Initial commit
Browse files- .gitattributes +1 -0
- README.md +63 -0
- args.yml +59 -0
- config.yml +19 -0
- env_kwargs.yml +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +92 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
- train_eval_metrics.zip +3 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 233.56 +/- 53.89
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
26 |
+
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
27 |
+
|
28 |
+
The RL Zoo is a training framework for Stable Baselines3
|
29 |
+
reinforcement learning agents,
|
30 |
+
with hyperparameter optimization and pre-trained agents included.
|
31 |
+
|
32 |
+
## Usage (with SB3 RL Zoo)
|
33 |
+
|
34 |
+
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
|
35 |
+
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
36 |
+
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
37 |
+
|
38 |
+
```
|
39 |
+
# Download model and save it into the logs/ folder
|
40 |
+
python -m utils.load_from_hub --algo ppo --env LunarLander-v2 -orga sb3 -f logs/
|
41 |
+
python enjoy.py --algo ppo --env LunarLander-v2 -f logs/
|
42 |
+
```
|
43 |
+
|
44 |
+
## Training (with the RL Zoo)
|
45 |
+
```
|
46 |
+
python train.py --algo ppo --env LunarLander-v2 -f logs/
|
47 |
+
# Upload the model and generate video (when possible)
|
48 |
+
python -m utils.push_to_hub --algo ppo --env LunarLander-v2 -f logs/ -orga sb3
|
49 |
+
```
|
50 |
+
|
51 |
+
## Hyperparameters
|
52 |
+
```python
|
53 |
+
OrderedDict([('batch_size', 64),
|
54 |
+
('ent_coef', 0.01),
|
55 |
+
('gae_lambda', 0.98),
|
56 |
+
('gamma', 0.999),
|
57 |
+
('n_envs', 16),
|
58 |
+
('n_epochs', 4),
|
59 |
+
('n_steps', 1024),
|
60 |
+
('n_timesteps', 1000000.0),
|
61 |
+
('policy', 'MlpPolicy'),
|
62 |
+
('normalize', False)])
|
63 |
+
```
|
args.yml
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - algo
|
3 |
+
- ppo
|
4 |
+
- - env
|
5 |
+
- LunarLander-v2
|
6 |
+
- - env_kwargs
|
7 |
+
- null
|
8 |
+
- - eval_episodes
|
9 |
+
- 10
|
10 |
+
- - eval_freq
|
11 |
+
- 10000
|
12 |
+
- - gym_packages
|
13 |
+
- []
|
14 |
+
- - hyperparams
|
15 |
+
- null
|
16 |
+
- - log_folder
|
17 |
+
- rl-trained-agents/
|
18 |
+
- - log_interval
|
19 |
