Initial commit
Browse files- .gitattributes +2 -0
- README.md +74 -0
- args.yml +59 -0
- config.yml +38 -0
- env_kwargs.yml +1 -0
- ppo-HalfCheetahBulletEnv-v0.zip +3 -0
- ppo-HalfCheetahBulletEnv-v0/_stable_baselines3_version +1 -0
- ppo-HalfCheetahBulletEnv-v0/data +121 -0
- ppo-HalfCheetahBulletEnv-v0/policy.optimizer.pth +3 -0
- ppo-HalfCheetahBulletEnv-v0/policy.pth +3 -0
- ppo-HalfCheetahBulletEnv-v0/pytorch_variables.pth +3 -0
- ppo-HalfCheetahBulletEnv-v0/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
- train_eval_metrics.zip +3 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -25,3 +25,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
29 |
+
vec_normalize.pkl filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- HalfCheetahBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 2871.46 +/- 69.65
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: HalfCheetahBulletEnv-v0
|
20 |
+
type: HalfCheetahBulletEnv-v0
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **HalfCheetahBulletEnv-v0**
|
24 |
+
This is a trained model of a **PPO** agent playing **HalfCheetahBulletEnv-v0**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
26 |
+
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
27 |
+
|
28 |
+
The RL Zoo is a training framework for Stable Baselines3
|
29 |
+
reinforcement learning agents,
|
30 |
+
with hyperparameter optimization and pre-trained agents included.
|
31 |
+
|
32 |
+
## Usage (with SB3 RL Zoo)
|
33 |
+
|
34 |
+
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
|
35 |
+
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
36 |
+
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
37 |
+
|
38 |
+
```
|
39 |
+
# Download model and save it into the logs/ folder
|
40 |
+
python -m utils.load_from_hub --algo ppo --env HalfCheetahBulletEnv-v0 -orga sb3 -f logs/
|
41 |
+
python enjoy.py --algo ppo --env HalfCheetahBulletEnv-v0 -f logs/
|
42 |
+
```
|
43 |
+
|
44 |
+
## Training (with the RL Zoo)
|
45 |
+
```
|
46 |
+
python train.py --algo ppo --env HalfCheetahBulletEnv-v0 -f logs/
|
47 |
+
# Upload the model and generate video (when possible)
|
48 |
+
python -m utils.push_to_hub --algo ppo --env HalfCheetahBulletEnv-v0 -f logs/ -orga sb3
|
49 |
+
```
|
50 |
+
|
51 |
+
## Hyperparameters
|
52 |
+
```python
|
53 |
+
OrderedDict([('batch_size', 128),
|
54 |
+
('clip_range', 0.4),
|
55 |
+
('ent_coef', 0.0),
|
56 |
+
('env_wrapper', 'sb3_contrib.common.wrappers.TimeFeatureWrapper'),
|
57 |
+
('gae_lambda', 0.9),
|
58 |
+
('gamma', 0.99),
|
59 |
+
('learning_rate', 3e-05),
|
60 |
+
('max_grad_norm', 0.5),
|
61 |
+
