araffin commited on
Commit
3934d95
1 Parent(s): 7fc6eea

Initial commit

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 233.56 +/- 53.89
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
25
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
26
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
27
+
28
+ The RL Zoo is a training framework for Stable Baselines3
29
+ reinforcement learning agents,
30
+ with hyperparameter optimization and pre-trained agents included.
31
+
32
+ ## Usage (with SB3 RL Zoo)
33
+
34
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
35
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
36
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
37
+
38
+ ```
39
+ # Download model and save it into the logs/ folder
40
+ python -m utils.load_from_hub --algo ppo --env LunarLander-v2 -orga sb3 -f logs/
41
+ python enjoy.py --algo ppo --env LunarLander-v2 -f logs/
42
+ ```
43
+
44
+ ## Training (with the RL Zoo)
45
+ ```
46
+ python train.py --algo ppo --env LunarLander-v2 -f logs/
47
+ # Upload the model and generate video (when possible)
48
+ python -m utils.push_to_hub --algo ppo --env LunarLander-v2 -f logs/ -orga sb3
49
+ ```
50
+
51
+ ## Hyperparameters
52
+ ```python
53
+ OrderedDict([('batch_size', 64),
54
+ ('ent_coef', 0.01),
55
+ ('gae_lambda', 0.98),
56
+ ('gamma', 0.999),
57
+ ('n_envs', 16),
58
+ ('n_epochs', 4),
59
+ ('n_steps', 1024),
60
+ ('n_timesteps', 1000000.0),
61
+ ('policy', 'MlpPolicy'),
62
+ ('normalize', False)])
63
+ ```
args.yml ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - ppo
4
+ - - env
5
+ - LunarLander-v2
6
+ - - env_kwargs
7
+ - null
8
+ - - eval_episodes
9
+ - 10
10
+ - - eval_freq
11
+ - 10000
12
+ - - gym_packages
13
+ - []
14
+ - - hyperparams
15
+ - null
16
+ - - log_folder
17
+ - rl-trained-agents/
18
+ - - log_interval
19
+ - -1
20
+ - - n_evaluations
21
+ - 20
22
+ - - n_jobs
23
+ - 1
24
+ - - n_startup_trials
25
+ - 10
26
+ - - n_timesteps
27
+ - -1
28
+ - - n_trials
29
+ - 10
30
+ - - num_threads
31
+ - -1
32
+ - - optimize_hyperparameters
33
+ - false
34
+ - - pruner
35
+ - median
36
+ - - sampler
37
+ - tpe
38
+ - - save_freq
39
+ - -1
40
+ - - save_replay_buffer
41
+ - false
42
+ - - seed
43
+ - 1844899055
44
+ - - storage
45
+ - null
46
+ - - study_name
47
+ - null
48
+ - - tensorboard_log
49
+ - ''
50
+ - - trained_agent
51
+ - ''
52
+ - - truncate_last_trajectory
53
