsBSwKFlGgKiUMIAACAPwAAgD+UdJRijA1ib3VuZGVkX2JlbG93lGgQaBJLAIWUaBSHlFKUKEsBSwKFlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMCAQGUdJRijA1ib3VuZGVkX2Fib3ZllGgQaBJLAIWUaBSHlFKUKEsBSwKFlGgoiUMCAQGUdJRijApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpRoOIwFc3RhdGWUfZQojANrZXmUaBBoEksAhZRoFIeUUpQoSwFNcAKFlGgHjAJ1NJSJiIeUUpQoSwNoC05OTkr/////Sv////9LAHSUYolCwAkAAAAAAIBTwrOchwO1k3Lsq1vo5rLyz7aB2tUG72GhMU2ga7XM2RPmGJ90nHkvyKUbgMR5AUmeD0PkXeAYk5ITVczUSilk0giVvjTQnkRyegPwrb8Kc5t7PulgsQbadQNFC2591hZq6wQ0ZoO38/WlL2nvQmNDtVz3wndSzEZENy0IiW7Qjq53+xi2gE97nvlPMuwS2LmOXoWpGcquPXYtZytCgJ7F7scf9SIBXUvPJA/MGVJkRFeYcJ0K9RIXtela3jvE/0HPOrFftofdM9hYiaqizX97P8mUt2wPQx8xmX0bYJCrtwcdGUzeyPuOugD1z6ka3iX+IAalFvzQduPBTvXKQ9MBWnnfUFetzaqYhTrP0WHhMA/Ht9nWRUX4vUiuWi77gKSTLtizn2cHsqRyJMj43mOVvrbJtm3T5laAgDosou93H+ZNC0HiTVqmVP8Lsv3/JsoIWfaq43/tiUiTGgfVTTF1psbquA6tH5Icya9TC+0oH7X0htvTuZKBVDKM0C+fIAM8l/emTHKVm2ft/85WlYRpZ+XoFwvDLSCusSBQr4f7w/xdYy4GCKdeDDOfezLj5k6WvjminpO26pfQqfP9LJIYOUEgrwmoo5vMHp8a36i8kcQzwqUvi94rCQuS64xYFp7HcUF1aySvLmqGyXEyCeTa2GHwNpeYB9u4jyPRKocxbWSV4hOL16R9fH95KLmFfUaMD8zrZmLG5rLUfzMf1WOxNFwZpzInS+HWE1F4MWg2xcVst8upoi9ssNCNjtPbz1ley6m8DG7YZVNupay35yQ8/PAfu8uKRQsL7B4ArDFquqb66ABeDLPvviZ4c6y9Bi67Xye+uu6eNlYO/Boq5iiETBR9Kemi0T1eFf33JRNzywY9CJ1N9eTOb+3wxY/yK3iXhVISAMufwZby3YMCHwTAVr8o4ahkQaNipnYgwDvQT4XYuqBpmVAsUw41MjHfK43kXZ7UxPi/bB0FEr1H6UYynEiI2V3I7DDEsMFNEMyF3sA+J2YPBAGe9oh5woVr3lu3AeREERRPmD778jQMODrzkRfg4w7Zi1M+ozc9CW5Lim4SEBBFW6Q0ZKHiBgOBwE8pmXhOE1/4b4TsSX1+ZYlw/f1KJ/Doyf4YSKwzVGEdjTldkdS/lbivyQPaNIsxj4ggvb4u1CtbuK3vLbz6wSJwugR9g6TL1kkXqXR9H6xcRrB/5EQf0u+1EnjLN/GvsqKw2mvVrG/Vp7kINdL5dPO44b8Emce+3xqudjVdYf1J2QI56iTowjwYEK2NMLEnklukjknSLQDrqYlpFb0sx8/oKKXf9xVFD243YpO1XejusnBjhcKePsMmaqtTCh8MOXsSTQ+g3vDQeHxgc7LyqE/DtXwAt2Nmft5i2MJAiV1C8dszUjvdG0ItC9AYUxdQInTbakZGpO9lfldZKLOpuBfpMmYjosMX3Bylh5qUHtwPB6V+p2nMdGbKNFshf1v7Di6P/9oNGA/ZKCI4Cr8P/3/RJuAr8TQVDJyWE1UCRsrBeEDEoZzOm8mjDSYUVQC3/l9PkoCyZBMC3ynQWysYwNN+ThHNmCplKb6KFVFLfvVPHe3CkYDWCij8Ah8mHyyUkLeGRHU4YI3ssA8YLBsz2seUpJTi66EmJ9/X3qH2rWQ8yV3r3z0x8otWS8KXuh8JG6s9Rbjpx4koT3nWxAPW/xwrQcrUma4FMJcB6UJQIgU0saTe0xc1Wa64UXejfFvhXhPUgBgh8F3IRUeEghk4T8kRjv11pDDyeNgS1DpjBnqQ0IFh+uOrY6CUhNxF3AOYg0vjaujoedtaAtlDwJ78SI9UG1YfCG8ZQcrUU043NHNeBPXMoSD5YCKB64rhBUjF0hMzhi9TJi+lAm4l37EYPWejsFggpd1XhoOWxGdZIyZL7NPJO8LT5OAEwI2ky90KGNoH9dOsxWybS+A+YJizCfTrsxNhZ+bmgKqqY1yKqhF8UvY7abEVPVUxwoOvEcF0FSFIblSYB6vHzooATK1uwJufo46PxjTZXBXKfNd3RYl8uKh4YxkhIzV6d5Z9NzWZDoKl0PEmpSZTzr8qwEvcFvRLY0CoXKwUlkrEPAt6PzHP7EfwjEQfOWSKI0f7YgirTrrcUDCLrCDp2ByvIOpD6U0PCfz3yfKWtxhKGKAOu2sUE17MrHdmOmQ8Kc9R5AHiElStgJQnLkLLK0L/HVSwHIp7P9pI0RaeVafNh0l/Y+govRh+ZpHcqlfOL1rHcEc+CTVx2aB1WSp68UnQNR1MEVCP+aFoqpxpPSsokuDL/XUCFZbidfv6QB2BHRvWICx4jRNswO2iEG6qpRl+ox9Qqx0jy/Zp5R3T4io6M8EV7tNlELs5RiZ/vz1JFOnD2Cy3i3PHu0tqnwmcW3aR4qGp3e8GCqm+WzG/HQNw8L5uj+oiV0qICfkPtM+N5YvMnWCamTWZUo7JY6/9nOVFN97zISwyxFyB0/Fs67EuOU7CjW4WH02Meg7P/FucjrYjj1nNPn0ZQI20AvvhSqOVGjJdnkQsSOFOf4Xl9h8SRjZOdKyAo7hbBv/EPjVLiYEvstxTIXvrJtXtjHQvpXZAahJ/KEcWoxAmz+Fos89bXyZYlv9QOX3Rk31MTNx1e9myYJ6rMJqALpgMend+in7mcBBKdP8HK3aPvP7pyeX9pmHqgqznGsQya7OksVtc1Wh/2E2ZfkTQNDYzy4Gqp5b3mnrPzJKc7FREA7byhhaxtXJ5ho2VYtms60gxkNGONt5xJLAwuWsGHDiZlWG3gOA5DEjX4/uw8dksx/z1T7ly1/WsPSvUBeDJePM7Eq8LFYyGvPoCHX37NqX9sAinD7RXs+rzk9FA7hR5JyYzA4NHyNw58gu4yajvFeF6Zj8mq06dySURoZqkx4aWSJ5+9CTH0vkRa8ufqy0jjNE/illfH2I7PXsgomYo5UeAIgA6KF5vRvCSM2Qi2V9g7cvN4ss+4EM0sWDu1C7k09bLbxricGwT+CzIS15G8XYQJgUg4mDTp3NzvshbDuj7PVDkA/EuD26/IWeJhY24nKTut+UsKZhyDWA3rnsJZ9/xh8+vS6Qo5qZyj3hfWcV3KujEeJCVFdo/3UM6oy54jWkJqzJFC3SO1tbDF0RXLM/cbNRlcFaprTFcLPB7b1zGDZqLAq64ABV9oIT8+3VwlerzC+WIXzWwwM8xujB3367Ja4TGr977ZbfBZ5XeFWh+iITJKMGsk9ZUlb375ShwlsLSmk3Dma0eS2RmpSTqRW1SBVDgKPi52P9uW5nNypaMi84Ik7nYz7FxBjzTwSLxP+XDBL1OC67NDd7QpHuGm2A1xfX9eEK8C5R0lGKMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVijAZfc2hhcGWUSwKFlHViLg==",
|
39 |
+
"dtype": "float32",
|
40 |
+
"low": "[-1. -1.]",
|
41 |
+
"high": "[1. 1.]",
|
42 |
+
"bounded_below": "[ True True]",
|
43 |
+
"bounded_above": "[ True True]",
|
44 |
+
"_np_random": "RandomState(MT19937)",
|
45 |
+
"_shape": [
|
46 |
+
2
|
47 |
+
]
|
48 |
+
},
|
49 |
+
"n_envs": 1,
|
50 |
+
"num_timesteps": 1001472,
|
51 |
+
"_total_timesteps": 1000000,
|
52 |
+
"_num_timesteps_at_start": 0,
|
53 |
+
"seed": 0,
|
54 |
+
"action_noise": null,
|
55 |
+
"start_time": 1635497829.4608934,
|
56 |
+
"learning_rate": 0.0003,
|
57 |
+
"tensorboard_log": null,
|
58 |
+
"lr_schedule": {
|
59 |
+
":type:": "<class 'function'>",
|
60 |
+