('n_envs', 16),
|
62 |
+
('n_epochs', 20),
|
63 |
+
('n_steps', 512),
|
64 |
+
('n_timesteps', 2000000.0),
|
65 |
+
('normalize', True),
|
66 |
+
('policy', 'MlpPolicy'),
|
67 |
+
('policy_kwargs',
|
68 |
+
'dict(log_std_init=-2, ortho_init=False, activation_fn=nn.ReLU, '
|
69 |
+
'net_arch=[dict(pi=[256, 256], vf=[256, 256])] )'),
|
70 |
+
('sde_sample_freq', 4),
|
71 |
+
('use_sde', True),
|
72 |
+
('vf_coef', 0.5),
|
73 |
+
('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})])
|
74 |
+
```
|
args.yml
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - algo
|
3 |
+
- ppo
|
4 |
+
- - env
|
5 |
+
- HalfCheetahBulletEnv-v0
|
6 |
+
- - env_kwargs
|
7 |
+
- null
|
8 |
+
- - eval_episodes
|
9 |
+
- 10
|
10 |
+
- - eval_freq
|
11 |
+
- 10000
|
12 |
+
- - gym_packages
|
13 |
+
- []
|
14 |
+
- - hyperparams
|
15 |
+
- null
|
16 |
+
- - log_folder
|
17 |
+
- rl-trained-agents/
|
18 |
+
- - log_interval
|
19 |
+
- -1
|
20 |
+
- - n_evaluations
|
21 |
+
- 20
|
22 |
+
- - n_jobs
|
23 |
+
- 1
|
24 |
+
- - n_startup_trials
|
25 |
+
- 10
|
26 |
+
- - n_timesteps
|
27 |
+
- -1
|
28 |
+
- - n_trials
|
29 |
+
- 10
|
30 |
+
- - num_threads
|
31 |
+
- -1
|
32 |
+
- - optimize_hyperparameters
|
33 |
+
- false
|
34 |
+
- - pruner
|
35 |
+
- median
|
36 |
+
- - sampler
|
37 |
+
- tpe
|
38 |
+
- - save_freq
|
39 |
+
- -1
|
40 |
+
- - save_replay_buffer
|
41 |
+
- false
|
42 |
+
- - seed
|
43 |
+
- 39995244
|
44 |
+
- - storage
|
45 |
+
- null
|
46 |
+
- - study_name
|
47 |
+
- null
|
48 |
+
- - tensorboard_log
|
49 |
+
- ''
|
50 |
+
- - trained_agent
|
51 |
+
- ''
|
52 |
+
- - truncate_last_trajectory
|
53 |
+
- true
|
54 |
+
- - uuid
|
55 |
+
- true
|
56 |
+
- - vec_env
|
57 |
+
- dummy
|
58 |
+
- - verbose
|
59 |
+
- 1
|
config.yml
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - batch_size
|
3 |
+
- 128
|
4 |
+
- - clip_range
|
5 |
+
- 0.4
|
6 |
+
- - ent_coef
|
7 |
+
- 0.0
|
8 |
+
- - env_wrapper
|
9 |
+
- sb3_contrib.common.wrappers.TimeFeatureWrapper
|
10 |
+
- - gae_lambda
|
11 |
+
- 0.9
|
12 |
+
- - gamma
|
13 |
+
- 0.99
|
14 |
+
- - learning_rate
|
15 |
+
- 3.0e-05
|
16 |
+
- - max_grad_norm
|
17 |
+
- 0.5
|
18 |
+
- - n_envs
|
19 |
+
- 16
|
20 |
+
- - n_epochs
|
21 |
+
- 20
|
22 |
+
- - n_steps
|
23 |
+
- 512
|
24 |
+
- - n_timesteps
|
25 |
+
- 2000000.0
|
26 |
+
- - normalize
|
27 |
+
- true
|
28 |
+
- - policy
|
29 |
+
- MlpPolicy
|
30 |
+
- - policy_kwargs
|
31 |
+
- dict(log_std_init=-2, ortho_init=False, activation_fn=nn.ReLU, net_arch=[dict(pi=[256,
|
32 |
+
256], vf=[256, 256])] )
|
33 |
+
- - sde_sample_freq
|
34 |
+
- 4
|
35 |
+
- - use_sde
|
36 |
+
- true
|