+ - true
54
+ - - uuid
55
+ - true
56
+ - - vec_env
57
+ - dummy
58
+ - - verbose
59
+ - 1
config.yml ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - batch_size
3
+ - 64
4
+ - - ent_coef
5
+ - 0.01
6
+ - - gae_lambda
7
+ - 0.98
8
+ - - gamma
9
+ - 0.999
10
+ - - n_envs
11
+ - 16
12
+ - - n_epochs
13
+ - 4
14
+ - - n_steps
15
+ - 1024
16
+ - - n_timesteps
17
+ - 1000000.0
18
+ - - policy
19
+ - MlpPolicy
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:10417bd2750432b6ee1f65e064548cf6174ff7a015728b28343e440f275d66c4
3
+ size 147054
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.1a8
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f73befbd950>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f73befbd9e0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f73befbda70>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f73befbdb00>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f73befbdb90>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f73befbdc20>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f73befbdcb0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f73befbdd40>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f73befbddd0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f73befbde60>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f73befbdef0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f73bf00f840>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwiFlGgKiUMgAACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgQaBJLAIWUaBSHlFKUKEsBSwiFlGgKiUMgAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UdJRijA1ib3VuZGVkX2JlbG93lGgQaBJLAIWUaBSHlFKUKEsBSwiFlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMIAAAAAAAAAACUdJRijA1ib3VuZGVkX2Fib3ZllGgQaBJLAIWUaBSHlFKUKEsBSwiFlGgoiUMIAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE6MBl9zaGFwZZRLCIWUdWIu",
26
+ "dtype": "float32",
27
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
28
+ "high": "[inf inf inf inf inf inf inf inf]",
29
+ "bounded_below": "[False False False False False False False False]",
30
+ "bounded_above": "[False False False False False False False False]",
31
+ "_np_random": null,
32
+ "_shape": [
33
+ 8
34
+ ]