":serialized:": "gASVywIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxOL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvcmwvc3RhYmxlLWJhc2VsaW5lczMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxOL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvcmwvc3RhYmxlLWJhc2VsaW5lczMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
61 |
+
},
|
62 |
+
"_last_obs": null,
|
63 |
+
"_last_episode_starts": {
|
64 |
+
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gASViQAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwGFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAQCUdJRiLg=="
|
66 |
+
},
|
67 |
+
"_last_original_obs": {
|
68 |
+
":type:": "<class 'numpy.ndarray'>",
|
69 |
+
":serialized:": "gASVrgAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwFLCYaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUMkbPgbvGzDUT3eJ789NR0AvXQrBj0LFWo9qM7hvJGD+bwAAIA/lHSUYi4="
|
70 |
+
},
|
71 |
+
"_episode_num": 0,
|
72 |
+
"use_sde": false,
|
73 |
+
"sde_sample_freq": -1,
|
74 |
+
"_current_progress_remaining": -0.0014719999999999178,
|
75 |
+
"ep_info_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gASVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIv/BKkmcHcUCUhpRSlIwBbJRN6AOMAXSUR0Ch0MipeeFtdX2UKGgGaAloD0MIO1J95xfecECUhpRSlGgVTegDaBZHQKHSbmBe5Wl1fZQoaAZoCWgPQwiMLQQ56MpwQJSGlFKUaBVN6ANoFkdAodbXAAQxvnV9lChoBmgJaA9DCIxppntdNXFAlIaUUpRoFU3oA2gWR0Ch2HyJCSiedX2UKGgGaAloD0MIF3/bE+R1cECUhpRSlGgVTegDaBZHQKHc40k4WDZ1fZQoaAZoCWgPQwh4QURqGvJwQJSGlFKUaBVN6ANoFkdAod6KcAimmHV9lChoBmgJaA9DCJq1FJC2P3FAlIaUUpRoFU3oA2gWR0Ch4vFCTlkpdX2UKGgGaAloD0MIKLhYUUPlcECUhpRSlGgVTegDaBZHQKHkl8eCCjF1fZQoaAZoCWgPQwi6ZYf4B8lwQJSGlFKUaBVN6ANoFkdAoekBgiNbT3V9lChoBmgJaA9DCDsdyHqqCXFAlIaUUpRoFU3oA2gWR0Ch/bPTPSlWdX2UKGgGaAloD0MIXU4JiAlEcUCUhpRSlGgVTegDaBZHQKICGvFm4Al1fZQoaAZoCWgPQwjylxb1ib9wQJSGlFKUaBVN6ANoFkdAogPBciW3SnV9lChoBmgJaA9DCO8dNSZEBnFAlIaUUpRoFU3oA2gWR0CiCCqEeyRkdX2UKGgGaAloD0MIFTsahzpFcUCUhpRSlGgVTegDaBZHQKIJ0IIF/x51fZQoaAZoCWgPQwhbQj7oWVJwQJSGlFKUaBVN6ANoFkdAog44ysS00HV9lChoBmgJaA9DCIlhhzHpSXFAlIaUUpRoFU3oA2gWR0CiD+DqfOD8dX2UKGgGaAloD0MIH9rHCv65cECUhpRSlGgVTegDaBZHQKIUSWAwwkB1fZQoaAZoCWgPQwiDUN7H0adwQJSGlFKUaBVN6ANoFkdAohXwIWxhUnV9lChoBmgJaA9DCM7+QLktzHBAlIaUUpRoFU3oA2