+
- -1
|
20 |
+
- - n_evaluations
|
21 |
+
- 20
|
22 |
+
- - n_jobs
|
23 |
+
- 1
|
24 |
+
- - n_startup_trials
|
25 |
+
- 10
|
26 |
+
- - n_timesteps
|
27 |
+
- -1
|
28 |
+
- - n_trials
|
29 |
+
- 10
|
30 |
+
- - num_threads
|
31 |
+
- -1
|
32 |
+
- - optimize_hyperparameters
|
33 |
+
- false
|
34 |
+
- - pruner
|
35 |
+
- median
|
36 |
+
- - sampler
|
37 |
+
- tpe
|
38 |
+
- - save_freq
|
39 |
+
- -1
|
40 |
+
- - save_replay_buffer
|
41 |
+
- false
|
42 |
+
- - seed
|
43 |
+
- 1844899055
|
44 |
+
- - storage
|
45 |
+
- null
|
46 |
+
- - study_name
|
47 |
+
- null
|
48 |
+
- - tensorboard_log
|
49 |
+
- ''
|
50 |
+
- - trained_agent
|
51 |
+
- ''
|
52 |
+
- - truncate_last_trajectory
|
53 |
+
- true
|
54 |
+
- - uuid
|
55 |
+
- true
|
56 |
+
- - vec_env
|
57 |
+
- dummy
|
58 |
+
- - verbose
|
59 |
+
- 1
|
config.yml
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - batch_size
|
3 |
+
- 64
|
4 |
+
- - ent_coef
|
5 |
+
- 0.01
|
6 |
+
- - gae_lambda
|
7 |
+
- 0.98
|
8 |
+
- - gamma
|
9 |
+
- 0.999
|
10 |
+
- - n_envs
|
11 |
+
- 16
|
12 |
+
- - n_epochs
|
13 |
+
- 4
|
14 |
+
- - n_steps
|
15 |
+
- 1024
|
16 |
+
- - n_timesteps
|
17 |
+
- 1000000.0
|
18 |
+
- - policy
|
19 |
+
- MlpPolicy
|
env_kwargs.yml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:10417bd2750432b6ee1f65e064548cf6174ff7a015728b28343e440f275d66c4
|
3 |
+
size 147054
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.1a8
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f73befbd950>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f73befbd9e0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f73befbda70>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f73befbdb00>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f73befbdb90>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f73befbdc20>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f73befbdcb0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f73befbdd40>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f73befbddd0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f73befbde60>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f73befbdef0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f73bf00f840>