37 |
+
- - vf_coef
|
38 |
+
- 0.5
|
env_kwargs.yml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
ppo-HalfCheetahBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:47316750e0c95e9a91b0a442fc5198d4b020d61e961d362276de0c2e42e92197
|
3 |
+
size 1825492
|
ppo-HalfCheetahBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.1a8
|
ppo-HalfCheetahBulletEnv-v0/data
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7ff6a2be8950>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff6a2be89e0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff6a2be8a70>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff6a2be8b00>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7ff6a2be8b90>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7ff6a2be8c20>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff6a2be8cb0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7ff6a2be8d40>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff6a2be8dd0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff6a2be8e60>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff6a2be8ef0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7ff6a2c39840>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {
|
23 |
+
":type:": "<class 'dict'>",
|
24 |
+
":serialized:": "gASVjgAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA1hY3RpdmF0aW9uX2ZulIwbdG9yY2gubm4ubW9kdWxlcy5hY3RpdmF0aW9ulIwEUmVMVZSTlIwIbmV0X2FyY2iUXZR9lCiMAnBplF2UKE0AAU0AAWWMAnZmlF2UKE0AAU0AAWV1YXUu",
|
25 |
+
"log_std_init": -2,
|
26 |
+
"ortho_init": false,
|
27 |
+
"activation_fn": "<class 'torch.nn.modules.activation.ReLU'>",
|
28 |
+
"net_arch": [
|
29 |
+
{
|
30 |
+
"pi": [
|
31 |
+
256,
|
32 |
+
256
|
33 |
+
],
|
34 |
+
"vf": [
|
35 |
+
256,
|
36 |
+
256
|
37 |
+
]
|
38 |
+
}
|
39 |
+
]
|
40 |
+
},
|
41 |
+
"observation_space": {
|
42 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
43 |
+
":serialized:": "gASVhwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxuFlGgLiUNsAACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAAAAlHSUYowEaGlnaJRoEWgTSwCFlGgVh5RSlChLAUsbhZRoC4lDbAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAP5R0lGKMDWJvdW5kZWRfYmVsb3eUaBFoE0sAhZRoFYeUUpQoSwFLG4WUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGUdJRijA1ib3VuZGVkX2Fib3ZllGgRaBNLAIWUaBWHlFKUKEsBSxuFlGgpiUMbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABlHSUYowKX25wX3JhbmRvbZROjAZfc2hhcGWUSxuFlHViLg==",
|
44 |
+
"dtype": "float32",
|
45 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf 0.]",
|
46 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf 1.]",
|
47 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False True]",