gWR0CiGlmxMWXUdX2UKGgGaAloD0MIuCIxQQ2/cECUhpRSlGgVTegDaBZHQKIvEre67NB1fZQoaAZoCWgPQwjwoxr2O0xxQJSGlFKUaBVN6ANoFkdAojN74WUKRnV9lChoBmgJaA9DCAR1yqNbtXBAlIaUUpRoFU3oA2gWR0CiNSPk7wKCdX2UKGgGaAloD0MIeXjPgeVucUCUhpRSlGgVTegDaBZHQKI5jz6rNnp1fZQoaAZoCWgPQwjWGd8XF4ZxQJSGlFKUaBVN6ANoFkdAojs1xwQ18HV9lChoBmgJaA9DCJZ7gVkhW3FAlIaUUpRoFU3oA2gWR0CiP52PT5O8dX2UKGgGaAloD0MIXYqryn7fcECUhpRSlGgVTegDaBZHQKJBRRQaaTh1fZQoaAZoCWgPQwhx4xbzM99wQJSGlFKUaBVN6ANoFkdAokWuzWwu/XV9lChoBmgJaA9DCOG1SxuOXHFAlIaUUpRoFU3oA2gWR0CiR1Y1pCa7dX2UKGgGaAloD0MIMEllijl4cUCUhpRSlGgVTegDaBZHQKJLwG1QZXN1fZQoaAZoCWgPQwj+KOrMfU5xQJSGlFKUaBVN6ANoFkdAomB+P7vXsnV9lChoBmgJaA9DCBWOIJWiqHBAlIaUUpRoFU3oA2gWR0CiZOW0JF9bdX2UKGgGaAloD0MI5e/eUaP9cECUhpRSlGgVTegDaBZHQKJmjBN21Ul1fZQoaAZoCWgPQwiF6ubiL3txQJSGlFKUaBVN6ANoFkdAomruTHKfWnV9lChoBmgJaA9DCNvcmJ5wr3BAlIaUUpRoFU3oA2gWR0CibJyi22G7dX2UKGgGaAloD0MILPAV3XpNDECUhpRSlGgVTegDaBZHQKJw8BI4EOl1fZQoaAZoCWgPQwhETIkketdwQJSGlFKUaBVN6ANoFkdAonKtFOO803V9lChoBmgJaA9DCAjovpxZgXBAlIaUUpRoFU3oA2gWR0Cidu8pCrtFdX2UKGgGaAloD0MI2UC62PS+cECUhpRSlGgVTegDaBZHQKJ4vGvwEyN1fZQoaAZoCWgPQwiO5zOgXtBwQJSGlFKUaBVN6ANoFkdAonpiAjIJaHV9lChoBmgJaA9DCCI2WDhJ/nBAlIaUUpRoFU3oA2gWR0Cikdh2OhkBdX2UKGgGaAloD0MIt7QaEjdncUCUhpRSlGgVTegDaBZHQKKTfx0+1Sh1fZQoaAZoCWgPQwhk5gKXBzRxQJSGlFKUaBVN6ANoFkdAopfnHq/ucHV9lChoBmgJaA9DCDVDqiieZHFAlIaUUpRoFU3oA2gWR0CimY1TBInSdX2UKGgGaAloD0MI9mBSfHzWO0CUhpRSlGgVTegDaBZHQKKd9f9gndB1fZQoaAZoCWgPQwhGJ0utd7lwQJSGlFKUaBVN6ANoFkdAop+crkKeCnV9lChoBmgJaA9DCIV9O4mIW3FAlIaUUpRoFU3oA2gWR0CipAUth/iHdX2UKGgGaAloD0MIdk8eFiqbcECUhpRSlGgVTegDaBZHQKKlrAsTWXl1fZQoaAZoCWgPQwhRu18FOGdxQJSGlFKUaBVN6ANoFkdAoqoUXLvCuXV9lChoBmgJaA9DCOjc7Xqph3FAlIaUUpRoFU3oA2gWR0Ciq7qNp/PPdX2UKGgGaAloD0MIwhcmU0VlcUCUhpRSlGgVTegDaBZHQKLDOB+4LCx1fZQoaAZoCWgPQwh8C+vGO8FwQJSGlFKUaBVN6ANoFkdAosTgXoC+13V9lChoBmgJaA9DCDvFqkHYZHFAlIaUUpRoFU3oA2gWR0CiyUi17Y03dX2UKGgGaAloD0MIuOUjKanrcECUhpRSlGgVTegDaBZHQKLK72A5Jbt1fZQoaAZoCWgPQwiaB7DI75lxQJSGlFKUaBVN6ANoFkdAos9d3GGVRnV9lChoBmgJaA9DCPOQKR8CXXFAlIaUUpRoFU3oA2gWR0Ci0QY5tFa0dX2UKGgGaAloD0MIAKq4cQt3cUCUhpRSlGgVTegDaBZHQKLVcZ62OQ11fZQoaAZoCWgPQwjcvHFSmJJxQJSGlFKUaBVN6ANoFkdAotcXx2B8QnV9lChoBmgJaA9DCNBGrptSaHFAlIaUUpRoFU3oA2gWR0Ci24CqQzUJdX2UKGgGaAloD0MIPE88Z0uLcUCUhpRSlGgVTegDaBZHQKLdJ1Oj7AN1fZQoaAZoCWgPQwio5JzYQ2ZxQJSGlFKUaBVN6ANoFkdAovSevyLAHnV9lChoBmgJaA9DCOPEVzuKlnFAlIaUUpRoFU3oA2gWR0Ci9kXJgb6ydX2UKGgGaAloD0MIVtgMcEFwcUCUhpRSlGgVTegDaBZHQKL6rlkpZwJ1fZQoaAZoCWgPQwjymeyfJ6FwQJSGlFKUaBVN6ANoFkdAovxUQyylenV9lChoBmgJaA9DCN8bQwCwXHFAlIaUUpRoFU3oA2gWR0CjAL2ZRbbDdX2UKGgGaAloD0MIjWDj+rdzcUCUhpRSlGgVTegDaBZHQKMCZMIu5Bl1fZQoaAZoCWgPQwjh0cYRK15xQJSGlFKUaBVN6ANoFkdAowbLfWMCLnV9lChoBmgJaA9DCAQb178rc3FAlIaUUpRoFU3oA2gWR0CjCHIC2c8UdX2UKGgGaAloD0MIke18PzVycUCUhpRSlGgVTegDaBZHQKMM2aVlf7d1fZQoaAZoCWgPQwhbecn/5GZxQJSGlFKUaBVN6ANoFkdAow6Aeq7yx3V9lChoBmgJaA9DCLbykv8JMHFAlIaUUpRoFU3oA2gWR0CjJfPTXrdFdX2UKGgGaAloD0MIGCE82vh0cUCUhpRSlGgVTegDaBZHQKMnmt/WlM11fZQoaAZoCWgPQwjSHFn5ZW1xQJSGlFKUaBVN6ANoFkdAoywCZDzAe3V9lChoBmgJaA9DCBL4w8+/hnFAlIaUUpRoFU3oA2gWR0CjLajYywfRdX2UKGgGaAloD0MI9kNssLCWcUCUhpRSlGgVTegDaBZHQKMyEsYEW691fZQoaAZoCWgPQwhrt11orhlwQJSGlFKUaBVN6ANoFkdAozO4wGnn+3V9lChoBmgJaA9DCErusIkMf3FAlIaUUpRoFU3oA2gWR0CjOBe7tiQUdX2UKGgGaAloD0MId2hYjLoWcUCUhpRSlGgVTegDaBZHQKM5x0wrUb11fZQoaAZoCWgPQwioGVJF8YxxQJSGlFKUaBVN6ANoFkdAoz4Xu9eyA3V9lChoBmgJaA9DCJ/J/nkah3FAlIaUUpRoFU3oA2gWR0CjP9fZuhsZdX2UKGgGaAloD0MIy7p/LER9cUCUhpRSlGgVTegDaBZHQKNXLxRVIZt1fZQoaAZoCWgPQwjBqKROABlxQJSGlFKUaBVN6ANoFkdAo1j/XqZ+hHV9lChoBmgJaA9DCNv4E5XNd3FAlIaUUpRoFU3oA2gWR0CjWqY+Sr5qdX2UKGgGaAloD0MI+U7MevERcECUhpRSlGgVTegDaBZHQKNfDG96C191fZQoaAZoCWgPQwiBlxk2yphxQJSGlFKUaBVN6ANoFkdAo2CyzzErG3V9lChoBmgJaA9DCP35tmBpp3FAlIaUUpRoFU3oA2gWR0CjZRqDkELZdX2UKGgGaAloD0MIWKzhInd8cUCUhpRSlGgVTegDaBZHQKNmwG34Kx91fZQoaAZoCWgPQwhBt5c0xn1xQJSGlFKUaBVN6ANoFkdAo2snIXCTEHV9lChoBmgJaA9DCDEm/b1Ue3FAlIaUUpRoFU3oA2gWR0CjbM0p/gBLdX2UKGgGaAloD0MIck9Xd2yWcUCUhpRSlGgVTegDaBZHQKNxNWgezUt1fZQoaAZoCWgPQwi6+UZ0D+ZwQJSGlFKUaBVN6ANoFkdAo4Xh1s+FDnV9lChoBmgJaA9DCLmKxW/K93BAlIaUUpRoFU3oA2gWR0Cjikl7Uoa2dX2UKGgGaAloD0MI5sk1BfKbcUCUhpRSlGgVTegDaBZHQKOL7/I8yN51fZQoaAZoCWgPQwiDMLd7OQZxQJSGlFKUaBVN6ANoFkdAo5BW5paibnV9lChoBmgJaA9DCP8+48KBSHBAlIaUUpRoFU3oA2gWR0Cjkf2gOBlMdX2UKGgGaAloD0MI53Pudn2AcUCUhpRSlGgVTegDaBZHQKOWZH09QoF1fZQoaAZoCWgPQwgS9YJPs01wQJSGlFKUaBVN6ANoFkdAo5gMVgx8D3V9lChoBmgJaA9DCDtxOV7BwXFAlIaUUpRoFU3oA2gWR0CjnHLIgeRxdX2UKGgGaAloD0MIh4xHqcSqcUCUhpRSlGgVTegDaBZHQKOeGP+4smR1fZQoaAZoCWgPQwj+RdCYiSJwQJSGlFKUaBVN6ANoFkdAo6KD7VJ+UnV9lChoBmgJaA9DCEuxo3EoBm9AlIaUUpRoFU3oA2gWR0Cjt1UOd5IIdWUu"