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwiFlGgKiUMgAACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgQaBJLAIWUaBSHlFKUKEsBSwiFlGgKiUMgAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UdJRijA1ib3VuZGVkX2JlbG93lGgQaBJLAIWUaBSHlFKUKEsBSwiFlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMIAAAAAAAAAACUdJRijA1ib3VuZGVkX2Fib3ZllGgQaBJLAIWUaBSHlFKUKEsBSwiFlGgoiUMIAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE6MBl9zaGFwZZRLCIWUdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
28 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
29 |
+
"bounded_below": "[False False False False False False False False]",
|
30 |
+
"bounded_above": "[False False False False False False False False]",
|
31 |
+
"_np_random": null,
|
32 |
+
"_shape": [
|
33 |
+
8
|
34 |
+
]
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gASVTQsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwFZHR5cGWUjAVudW1weZSMBWR0eXBllJOUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpRoE4wFc3RhdGWUfZQojANrZXmUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoB4wHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAU1wAoWUaAmMAnU0lImIh5RSlChLA2gNTk5OSv////9K/////0sAdJRiiULACQAAAAAAgFPCs5yHA7WTcuyrW+jmsvLPtoHa1QbvYaExTaBrtczZE+YYn3SceS/IpRuAxHkBSZ4PQ+Rd4BiTkhNVzNRKKWTSCJW+NNCeRHJ6A/Ctvwpzm3s+6WCxBtp1A0ULbn3WFmrrBDRmg7fz9aUvae9CY0O1XPfCd1LMRkQ3LQiJbtCOrnf7GLaAT3ue+U8y7BLYuY5ehakZyq49di1nK0KAnsXuxx/1IgFdS88kD8wZUmREV5hwnQr1Ehe16VreO8T/Qc86sV+2h90z2FiJqqLNf3s/yZS3bA9DHzGZfRtgkKu3Bx0ZTN7I+466APXPqRreJf4gBqUW/NB248FO9cpD0wFaed9QV63NqpiFOs/RYeEwD8e32dZFRfi9SK5aLvuApJMu2LOfZweypHIkyPjeY5W+tsm2bdPmVoCAOiyi73cf5k0LQeJNWqZU/wuy/f8myghZ9qrjf+2JSJMaB9VNMXWmxuq4Dq0fkhzJr1ML7SgftfSG29O5koFUMozQL58gAzyX96ZMcpWbZ+3/zlaVhGln5egXC8MtIK6xIFCvh/vD/F1jLgYIp14MM597MuPmTpa+OaKek7bql9Cp8/0skhg5QSCvCaijm8wenxrfqLyRxDPCpS+L3isJC5LrjFgWnsdxQXVrJK8uaobJcTIJ5NrYYfA2l5gH27iPI9EqhzFtZJXiE4vXpH18f3kouYV9RowPzOtmYsbmstR/Mx/VY7E0XBmnMidL4dYTUXgxaDbFxWy3y6miL2yw0I2O09vPWV7LqbwMbthlU26lrLfnJDz88B+7y4pFCwvsHgCsMWq6pvroAF4Ms+++JnhzrL0GLrtfJ7667p42Vg78GirmKIRMFH0p6aLRPV4V/fclE3PLBj0InU315M5v7fDFj/IreJeFUhIAy5/BlvLdgwIfBMBWvyjhqGRBo2KmdiDAO9BPhdi6oGmZUCxTDjUyMd8rjeRdntTE+L9sHQUSvUfpRjKcSIjZXcjsMMSwwU0QzIXewD4nZg8EAZ72iHnChWveW7cB5EQRFE+YPvvyNAw4OvORF+DjDtmLUz6jNz0JbkuKbhIQEEVbpDRkoeIGA4HATymZeE4TX/hvhOxJfX5liXD9/Uon8OjJ/hhIrDNUYR2NOV2R1L+VuK/JA9o0izGPiCC9vi7UK1u4re8tvPrBInC6BH2DpMvWSRepdH0frFxGsH/kRB/S77USeMs38a+yorDaa9Wsb9WnuQg10vl087jhvwSZx77fGq52NV1h/UnZAjnqJOjCPBgQrY0wsSeSW6SOSdItAOupiWkVvSzHz+gopd/3FUUPbjdik7Vd6O6ycGOFwp4+wyZqq1MKHww5exJND6De8NB4fGBzsvKoT8O1fAC3Y2Z+3mLYwkCJXULx2zNSO90bQi0L0BhTF1AidNtqRkak72V+V1kos6m4F+kyZiOiwxfcHKWHmpQe3A8HpX6nacx0Zso0WyF/W/sOLo//2g0YD9koIjgKvw//f9Em4CvxNBUMnJYTVQJGysF4QMShnM6byaMNJhRVALf+X0+SgLJkEwLfKdBbKxjA035OEc2YKmUpvooVUUt+9U8d7cKRgNYKKPwCHyYfLJSQt4ZEdThgjeywDxgsGzPax5SklOLroSYn39feofatZDzJXevfPTHyi1ZLwpe6Hwkbqz1FuOnHiShPedbEA9b/HCtBytSZrgUwlwHpQlAiBTSxpN7TFzVZrrhRd6N8W+FeE9SAGCHwXchFR4SCGThPyRGO/XWkMPJ42BLUOmMGepDQgWH646tjoJSE3EXcA5iDS+Nq6Oh521oC2UPAnvxIj1QbVh8IbxlBytRTTjc0c14E9cyhIPlgIoHriuEFSMXSEzOGL1MmL6UCbiXfsRg9Z6OwWCCl3VeGg5bEZ1kjJkvs08k7wtPk4ATAjaTL3QoY2gf106zFbJtL4D5gmLMJ9OuzE2Fn5uaAqqpjXIqqEXxS9jtpsRU9VTHCg68RwXQVIUhuVJgHq8fOigBMrW7Am5+jjo/GNNlcFcp813dFiXy4qHhjGSEjNXp3ln03NZkOgqXQ8SalJlPOvyrAS9wW9EtjQKhcrBSWSsQ8C3o/Mc/sR/CMRB85ZIojR/tiCKtOutxQMIusIOnYHK8g6kPpTQ8J/PfJ8pa3GEoYoA67axQTXsysd2Y6ZDwpz1HkAeISVK2AlCcuQssrQv8dVLAcins/2kjRFp5Vp82HSX9j6Ci9GH5mkdyqV84vWsdwRz4JNXHZoHVZKnrxSdA1HUwRUI/5oWiqnGk9KyiS4Mv9dQIVluJ1+/pAHYEdG9YgLHiNE2zA7aIQbqqlGX6jH1CrHSPL9mnlHdPiKjozwRXu02UQuzlGJn+/PUkU6cPYLLeLc8e7S2qfCZxbdpHioand7wYKqb5bMb8dA3Dwvm6P6iJXSogJ+Q+0z43li8ydYJqZNZlSjsljr/2c5UU33vMhLDLEXIHT8WzrsS45TsKNbhYfTYx6Ds/8W5yOtiOPWc0+fRlAjbQC++FKo5UaMl2eRCxI4U5/heX2HxJGNk50rICjuFsG/8Q+NUuJgS+y3FMhe+sm1e2MdC+ldkBqEn8oRxajECbP4Wizz1tfJliW/1A5fdGTfUxM3HV72bJgnqswmoAumAx6d36KfuZwEEp0/wcrdo+8/unJ5f2mYeqCrOcaxDJrs6SxW1zVaH/YTZl+RNA0NjPLgaqnlveaes/MkpzsVEQDtvKGFrG1cnmGjZVi2azrSDGQ0Y423nEksDC5awYcOJmVYbeA4DkMSNfj+7Dx2SzH/PVPuXLX9aw9K9QF4Ml48zsSrwsVjIa8+gIdffs2pf2wCKcPtFez6vOT0UDuFHknJjMDg0fI3DnyC7jJqO8V4XpmPyarTp3JJRGhmqTHhpZInn70JMfS+RFry5+rLSOM0T+KWV8fYjs9eyCiZijlR4AiADooXm9G8JIzZCLZX2Dty83iyz7gQzSxYO7ULuTT1stvGuJwbBP4LMhLXkbxdhAmBSDiYNOnc3O+yFsO6Ps9UOQD8S4Pbr8hZ4mFjbicpO635SwpmHINYDeuewln3/GHz69LpCjmpnKPeF9ZxXcq6MR4kJUV2j/dQzqjLniNaQmrMkULdI7W1sMXRFcsz9xs1GVwVqmtMVws8HtvXMYNmosCrrgAFX2ghPz7dXCV6vML5YhfNbDAzzG6MHffrslrhMav3vtlt8Fnld4VaH6IhMkowayT1lSVvfvlKHCWwtKaTcOZrR5LZGalJOpFbVIFUOAo+LnY/25bmc3KloyLzgiTudjPsXEGPNPBIvE/5cMEvU4Lrs0N3tCke4abYDXF9f14QrwLlHSUYowDcG9zlE1wAnWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWKMBl9zaGFwZZQpdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"dtype": "int64",