|
48 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False True]",
|
49 |
+
"_np_random": null,
|
50 |
+
"_shape": [
|
51 |
+
27
|
52 |
+
]
|
53 |
+
},
|
54 |
+
"action_space": {
|
55 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
56 |
+
":serialized:": "gASVRQwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwaFlGgLiUMYAACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEWgTSwCFlGgVh5RSlChLAUsGhZRoC4lDGAAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5R0lGKMDWJvdW5kZWRfYmVsb3eUaBFoE0sAhZRoFYeUUpQoSwFLBoWUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQwYBAQEBAQGUdJRijA1ib3VuZGVkX2Fib3ZllGgRaBNLAIWUaBWHlFKUKEsBSwaFlGgpiUMGAQEBAQEBlHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaDmMBXN0YXRllH2UKIwDa2V5lGgRaBNLAIWUaBWHlFKUKEsBTXAChZRoCIwCdTSUiYiHlFKUKEsDaAxOTk5K/////0r/////SwB0lGKJQsAJAAAAAACAU8KznIcDtZNy7Ktb6Oay8s+2gdrVBu9hoTFNoGu1zNkT5hifdJx5L8ilG4DEeQFJng9D5F3gGJOSE1XM1EopZNIIlb400J5EcnoD8K2/CnObez7pYLEG2nUDRQtufdYWausENGaDt/P1pS9p70JjQ7Vc98J3UsxGRDctCIlu0I6ud/sYtoBPe575TzLsEti5jl6FqRnKrj12LWcrQoCexe7HH/UiAV1LzyQPzBlSZERXmHCdCvUSF7XpWt47xP9BzzqxX7aH3TPYWImqos1/ez/JlLdsD0MfMZl9G2CQq7cHHRlM3sj7jroA9c+pGt4l/iAGpRb80HbjwU71ykPTAVp531BXrc2qmIU6z9Fh4TAPx7fZ1kVF+L1Irlou+4Ckky7Ys59nB7KkciTI+N5jlb62ybZt0+ZWgIA6LKLvdx/mTQtB4k1aplT/C7L9/ybKCFn2quN/7YlIkxoH1U0xdabG6rgOrR+SHMmvUwvtKB+19Ibb07mSgVQyjNAvnyADPJf3pkxylZtn7f/OVpWEaWfl6BcLwy0grrEgUK+H+8P8XWMuBginXgwzn3sy4+ZOlr45op6TtuqX0Knz/SySGDlBIK8JqKObzB6fGt+ovJHEM8KlL4veKwkLkuuMWBaex3FBdWskry5qhslxMgnk2thh8DaXmAfbuI8j0SqHMW1kleITi9ekfXx/eSi5hX1GjA/M62Zixuay1H8zH9VjsTRcGacyJ0vh1hNReDFoNsXFbLfLqaIvbLDQjY7T289ZXsupvAxu2GVTbqWst+ckPPzwH7vLikULC+weAKwxarqm+ugAXgyz774meHOsvQYuu18nvrrunjZWDvwaKuYohEwUfSnpotE9XhX99yUTc8sGPQidTfXkzm/t8MWP8it4l4VSEgDLn8GW8t2DAh8EwFa/KOGoZEGjYqZ2IMA70E+F2LqgaZlQLFMONTIx3yuN5F2e1MT4v2wdBRK9R+lGMpxIiNldyOwwxLDBTRDMhd7APidmDwQBnvaIecKFa95btwHkRBEUT5g++/I0DDg685EX4OMO2YtTPqM3PQluS4puEhAQRVukNGSh4gYDgcBPKZl4ThNf+G+E7El9fmWJcP39Sifw6Mn+GEisM1RhHY05XZHUv5W4r8kD2jSLMY+IIL2+LtQrW7it7y28+sEicLoEfYOky9ZJF6l0fR+sXEawf+REH9LvtRJ4yzfxr7KisNpr1axv1ae5CDXS+XTzuOG/BJnHvt8arnY1XWH9SdkCOeok6MI8GBCtjTCxJ5JbpI5J0i0A66mJaRW9LMfP6Cil3/cVRQ9uN2KTtV3o7rJwY4XCnj7DJmqrUwofDDl7Ek0PoN7w0Hh8YHOy8qhPw7V8ALdjZn7eYtjCQIldQvHbM1I73RtCLQvQGFMXUCJ022pGRqTvZX5XWSizqbgX6TJmI6LDF9wcpYealB7cDwelfqdpzHRmyjRbIX9b+w4uj//aDRgP2SgiOAq/D/9/0SbgK/E0FQyclhNVAkbKwXhAxKGczpvJow0mFFUAt/5fT5KAsmQTAt8p0FsrGMDTfk4RzZgqZSm+ihVRS371Tx3twpGA1goo/AIfJh8slJC3hkR1OGCN7LAPGCwbM9rHlKSU4uuhJiff196h9q1kPMld6989MfKLVkvCl7ofCRurPUW46ceJKE951sQD1v8cK0HK1JmuBTCXAelCUCIFNLGk3tMXNVmuuFF3o3xb4V4T1IAYIfBdyEVHhIIZOE/JEY79daQw8njYEtQ6YwZ6kNCBYfrjq2OglITcRdwDmINL42ro6HnbWgLZQ8Ce/EiPVBtWHwhvGUHK1FNONzRzXgT1zKEg+WAigeuK4QVIxdITM4YvUyYvpQJuJd+xGD1no7BYIKXdV4aDlsRnWSMmS+zTyTvC0+TgBMCNpMvdChjaB/XTrMVsm0vgPmCYswn067MTYWfm5oCqqmNciqoRfFL2O2mxFT1VMcKDrxHBdBUhSG5UmAerx86KAEytbsCbn6OOj8Y02VwVynzXd0WJfLioeGMZISM1eneWfTc1mQ6CpdDxJqUmU86/KsBL3Bb0S2NAqFysFJZKxDwLej8xz+xH8IxEHzlkiiNH+2IIq0663FAwi6wg6dgcryDqQ+lNDwn898nylrcYShigDrtrFBNezKx3ZjpkPCnPUeQB4hJUrYCUJy5CyytC/x1UsByKez/aSNEWnlWnzYdJf2PoKL0YfmaR3KpXzi9ax3BHPgk1cdmgdVkqevFJ0DUdTBFQj/mhaKqcaT0rKJLgy/11AhWW4nX7+kAdgR0b1iAseI0TbMDtohBuqqUZfqMfUKsdI8v2aeUd0+IqOjPBFe7TZRC7OUYmf789SRTpw9gst4tzx7tLap8JnFt2keKhqd3vBgqpvlsxvx0DcPC+bo/qIldKiAn5D7TPjeWLzJ1gmpk1mVKOyWOv/ZzlRTfe8yEsMsRcgdPxbOuxLjlOwo1uFh9NjHoOz/xbnI62I49ZzT59GUCNtAL74UqjlRoyXZ5ELEjhTn+F5fYfEkY2TnSsgKO4Wwb/xD41S4mBL7LcUyF76ybV7Yx0L6V2QGoSfyhHFqMQJs/haLPPW18mWJb/UDl90ZN9TEzcdXvZsmCeqzCagC6YDHp3fop+5nAQSnT/Byt2j7z+6cnl/aZh6oKs5xrEMmuzpLFbXNVof9hNmX5E0DQ2M8uBqqeW95p6z8ySnOxURAO28oYWsbVyeYaNlWLZrOtIMZDRjjbecSSwMLlrBhw4mZVht4DgOQxI1+P7sPHZLMf89U+5ctf1rD0r1AXgyXjzOxKvCxWMhrz6Ah19+zal/bAIpw+0V7Pq85PRQO4UeScmMwODR8jcOfILuMmo7xXhemY/JqtOncklEaGapMeGlkiefvQkx9L5EWvLn6stI4zRP4pZXx9iOz17IKJmKOVHgCIAOiheb0bwkjNkItlfYO3LzeLLPuBDNLFg7tQu5NPWy28a4nBsE/gsyEteRvF2ECYFIOJg06dzc77IWw7o+z1Q5APxLg9uvyFniYWNuJyk7rflLCmYcg1gN657CWff8YfPr0ukKOamco94X1nFdyroxHiQlRXaP91DOqMueI1pCasyRQt0jtbWwxdEVyzP3GzUZXBWqa0xXCzwe29cxg2aiwKuuAAVfaCE/Pt1cJXq8wvliF81sMDPMbowd9+uyWuExq/e+2W3wWeV3hVofoiEySjBrJPWVJW9++UocJbC0ppNw5mtHktkZqUk6kVtUgVQ4Cj4udj/bluZzcqWjIvOCJO52M+xcQY808Ei8T/lwwS9TguuzQ3e0KR7hptgNcX1/XhCvAuUdJRijANwb3OUTXACdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YowGX3NoYXBllEsGhZR1Yi4=",
|
57 |
+
"dtype": "float32",
|
58 |
+
"low": "[-1. -1. -1. -1. -1. -1.]",
|
59 |
+
"high": "[1. 1. 1. 1. 1. 1.]",
|
60 |
+
"bounded_below": "[ True True True True True True]",
|
61 |
+
"bounded_above": "[ True True True True True True]",
|
62 |
+
"_np_random": "RandomState(MT19937)",
|
63 |
+
"_shape": [
|
64 |
+
6
|
65 |
+
]
|
66 |
+
},
|
67 |
+
"n_envs": 16,
|
68 |
+
"num_timesteps": 2007040,
|
69 |
+
"_total_timesteps": 2000000,
|
70 |
+
"_num_timesteps_at_start": 0,
|
71 |
+
"seed": 0,
|
72 |
+
"action_noise": null,
|
73 |
+
"start_time": 1614621243.1467812,
|
74 |
+
"learning_rate": {
|
75 |
+
":type:": "<class 'function'>",
|
76 |
+
":serialized:": "gASV2QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxVL3ZvbHVtZS9VU0VSU1RPUkUvcmFmZl9hbi9wcm9qZWN0cy90b3JjaHktYmFzZWxpbmVzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS3xDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVS92b2x1bWUvVVNFUlNUT1JFL3JhZmZfYW4vcHJvamVjdHMvdG9yY2h5LWJhc2VsaW5lcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPv91EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