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gASVTQsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwFZHR5cGWUjAVudW1weZSMBWR0eXBllJOUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpRoE4wFc3RhdGWUfZQojANrZXmUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoB4wHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAU1wAoWUaAmMAnU0lImIh5RSlChLA2gNTk5OSv////9K/////0sAdJRiiULACQAAAAAAgFPCs5yHA7WTcuyrW+jmsvLPtoHa1QbvYaExTaBrtczZE+YYn3SceS/IpRuAxHkBSZ4PQ+Rd4BiTkhNVzNRKKWTSCJW+NNCeRHJ6A/Ctvwpzm3s+6WCxBtp1A0ULbn3WFmrrBDRmg7fz9aUvae9CY0O1XPfCd1LMRkQ3LQiJbtCOrnf7GLaAT3ue+U8y7BLYuY5ehakZyq49di1nK0KAnsXuxx/1IgFdS88kD8wZUmREV5hwnQr1Ehe16VreO8T/Qc86sV+2h90z2FiJqqLNf3s/yZS3bA9DHzGZfRtgkKu3Bx0ZTN7I+466APXPqRreJf4gBqUW/NB248FO9cpD0wFaed9QV63NqpiFOs/RYeEwD8e32dZFRfi9SK5aLvuApJMu2LOfZweypHIkyPjeY5W+tsm2bdPmVoCAOiyi73cf5k0LQeJNWqZU/wuy/f8myghZ9qrjf+2JSJMaB9VNMXWmxuq4Dq0fkhzJr1ML7SgftfSG29O5koFUMozQL58gAzyX96ZMcpWbZ+3/zlaVhGln5egXC8MtIK6xIFCvh/vD/F1jLgYIp14MM597MuPmTpa+OaKek7bql9Cp8/0skhg5QSCvCaijm8wenxrfqLyRxDPCpS+L3isJC5LrjFgWnsdxQXVrJK8uaobJcTIJ5NrYYfA2l5gH27iPI9EqhzFtZJXiE4vXpH18f3kouYV9RowPzOtmYsbmstR/Mx/VY7E0XBmnMidL4dYTUXgxaDbFxWy3y6miL2yw0I2O09vPWV7LqbwMbthlU26lrLfnJDz88B+7y4pFCwvsHgCsMWq6pvroAF4Ms+++JnhzrL0GLrtfJ7667p42Vg78GirmKIRMFH0p6aLRPV4V/fclE3PLBj0InU315M5v7fDFj/IreJeFUhIAy5/BlvLdgwIfBMBWvyjhqGRBo2KmdiDAO9BPhdi6oGmZUCxTDjUyMd8rjeRdntTE+L9sHQUSvUfpRjKcSIjZXcjsMMSwwU0QzIXewD4nZg8EAZ72iHnChWveW7cB5EQRFE+YPvvyNAw4OvORF+DjDtmLUz6jNz0JbkuKbhIQEEVbpDRkoeIGA4HATymZeE4TX/hvhOxJfX5liXD9/Uon8OjJ/hhIrDNUYR2NOV2R1L+VuK/JA9o0izGPiCC9vi7UK1u4re8tvPrBInC6BH2DpMvWSRepdH0frFxGsH/kRB/S77USeMs38a+yorDaa9Wsb9WnuQg10vl087jhvwSZx77fGq52NV1h/UnZAjnqJOjCPBgQrY0wsSeSW6SOSdItAOupiWkVvSzHz+gopd/3FUUPbjdik7Vd6O6ycGOFwp4+wyZqq1MKHww5exJND6De8NB4fGBzsvKoT8O1fAC3Y2Z+3mLYwkCJXULx2zNSO90bQi0L0BhTF1AidNtqRkak72V+V1kos6m4F+kyZiOiwxfcHKWHmpQe3A8HpX6nacx0Zso0WyF/W/sOLo//2g0YD9koIjgKvw//f9Em4CvxNBUMnJYTVQJGysF4QMShnM6byaMNJhRVALf+X0+SgLJkEwLfKdBbKxjA035OEc2YKmUpvooVUUt+9U8d7cKRgNYKKPwCHyYfLJSQt4ZEdThgjeywDxgsGzPax5SklOLroSYn39feofatZDzJXevfPTHyi1ZLwpe6Hwkbqz1FuOnHiShPedbEA9b/HCtBytSZrgUwlwHpQlAiBTSxpN7TFzVZrrhRd6N8W+FeE9SAGCHwXchFR4SCGThPyRGO/XWkMPJ42BLUOmMGepDQgWH646tjoJSE3EXcA5iDS+Nq6Oh521oC2UPAnvxIj1QbVh8IbxlBytRTTjc0c14E9cyhIPlgIoHriuEFSMXSEzOGL1MmL6UCbiXfsRg9Z6OwWCCl3VeGg5bEZ1kjJkvs08k7wtPk4ATAjaTL3QoY2gf106zFbJtL4D5gmLMJ9OuzE2Fn5uaAqqpjXIqqEXxS9jtpsRU9VTHCg68RwXQVIUhuVJgHq8fOigBMrW7Am5+jjo/GNNlcFcp813dFiXy4qHhjGSEjNXp3ln03NZkOgqXQ8SalJlPOvyrAS9wW9EtjQKhcrBSWSsQ8C3o/Mc/sR/CMRB85ZIojR/tiCKtOutxQMIusIOnYHK8g6kPpTQ8J/PfJ8pa3GEoYoA67axQTXsysd2Y6ZDwpz1HkAeISVK2AlCcuQssrQv8dVLAcins/2kjRFp5Vp82HSX