|
41 |
+
"_np_random": "RandomState(MT19937)",
|
42 |
+
"_shape": []
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": 0,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1614710765.6116273,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gASVywIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxOL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvcmwvc3RhYmxlLWJhc2VsaW5lczMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxOL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvcmwvc3RhYmxlLWJhc2VsaW5lczMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": null,
|
58 |
+
"_last_episode_starts": null,
|
59 |
+
"_last_original_obs": null,
|
60 |
+
"_episode_num": 0,
|
61 |
+
"use_sde": false,
|
62 |
+
"sde_sample_freq": -1,
|
63 |
+
"_current_progress_remaining": -0.015808000000000044,
|
64 |
+
"ep_info_buffer": {
|
65 |
+
":type:": "<class 'collections.deque'>",
|
66 |
+
":serialized:": "gASVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIzQTDuQbiZUCUhpRSlIwBbJRN6AOMAXSUR0CYeLctoSL7dX2UKGgGaAloD0MIs3kcBvNmZUCUhpRSlGgVTegDaBZHQJh/HeUILPV1fZQoaAZoCWgPQwg/5Zgsbk5hQJSGlFKUaBVN6ANoFkdAmIB1ar3j/HV9lChoBmgJaA9DCO7RG+4j8GBAlIaUUpRoFU3oA2gWR0CYgcG8EmpmdX2UKGgGaAloD0MIpFUt6agoYUCUhpRSlGgVTegDaBZHQJiEFBeHBUJ1fZQoaAZoCWgPQwge4h+2dNhtQJSGlFKUaBVNIQFoFkdAmIQwXyiEhHV9lChoBmgJaA9DCOp5NxaUSGZAlIaUUpRoFU3oA2gWR0CYhXvo/zJ7dX2UKGgGaAloD0MIOiS1UDK2XECUhpRSlGgVTegDaBZHQJiJRyR0U491fZQoaAZoCWgPQwigU5CfjWg4QJSGlFKUaBVNCQFoFkdAmI2QkTpPh3V9lChoBmgJaA9DCKqdYWrL+m9AlIaUUpRoFU3hAmgWR0CYjYVhkRSQdX2UKGgGaAloD0MI9wZfmMzpYUCUhpRSlGgVTegDaBZHQJiOD9deIEd1fZQoaAZoCWgPQwiY3Ciy1oNjQJSGlFKUaBVN6ANoFkdAmKCilFc6eXV9lChoBmgJaA9DCLzOhvyzPWRAlIaUUpRoFU3oA2gWR0CYpXFNL128dX2UKGgGaAloD0MI+5RjsrjzYUCUhpRSlGgVTegDaBZHQJimxkGzKLd1fZQoaAZoCWgPQwgJcHoXbyxkQJSGlFKUaBVN6ANoFkdAmKc2TX8O1HV9lChoBmgJaA9DCI1iuaXV8mFAlIaUUpRoFU3oA2gWR0CYvdeP7vXtdX2UKGgGaAloD0MISrTk8TRIZUCUhpRSlGgVTegDaBZHQJjHhbjcVQB1fZQoaAZoCWgPQwh96IL6FldiQJSGlFKUaBVN6ANoFkdAmMnRCpm29