77 |
+
},
|
78 |
+
"tensorboard_log": null,
|
79 |
+
"lr_schedule": {
|
80 |
+
":type:": "<class 'function'>",
|
81 |
+
":serialized:": "gASV2QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxVL3ZvbHVtZS9VU0VSU1RPUkUvcmFmZl9hbi9wcm9qZWN0cy90b3JjaHktYmFzZWxpbmVzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS3xDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVS92b2x1bWUvVVNFUlNUT1JFL3JhZmZfYW4vcHJvamVjdHMvdG9yY2h5LWJhc2VsaW5lcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPv91EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
82 |
+
},
|
83 |
+
"_last_obs": null,
|
84 |
+
"_last_episode_starts": null,
|
85 |
+
"_last_original_obs": {
|
86 |
+
":type:": "<class 'numpy.ndarray'>",
|
87 |
+
":serialized:": "gASVTQcAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLG4aUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULABgAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDhHLO+AAAAAI6VAL4AAAAAAMZ6vgAAAAAcq7A+AAAAAECQDr0AAAAApsiWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAizH6+AAAAAOf+Xr0AAAAANXy8vgAAAAD+3K8+AAAAAHOxEL0AAAAAU9KaPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDBRZq+AAAAAEtVwz0AAAAAY8xCvgAAAACm/a8+AAAAAJKUJj0AAAAAEfWVPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBfjYy+AAAAAOafwL0AAAAAEXLovgAAAABhwG0+AAAAAG0k6zwAAAAAdueTPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICkUs2+AAAAAMeV5b0AAAAA9R/yvgAAAAD0OHQ+AAAAAFs5I70AAAAAfbaSPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIB/VNe+AAAAAFA4yr0AAAAAt3NVvgAAAABcwJw+AAAAAMyUwTwAAAAAmDGbPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBCysi+AAAAADKC5D0AAAAAFuCIvgAAAACbrac+AAAAABZJTzsAAAAAUAyfPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBxcJy+AAAAAESVJj0AAAAA1Sq2vgAAAAAzQ60+AAAAAJbYvbwAAAAAx7aXPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIC5kmq+AAAAACzjWrwAAAAA50/SvgAAAACKIpI+AAAAAMbdGrwAAAAASfyWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBJfry+AAAAAH6uWr0AAAAAgo/jvgAAAAD+d6Y+AAAAAClBsLwAAAAACIqbPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDIGbC+AAAAAAHNr70AAAAAXFnYvgAAAAAAtqk+AAAAAJ7c1zsAAAAA/ZSVPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBoAsO+AAAAAFWG6TwAAAAATwqVvgAAAAD2NHQ+AAAAABl/Lz0AAAAAO6WfPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBNNb6+AAAAAMPbUT0AAAAAGLDcvgAAAAAOtLY+AAAAAILHjrwAAAAAETugPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDEXsm+AAAAAKRT+T0AAAAAyX7zvgAAAABheYA+AAAAALQ90zwAAAAAKyCTPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICyr5q+AAAAAKQSjr0AAAAAp7OFvgAAAAAXTp0+AAAAAEvf8D0AAAAAbXGcPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBRYLS+AAAAADErtD0AAAAAyMEgvgAAAAAVo58+AAAAAJaJ1T0AAAAAe9GdPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/lHSUYi4="