9j6Ci9GH5mkdyqV84vWsdwRz4JNXHZoHVZKnrxSdA1HUwRUI/5oWiqnGk9KyiS4Mv9dQIVluJ1+/pAHYEdG9YgLHiNE2zA7aIQbqqlGX6jH1CrHSPL9mnlHdPiKjozwRXu02UQuzlGJn+/PUkU6cPYLLeLc8e7S2qfCZxbdpHioand7wYKqb5bMb8dA3Dwvm6P6iJXSogJ+Q+0z43li8ydYJqZNZlSjsljr/2c5UU33vMhLDLEXIHT8WzrsS45TsKNbhYfTYx6Ds/8W5yOtiOPWc0+fRlAjbQC++FKo5UaMl2eRCxI4U5/heX2HxJGNk50rICjuFsG/8Q+NUuJgS+y3FMhe+sm1e2MdC+ldkBqEn8oRxajECbP4Wizz1tfJliW/1A5fdGTfUxM3HV72bJgnqswmoAumAx6d36KfuZwEEp0/wcrdo+8/unJ5f2mYeqCrOcaxDJrs6SxW1zVaH/YTZl+RNA0NjPLgaqnlveaes/MkpzsVEQDtvKGFrG1cnmGjZVi2azrSDGQ0Y423nEksDC5awYcOJmVYbeA4DkMSNfj+7Dx2SzH/PVPuXLX9aw9K9QF4Ml48zsSrwsVjIa8+gIdffs2pf2wCKcPtFez6vOT0UDuFHknJjMDg0fI3DnyC7jJqO8V4XpmPyarTp3JJRGhmqTHhpZInn70JMfS+RFry5+rLSOM0T+KWV8fYjs9eyCiZijlR4AiADooXm9G8JIzZCLZX2Dty83iyz7gQzSxYO7ULuTT1stvGuJwbBP4LMhLXkbxdhAmBSDiYNOnc3O+yFsO6Ps9UOQD8S4Pbr8hZ4mFjbicpO635SwpmHINYDeuewln3/GHz69LpCjmpnKPeF9ZxXcq6MR4kJUV2j/dQzqjLniNaQmrMkULdI7W1sMXRFcsz9xs1GVwVqmtMVws8HtvXMYNmosCrrgAFX2ghPz7dXCV6vML5YhfNbDAzzG6MHffrslrhMav3vtlt8Fnld4VaH6IhMkowayT1lSVvfvlKHCWwtKaTcOZrR5LZGalJOpFbVIFUOAo+LnY/25bmc3KloyLzgiTudjPsXEGPNPBIvE/5cMEvU4Lrs0N3tCke4abYDXF9f14QrwLlHSUYowDcG9zlE1wAnWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWKMBl9zaGFwZZQpdWIu",
39
+ "n": 4,
40
+ "dtype": "int64",
41
+ "_np_random": "RandomState(MT19937)",
42
+ "_shape": []
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": 0,
49
+ "action_noise": null,
50
+ "start_time": 1614710765.6116273,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gASVywIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxOL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvcmwvc3RhYmxlLWJhc2VsaW5lczMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxOL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvcmwvc3RhYmxlLWJhc2VsaW5lczMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": null,
58
+ "_last_episode_starts": null,
59
+ "_last_original_obs": null,
60
+ "_episode_num": 0,
61
+ "use_sde": false,
62
+ "sde_sample_freq": -1,
63
+ "_current_progress_remaining": -0.015808000000000044,
64
+ "ep_info_buffer": {
65
+ ":type:": "<class 'collections.deque'>",
66