nV9lChoBmgJaA9DCB2OrtJdyGJAlIaUUpRoFU3oA2gWR0CY3c0qpcX4dX2UKGgGaAloD0MIyQG7mryaYUCUhpRSlGgVTegDaBZHQJjfK7ROUMZ1fZQoaAZoCWgPQwgQr+sX7PpgQJSGlFKUaBVN6ANoFkdAmOKEZeiSJXV9lChoBmgJaA9DCGO2ZFUEV2BAlIaUUpRoFU3oA2gWR0CY4qAo5PuYdX2UKGgGaAloD0MISN+kaVDZZECUhpRSlGgVTegDaBZHQJjj132VVxV1fZQoaAZoCWgPQwgYtftVgFFjQJSGlFKUaBVN6ANoFkdAmOdlO45LiHV9lChoBmgJaA9DCNujN9xHBi1AlIaUUpRoFUv1aBZHQJjpaMNtqHp1fZQoaAZoCWgPQwi70cd8QM1jQJSGlFKUaBVN6ANoFkdAmOtV1nuiOHV9lChoBmgJaA9DCBzqd2Fr/V9AlIaUUpRoFU3oA2gWR0CY60pGFzuGdX2UKGgGaAloD0MI4V0u4jsvXkCUhpRSlGgVTegDaBZHQJjrxLJ0W/J1fZQoaAZoCWgPQwhlijkIukpkQJSGlFKUaBVN6ANoFkdAmO+xrFfiP3V9lChoBmgJaA9DCDFdiNUfv15AlIaUUpRoFU3oA2gWR0CY898ifQKKdX2UKGgGaAloD0MIhq3Zykv3WUCUhpRSlGgVTegDaBZHQJj1B+pfhMt1fZQoaAZoCWgPQwgHms+5WyBgQJSGlFKUaBVN6ANoFkdAmPVrtVrAQHV9lChoBmgJaA9DCAGJJlDEzV9AlIaUUpRoFU3oA2gWR0CZBOoDPnjidX2UKGgGaAloD0MI4bchxmsjZkCUhpRSlGgVTegDaBZHQJkjd0T101Z1fZQoaAZoCWgPQwizCMVW0FQLQJSGlFKUaBVNCQFoFkdAmSSChWYF7nV9lChoBmgJaA9DCG1VEtmH4GtAlIaUUpRoFU0xAWgWR0CZJLa5PM0QdX2UKGgGaAloD0MISpuqe2T8YkCUhpRSlGgVTegDaBZHQJkltRZU1ht1fZQoaAZoCWgPQwhKtU/HYyNlQJSGlFKUaBVN6ANoFkdAmSwXSnccl3V9lChoBmgJaA9DCAYSFD/GH1pAlIaUUpRoFU3oA2gWR0CZMSHu7YkFdX2UKGgGaAloD0MIycwFLg9CY0CUhpRSlGgVTegDaBZHQJkxPvCuU2V1fZQoaAZoCWgPQwi3RgTj4NZhQJSGlFKUaBVN6ANoFkdAmTKTOLR8dHV9lChoBmgJaA9DCC1gArfumF1AlIaUUpRoFU3oA2gWR0CZNncgQpWndX2UKGgGaAloD0MIy9jQzX7UbkCUhpRSlGgVTYEDaBZHQJlF1YwIt191fZQoaAZoCWgPQwiTNeohmkZlQJSGlFKUaBVN6ANoFkdAmUfDUI9kjHV9lChoBmgJaA9DCCnOUUfHBGFAlIaUUpRoFU3oA2gWR0CZSdNbTtsvdX2UKGgGaAloD0MIAcKHEq3hYkCUhpRSlGgVTegDaBZHQJlJx4u9OAR1fZQoaAZoCWgPQwjH155ZkudmQJSGlFKUaBVN6ANoFkdAmU71RceKbnV9lChoBmgJaA9DCL5muWx0pmRAlIaUUpRoFU3oA2gWR0CZVTPk7wKCdX2UKGgGaAloD0MIz2bV52ovZkCUhpRSlGgVTegDaBZHQJlXvVXmvGJ1fZQoaAZoCWgPQwi/EHLe/y1tQJSGlFKUaBVN0ANoFkdAmXYBlMAWBXV9lChoBmgJaA9DCC+lLhlHTmJAlIaUUpRoFU3oA2gWR0CZeGpHI6sAdX2UKGgGaAloD0MI1XjpJjG2Y0CUhpRSlGgVTegDaBZHQJl4n/cWTHN1fZQoaAZoCWgPQwh5ILJIk4BjQJSGlFKUaBVN6ANoFkdAmYg/ES/TLHV9lChoBmgJaA9DCDGYv0LmdGVAlIaUUpRoFU3oA2gWR0CZjxeYUnG9dX2UKGgGaAloD0MI04VY/ZEAZUCUhpRSlGgVTegDaBZHQJmUk4Ia99N1fZQoaAZoCWgPQwgF3V7SGFVhQJSGlFKUaBVN6ANoFkdAmZSvppvgnHV9lChoBmgJaA9DCIhlM4ekmkhAlIaUUpRoFU0UAWgWR0CZlTr6LwWndX2UKGgGaAloD0MITfbP04DEYUCUhpRSlGgVTegDaBZHQJmWNWLgn+h1fZQoaAZoCWgPQwhv2LYos1RlQJSGlFKUaBVN6ANoFkdAmZpcqSX+l3V9lChoBmgJaA9DCKA01CgkmmNAlIaUUpRoFU3oA2gWR0CZmrwsoUi7dX2UKGgGaAloD0MIsg3cgbrBY0CUhpRSlGgVTegDaBZHQJmczxXnyNJ1fZQoaAZoCWgPQwhM/id/9/9lQJSGlFKUaBVN6ANoFkdAmZ8UXYUWVXV9lChoBmgJaA9DCAjKbfueIWJAlIaUUpRoFU3oA2gWR0CZnwoqCpWFdX2UKGgGaAloD0MIoS3nUtzzYUCUhpRSlGgVTegDaBZHQJmkmJJoTPB1fZQoaAZoCWgPQwgwf4XMlXE5QJSGlFKUaBVNDQFoFkdAmbYrdN34bnV9lChoBmgJaA9DCBEY6xuY/GRAlIaUUpRoFU3oA2gWR0CZupB0IToMdX2UKGgGaAloD0MIv+/fvDhqY0CUhpRSlGgVTegDaBZHQJm9Tc8DB/J1fZQoaAZoCWgPQwgIkQw5tt5mQJSGlFKUaBVN6ANoFkdAmdye5WilBXV9lChoBmgJaA9DCBYW3A94X2VAlIaUUpRoFU3oA2gWR0CZ3yt7KJVKdX2UKGgGaAloD0MIvFzEd2IgYECUhpRSlGgVTegDaBZHQJngo+Y+jdp1fZQoaAZoCWgPQwjisZ/F0sRgQJSGlFKUaBVN6ANoFkdAmeh4mLLpzXV9lChoBmgJaA9DCDzbozfcdF9AlIaUUpRoFU3oA2gWR0CZ/ERChN/OdX2UKGgGaAloD0MI1SXjGMlNZUCUhpRSlGgVTegDaBZHQJn8YPvrnkl1fZQoaAZoCWgPQwjh0jHnGRJjQJSGlFKUaBVN6ANoFkdAmfze+ZgG8nV9lChoBmgJaA9DCPW+8bXnUmdAlIaUUpRoFU3oA2gWR0CZ/cGIKtxNdX2UKGgGaAloD0MIA5gycMBYZECUhpRSlGgVTegDaBZHQJoBxVAAyVR1fZQoaAZoCWgPQwjVITfDDVZlQJSGlFKUaBVN6ANoFkdAmgOzLSuyNXV9lChoBmgJaA9DCI2ACkcQNmRAlIaUUpRoFU3oA2gWR0CaBa+mWMS9dX2UKGgGaAloD0MIGXYYk/5MXUCUhpRSlGgVTegDaBZHQJoFo25xzaN1fZQoaAZoCWgPQwjCTrFqkDVmQJSGlFKUaBVN6ANoFkdAmgq24EwFknV9lChoBmgJaA9DCM2wUdZv5mFAlIaUUpRoFU3oA2gWR0CaDU/h2nsLdX2UKGgGaAloD0MIFk890uDjcUCUhpRSlGgVTbUCaBZHQJoQbnjhky11fZQoaAZoCWgPQwi0If/MIF5jQJSGlFKUaBVN6ANoFkdAmhDOZLIxQHV9lChoBmgJaA9DCKX3ja89D2VAlIaUUpRoFU3oA2gWR0CaEv0WM0gsdX2UKGgGaAloD0MIYKsEi8MzR0CUhpRSlGgVS/toFkdAmjtGQCCBgHV9lChoBmgJaA9DCOXwSScSIGJAlIaUUpRoFU3oA2gWR0CaPa8x9G7SdX2UKGgGaAloD0MItyVywRluZUCUhpRSlGgVTegDaBZHQJo/y7+T/yZ1fZQoaAZoCWgPQwgtmPijqKtiQJSGlFKUaBVN6ANoFkdAmkfH6MzdlHV9lChoBmgJaA9DCBVT6Scc7GtAlIaUUpRoFU3WAmgWR0CaSiQoCuEFdX2UKGgGaAloD0MI12g50EMhYUCUhpRSlGgVTegDaBZHQJpNKvHLidd1fZQoaAZoCWgPQwgEATJ0bHFhQJSGlFKUaBVN6ANoFkdAmk1HbItDlnV9lChoBmgJaA9DCIV3uYjv7mZAlIaUUpRoFU3oA2gWR0CaTcCvovBadX2UKGgGaAloD0MIdcsO8Q8wZECUhpRSlGgVTegDaBZHQJpOmoegctJ1fZQoaAZoCWgPQwhIFcWrLIdnQJSGlFKUaBVN6ANoFkdAmlJzqv/za3V9lChoBmgJaA9DCMOf4c0a/mRAlIaUUpRoFU3oA2gWR0CaVFqB3A2ydX2UKGgGaAloD0MI8FF/vcJMYkCUhpRSlGgVTegDaBZHQJpWVF3IMjN1fZQoaAZoCWgPQwjcf2Q69ANlQJSGlFKUaBVN6ANoFkdAmmkcPJ7swHV9lChoBmgJaA9DCJzhBnx+SmZAlIaUUpRoFU3oA2gWR0Cab5RrJr+HdX2UKGgGaAloD0MIrMWnABjhW0CUhpRSlGgVTegDaBZHQJpwARK6Fuh1fZQoaAZoCWgPQwjmeAWiJ1tkQJSGlFKUaBVN6ANoFkdAmnKAFs54nnVlLg=="