|
78 |
+
},
|
79 |
+
"ep_success_buffer": {
|
80 |
+
":type:": "<class 'collections.deque'>",
|
81 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
82 |
+
},
|
83 |
+
"_n_updates": 4890,
|
84 |
+
"n_steps": 2048,
|
85 |
+
"gamma": 0.9999,
|
86 |
+
"gae_lambda": 0.95,
|
87 |
+
"ent_coef": 0.0,
|
88 |
+
"vf_coef": 0.5,
|
89 |
+
"max_grad_norm": 0.5,
|
90 |
+
"batch_size": 64,
|
91 |
+
"n_epochs": 10,
|
92 |
+
"clip_range": {
|
93 |
+
":type:": "<class 'function'>",
|
94 |
+
":serialized:": "gASV2QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxVL3ZvbHVtZS9VU0VSU1RPUkUvcmFmZl9hbi9wcm9qZWN0cy90b3JjaHktYmFzZWxpbmVzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVS92b2x1bWUvVVNFUlNUT1JFL3JhZmZfYW4vcHJvamVjdHMvdG9yY2h5LWJhc2VsaW5lcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
95 |
+
},
|
96 |
+
"clip_range_vf": null,
|
97 |
+
"normalize_advantage": true,
|
98 |
+
"target_kl": null
|
99 |
+
}
|
ppo-Swimmer-v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:81708a7edbfd0f2fc764c343100b6ac8fa5d98fdd67605076a38abd3035136bc
|
3 |
+
size 85399
|
ppo-Swimmer-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:47a375678257f635141848d0d3e9a2c2e043450251c9620fa92ad256affac384
|
3 |
+
size 43518
|
ppo-Swimmer-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-Swimmer-v3/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.13.0-44-generic-x86_64-with-debian-bullseye-sid #49~20.04.1-Ubuntu SMP Wed May 18 18:44:28 UTC 2022
|
2 |
+
Python: 3.7.10
|
3 |
+
Stable-Baselines3: 1.5.1a8
|
4 |
+
PyTorch: 1.11.0
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.2
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:59df8219ce13dcf6462731d2a2dcc73aec74ab71ba22327f1952cd217a60ac34
|
3 |
+
size 1399979
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 281.7792699, "std_reward": 11.86036112635292, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-02T13:54:38.770471"}
|
train_eval_metrics.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fcde9ca629d66d4540cbc624776a7be208de1ae0dd996473cf5b9b12982fb3f2
|
3 |
+
size 61686
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a373c53839bd87085268455c1f23cea8e281b0cc265812c57520aa2ce00a43ec
|
3 |
+
size 4600
|