+ ":serialized:": "gASVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIzQTDuQbiZUCUhpRSlIwBbJRN6AOMAXSUR0CYeLctoSL7dX2UKGgGaAloD0MIs3kcBvNmZUCUhpRSlGgVTegDaBZHQJh/HeUILPV1fZQoaAZoCWgPQwg/5Zgsbk5hQJSGlFKUaBVN6ANoFkdAmIB1ar3j/HV9lChoBmgJaA9DCO7RG+4j8GBAlIaUUpRoFU3oA2gWR0CYgcG8EmpmdX2UKGgGaAloD0MIpFUt6agoYUCUhpRSlGgVTegDaBZHQJiEFBeHBUJ1fZQoaAZoCWgPQwge4h+2dNhtQJSGlFKUaBVNIQFoFkdAmIQwXyiEhHV9lChoBmgJaA9DCOp5NxaUSGZAlIaUUpRoFU3oA2gWR0CYhXvo/zJ7dX2UKGgGaAloD0MIOiS1UDK2XECUhpRSlGgVTegDaBZHQJiJRyR0U491fZQoaAZoCWgPQwigU5CfjWg4QJSGlFKUaBVNCQFoFkdAmI2QkTpPh3V9lChoBmgJaA9DCKqdYWrL+m9AlIaUUpRoFU3hAmgWR0CYjYVhkRSQdX2UKGgGaAloD0MI9wZfmMzpYUCUhpRSlGgVTegDaBZHQJiOD9deIEd1fZQoaAZoCWgPQwiY3Ciy1oNjQJSGlFKUaBVN6ANoFkdAmKCilFc6eXV9lChoBmgJaA9DCLzOhvyzPWRAlIaUUpRoFU3oA2gWR0CYpXFNL128dX2UKGgGaAloD0MI+5RjsrjzYUCUhpRSlGgVTegDaBZHQJimxkGzKLd1fZQoaAZoCWgPQwgJcHoXbyxkQJSGlFKUaBVN6ANoFkdAmKc2TX8O1HV9lChoBmgJaA9DCI1iuaXV8mFAlIaUUpRoFU3oA2gWR0CYvdeP7vXtdX2UKGgGaAloD0MISrTk8TRIZUCUhpRSlGgVTegDaBZHQJjHhbjcVQB1fZQoaAZoCWgPQwh96IL6FldiQJSGlFKUaBVN6ANoFkdAmMnRCpm29nV9lChoBmgJaA9DCB2OrtJdyGJAlIaUUpRoFU3oA2gWR0CY3c0qpcX4dX2UKGgGaAloD0MIyQG7mryaYUCUhpRSlGgVTegDaBZHQJjfK7ROUMZ1fZQoaAZoCWgPQwgQr+sX7PpgQJSGlFKUaBVN6ANoFkdAmOKEZeiSJXV9lChoBmgJaA9DCGO2ZFUEV2BAlIaUUpRoFU3oA2gWR0CY4qAo5PuYdX2UKGgGaAloD0MISN+kaVDZZECUhpRSlGgVTegDaBZHQJjj132VVxV1fZQoaAZoCWgPQwgYtftVgFFjQJSGlFKUaBVN6ANoFkdAmOdlO45LiHV9lChoBmgJaA9DCNujN9xHBi1AlIaUUpRoFUv1aBZHQJjpaMNtqHp1fZQoaAZoCWgPQwi70cd8QM1jQJSGlFKUaBVN6ANoFkdAmOtV1nuiOHV9lChoBmgJaA9DCBzqd2Fr/V9AlIaUUpRoFU3oA2gWR0CY60pGFzuGdX2UKGgGaAloD0MI4V0u4jsvXkCUhpRSlGgVTegDaBZHQJjrxLJ0W/J1fZQoaAZoCWgPQwhlijkIukpkQJSGlFKUaBVN6ANoFkdAmO+xrFfiP3V9lChoBmgJaA9DCDFdiNUfv15AlIaUUpRoFU3oA2gWR0CY898ifQKKdX2UKGgGaAloD0MIhq3Zykv3WUCUhpRSlGgVTegDaBZHQJj1B+pfhMt1fZQoaAZoCWgPQwgHms+5WyBgQJSGlFKUaBVN6ANoFkdAmPVrtVrAQHV9lChoBmgJaA9DCAGJJlDEzV9AlIaUUpRoFU3oA2gWR0CZBOoDPnjidX2UKGgGaAloD0MI4bchxmsjZkCUhpRSlGgVTegDaBZHQJkjd0T101Z1fZQoaAZoCWgPQwizCMVW0FQLQJSGlFKUaBVNCQFoFkdAmSSChWYF7nV9lChoBmgJaA9DCG1VEtmH4GtAlIaUUpRoFU0xAWgWR0CZJLa5PM0QdX2UKGgGaAloD0MISpuqe2T8YkCUhpRSlGgVTegDaBZHQJkltRZU1ht1fZQoaAZoCWgPQwhKtU/HYyNlQJSGlFKUaBVN6ANoFkdAmSwXSnccl3V9lChoBmgJaA9DCAYSFD/GH1pAlIaUUpRoFU3oA2gWR0CZMSHu7YkFdX2UKGgGaAloD0MIycwFLg9CY0CUhpRSlGgVTegDaBZHQJkxPvCuU2V1fZQoaAZoCWgPQwi3RgTj4NZhQJSGlFKUaBVN6ANoFkdAmTKTOLR8dHV9lChoBmgJaA9DCC1gArfumF1AlIaUUpRoFU3oA2gWR0CZNncgQpWndX2UKGgGaAloD0MIy9jQzX7UbkCUhpRSlGgVTYEDaBZHQJlF1YwIt191fZQoaAZoCWgPQwiTNeohmkZlQJSGlFKUaBVN6ANoFkdAmUfDUI9kjHV9lChoBmgJaA9DCCnOUUfHBGFAlIaUUpRoFU3oA2gWR0CZSdNbTtsvdX2UKGgGaAloD0MIAcKHEq3hYkCUhpRSlGgVTegDaBZHQJlJx4u9OAR1fZQoaAZoCWgPQwjH155ZkudmQJSGlFKUaBVN6ANoFkdAmU71RceKbnV9lChoBmgJaA9DCL5muWx0pmRAlIaUUpRoFU3oA2gWR0CZVTPk7wKCdX2UKGgGaAloD0MIz2bV52ovZkCUhpRSlGgVTegDaBZHQJlXvVXmvGJ1fZQoaAZoCWgPQwi/EHLe/y1tQJSGlFKUaBVN0ANoFkdAmXYBlMAWBXV9lChoBmgJaA9DCC+lLhlHTmJAlIaUUpRoFU3oA2gWR0CZeGpHI6sAdX2UKGgGaAloD0MI1XjpJjG2Y0CUhpRSlGgVTegDaBZHQJl4n/cWTHN1fZQoaAZoCWgPQwh5ILJIk4BjQJSGlFKUaBVN6ANoFkdAmYg/ES/TLHV9lChoBmgJaA9DCDGYv0LmdGVAlIaUUpRoFU3oA2gWR0CZjxeYUnG9dX2UKGgGaAloD0MI04VY/ZEAZUCUhpRSlGgVTegDaBZHQJmUk4Ia99N1fZQoaAZoCWgPQwgF3V7SGFVhQJSGlFKUaBVN6ANoFkdAmZSvppvgnHV9lChoBmgJaA9DCIhlM4ekmkhAlIaUUpRoFU0UAWgWR0CZlTr6LwWndX2UKGgGaAloD0MITfbP04DEYUCUhpRSlGgVTegDaBZHQJmWNWLgn+h1fZQoaAZoCWgPQwhv2LYos1RlQJSGlFKUaBVN6ANoFkdAmZpcqSX+l3V9lChoBmgJaA9DCKA01CgkmmNAlIaUUpRoFU3oA2gWR0CZmrwsoUi7dX2UKGgGaAloD0MIsg3cgbrBY0CUhpRSlGgVTegDaBZHQJmczxXnyNJ1fZQoaAZoCWgPQwhM/id/9/9lQJSGlFKUaBVN6ANoFkdAmZ8UXYUWVXV9lChoBmgJaA9DCAjKbfueIWJAlIaUUpRoFU3oA2gWR0CZnwoqCpWFdX2UKGgGaAloD0MIoS3nUtzzYUCUhpRSlGgVTegDaBZHQJmkmJJoTPB1fZQoaAZoCWgPQwgwf4XMlXE5QJSGlFKUaBVNDQFoFkdAmbYrdN34bnV9lChoBmgJaA9DCBEY6xuY/GRAlIaUUpRoFU3oA2gWR0CZupB0IToMdX2UKGgGaAloD0MIv+/fvDhqY0CUhpRSlGgVTegDaBZHQJm9Tc8DB/J1fZQoaAZoCWgPQwgIkQw5tt5mQJSGlFKUaBVN6ANoFkdAmdye5WilBXV9lChoBmgJaA9DCBYW3A94X2VAlIaUUpRoFU3oA2gWR0CZ3yt7KJVKdX2UKGgGaAloD0MIvFzEd2IgYECUhpRSlGgVTegDaBZHQJngo+Y+jdp1fZQoaAZoCWgPQwjisZ/F0sRgQJSGlFKUaBVN6ANoFkdAmeh4mLLpzXV9lChoBmgJaA9DCDzbozfcdF9AlIaUUpRoFU3oA2gWR0CZ/ERChN/OdX2UKGgGaAloD0MI1SXjGMlNZUCUhpRSlGgVTegDaBZHQJn8YPvrnkl1fZQoaAZoCWgPQwjh0jHnGRJjQJSGlFKUaBVN6ANoFkdAmfze+ZgG8nV9lChoBmgJaA9DCPW+8bXnUmdAlIaUUpRoFU3oA2gWR0CZ/cGIKtxNdX2UKGgGaAloD0MIA5gycMBYZECUhpRSlGgVTegDaBZHQJoBxVAAyVR1fZQoaAZoCWgPQwjVITfDDVZlQJSGlFKUaBVN6ANoFkdAmgOzLSuyNXV9lChoBmgJaA9DCI2ACkcQNmRAlIaUUpRoFU3oA2gWR0CaBa+mWMS9dX2UKGgGaAloD0MIGXYYk/5MXUCUhpRSlGgVTegDaBZHQJoFo25xzaN1fZQoaAZoCWgPQwjCTrFqkDVmQJSGlFKUaBVN6ANoFkdAmgq24EwFknV9lChoBmgJaA9DCM2wUdZv5mFAlIaUUpRoFU3oA2gWR0CaDU/h2nsLdX2UKGgGaAloD0MIFk890uDjcUCUhpRSlGgVTbUCaBZHQJoQbnjhky11fZQoaAZoCWgPQwi0If/MIF5jQJSGlFKUaBVN6ANoFkdAmhDOZLIxQHV9lChoBmgJaA9DCKX3ja89D2VAlIaUUpRoFU3oA2gWR0CaEv0WM0gsdX2UKGgGaAloD0MIYKsEi8MzR0CUhpRSlGgVS/toFkdAmjtGQCCBgHV9lChoBmgJaA9DCOXwSScSIGJAlIaUUpRoFU3oA2gWR0CaPa8x9G7SdX2UKGgGaAloD0MItyVywRluZUCUhpRSlGgVTegDaBZHQJo/y7+T/yZ1fZQoaAZoCWgPQwgtmPijqKtiQJSGlFKUaBVN6ANoFkdAmkfH6MzdlHV9lChoBmgJaA9DCBVT6Scc7GtAlIaUUpRoFU3WAmgWR0CaSiQoCuEFdX2UKGgGaAloD0MI12g50EMhYUCUhpRSlGgVTegDaBZHQJpNKvHLidd1fZQoaAZoCWgPQwgEATJ0bHFhQJSGlFKUaBVN6ANoFkdAmk1HbItDlnV9lChoBmgJaA9DCIV3uYjv7mZAlIaUUpRoFU3oA2gWR0CaTcCvovBadX2UKGgGaAloD0MIdcsO8Q8wZECUhpRSlGgVTegDaBZHQJpOmoegctJ1fZQoaAZoCWgPQwhIFcWrLIdnQJSGlFKUaBVN6ANoFkdAmlJzqv/za3V9lChoBmgJaA9DCMOf4c0a/mRAlIaUUpRoFU3oA2gWR0CaVFqB3A2ydX2UKGgGaAloD0MI8FF/vcJMYkCUhpRSlGgVTegDaBZHQJpWVF3IMjN1fZQoaAZoCWgPQwjcf2Q69ANlQJSGlFKUaBVN6ANoFkdAmmkcPJ7swHV9lChoBmgJaA9DCJzhBnx+SmZAlIaUUpRoFU3oA2gWR0Cab5RrJr+HdX2UKGgGaAloD0MIrMWnABjhW0CUhpRSlGgVTegDaBZHQJpwARK6Fuh1fZQoaAZoCWgPQwjmeAWiJ1tkQJSGlFKUaBVN6ANoFkdAmnKAFs54nnVlLg=="
67
+ },
68
+ "ep_success_buffer": {
69
+ ":type:": "<class 'collections.deque'>",
70
+ ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
71
+ },
72
+ "_n_updates": 248,
73
+ "n_steps": 1024,
74
+ "gamma": 0.999,
75
+ "gae_lambda": 0.98,
76
+ "ent_coef": 0.01,
77
+ "vf_coef": 0.5,
78
+ "max_grad_norm": 0.5,
79
+ "batch_size": 64,
80
+ "n_epochs": 4,
81
+ "clip_range": {
82
+ ":type:": "<class 'function'>",
83
+ ":serialized:": "gASV2QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxVL3ZvbHVtZS9VU0VSU1RPUkUvcmFmZl9hbi9wcm9qZWN0cy90b3JjaHktYmFzZWxpbmVzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS3xDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVS92b2x1bWUvVVNFUlNUT1JFL3JhZmZfYW4vcHJvamVjdHMvdG9yY2h5LWJhc2VsaW5lcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
84
+ },
85
+ "clip_range_vf": null,
86
+ "normalize_advantage": true,
87
+ "target_kl": null,
88
+ "_last_dones": {
89
+ ":type:": "<class 'numpy.ndarray'>",
90
+ ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="
91
+ }
92
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ad2b6f41a2d77fde50a311765f01d060a0c70f7dfe478e35dff54e81c569dbd5
3
+ size 84829
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:95cb9a28fd2448d267013057aac5dde57077d247ab0eda8cb4b977c1190a075b
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.13.0-44-generic-x86_64-with-debian-bullseye-sid #49~20.04.1-Ubuntu SMP Wed May 18 18:44:28 UTC 2022
2
+ Python: 3.7.10
3
+ Stable-Baselines3: 1.5.1a8
4
+ PyTorch: 1.11.0
5
+ GPU Enabled: True
6
+ Numpy: 1.21.2
7
+ Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:90da4461234511b7a20d7875f1e53391945d02f34aa0fe72000d4657ec16a7e1
3
+ size 219166
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 233.5564493, "std_reward": 53.89001535753786, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-02T13:18:24.896366"}
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:14c9c33f45f0be87e704b79dc8dde1d1dd5800b9f17764f022d716cf37197318
3
+ size 93463