|
67 |
+
},
|
68 |
+
"ep_success_buffer": {
|
69 |
+
":type:": "<class 'collections.deque'>",
|
70 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
71 |
+
},
|
72 |
+
"_n_updates": 248,
|
73 |
+
"n_steps": 1024,
|
74 |
+
"gamma": 0.999,
|
75 |
+
"gae_lambda": 0.98,
|
76 |
+
"ent_coef": 0.01,
|
77 |
+
"vf_coef": 0.5,
|
78 |
+
"max_grad_norm": 0.5,
|
79 |
+
"batch_size": 64,
|
80 |
+
"n_epochs": 4,
|
81 |
+
"clip_range": {
|
82 |
+
":type:": "<class 'function'>",
|
83 |
+
":serialized:": "gASV2QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxVL3ZvbHVtZS9VU0VSU1RPUkUvcmFmZl9hbi9wcm9qZWN0cy90b3JjaHktYmFzZWxpbmVzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS3xDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVS92b2x1bWUvVVNFUlNUT1JFL3JhZmZfYW4vcHJvamVjdHMvdG9yY2h5LWJhc2VsaW5lcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
84 |
+
},
|
85 |
+
"clip_range_vf": null,
|
86 |
+
"normalize_advantage": true,
|
87 |
+
"target_kl": null,
|
88 |
+
"_last_dones": {
|
89 |
+
":type:": "<class 'numpy.ndarray'>",
|
90 |
+
":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="
|
91 |
+
}
|
92 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ad2b6f41a2d77fde50a311765f01d060a0c70f7dfe478e35dff54e81c569dbd5
|
3 |
+
size 84829
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:95cb9a28fd2448d267013057aac5dde57077d247ab0eda8cb4b977c1190a075b
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.13.0-44-generic-x86_64-with-debian-bullseye-sid #49~20.04.1-Ubuntu SMP Wed May 18 18:44:28 UTC 2022
|
2 |
+
Python: 3.7.10
|
3 |
+
Stable-Baselines3: 1.5.1a8
|
4 |
+
PyTorch: 1.11.0
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.2
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:90da4461234511b7a20d7875f1e53391945d02f34aa0fe72000d4657ec16a7e1
|
3 |
+
size 219166
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 233.5564493, "std_reward": 53.89001535753786, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-02T13:18:24.896366"}
|
train_eval_metrics.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:14c9c33f45f0be87e704b79dc8dde1d1dd5800b9f17764f022d716cf37197318
|
3 |
+
size 93463
|