|
88 |
+
},
|
89 |
+
"_episode_num": 0,
|
90 |
+
"use_sde": true,
|
91 |
+
"sde_sample_freq": 4,
|
92 |
+
"_current_progress_remaining": -0.0035199999999999676,
|
93 |
+
"ep_info_buffer": {
|
94 |
+
":type:": "<class 'collections.deque'>",
|
95 |
+
":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKZPx2JSBLCMAWyUTegDjAF0lEdAy3toaQV9GHV9lChoBkdApwd969kBjmgHTegDaAhHQMt7aJCrtE51fZQoaAZHQKRdhLq2SdRoB03oA2gIR0DLe2g4MnZ1dX2UKGgGR0CiLVRnezlcaAdN6ANoCEdAy3tnBSk0rXV9lChoBkdAppDp4W1twmgHTegDaAhHQMutCwqy4Wl1fZQoaAZHQKZGOLzf779oB03oA2gIR0DLrQswtapxdX2UKGgGR0CmIhWexwAEaAdN6ANoCEdAy60LWkrPMXV9lChoBkdApWozcKw6hmgHTegDaAhHQMutC4WLxZx1fZQoaAZHQKbDfLgXMyJoB03oA2gIR0DLrQutuDSPdX2UKGgGR0Clfkv/aQFLaAdN6ANoCEdAy60L2LYPG3V9lChoBkdAprFPpbD/EWgHTegDaAhHQMutC/6wdKd1fZQoaAZHQKV1Urf+CK9oB03oA2gIR0DLrQwgvDgqdX2UKGgGR0Cm9Xh3JPqLaAdN6ANoCEdAy60MRbr1NHV9lChoBkdApku6wwCbMGgHTegDaAhHQMutDHIQvpR1fZQoaAZHQKWoT5HEuQJoB03oA2gIR0DLrQyX4TK1dX2UKGgGR0Cl4AGHYYixaAdN6ANoCEdAy60MroW56XV9lChoBkdAprNp8hLXc2gHTegDaAhHQMutDNAs0551fZQoaAZHQKVX9BMSK3xoB03oA2gIR0DLrQz3AVO9dX2UKGgGR0CmfJtw71ZlaAdN6ANoCEdAy60Mm2LHdXV9lChoBkdApe+qAe7tiWgHTegDaAhHQMutC2QOnVJ1fZQoaAZHQKWOnWn0kGBoB03oA2gIR0DL7cqwnpjddX2UKGgGR0CmRcufEn9faAdN6ANoCEdAy+3K1tO2zHV9lChoBkdApb2lmHxjKGgHTegDaAhHQMvtyv+OwPl1fZQoaAZHQKZNtU1hsqJoB03oA2gIR0DL7csxKxs3dX2UKGgGR0CmjNIzeoDQaAdN6ANoCEdAy+3LWrfce3V9lChoBkdApkG9/QSi/WgHTegDaAhHQMvty4Pwuul1fZQoaAZHQKYLXl2eQMhoB03oA2gIR0DL7cuozeoDdX2UKGgGR0Cm1PHC4z7/aAdN6ANoCEdAy+3LzdUKiXV9lChoBkdAphAdgv114mgHTegDaAhHQMvty/UF0Pp1fZQoaAZHQKW6P7iQ1aZoB03oA2gIR0DL7cwbsF+vdX2UKGgGR0Cl05vi97F9aAdN6ANoCEdAy+3MQg9vCXV9lChoBkdApYQlnmJWNmgHTegDaAhHQMvtzFrEcbR1fZQoaAZHQKWTeHu7YkFoB03oA2gIR0DL7cx/qgRLdX2UKGgGR0CmcH9Dpkf+aAdN6ANoCEdAy+3MpGWldnV9lChoBkdApX1mO801qGgHTegDaAhHQMvtzErwvxp1fZQoaAZHQKWdTz90ihZoB03oA2gIR0DL7csV1wHadX2UKGgGR0ClTphhH9WIaAdN6ANoCEdAzC6Nci4axXV9lChoBkdApTdSeyzHCGgHTegDaAhHQMwujZxBE8d1fZQoaAZHQKW0vgDRtxdoB03oA2gIR0DMLo3GwRoRdX2UKGgGR0ClkxBV+7UYaAdN6ANoCEdAzC6N71qWT3V9lChoBkdApfE4LeANG2gHTegDaAhHQMwujhjFyaN1fZQoaAZHQKYQYduHerNoB03oA2gIR0DMLo5B7eEadX2UKGgGR0CmUr6fjCHiaAdN6ANoCEdAzC6OaR6ni3V9lChoBkdApY/minHeamgHTegDaAhHQMwujpEYwZh1fZQoaAZHQKZfTXFtKqZoB03oA2gIR0DMLo62lVLjdX2UKGgGR0CmOWAlfJFLaAdN6ANoCEdAzC6O3hGYr3V9lChoBkdAptLVn7Hhj2gHTegDaAhHQMwujwfQrtp1fZQoaAZHQKazLNwBHTZoB03oA2gIR0DMLo8bPyCndX2UKGgGR0CmGGv99+gEaAdN6ANoCEdAzC6PPqLS/nV9lChoBkdApardyaNMoWgHTegDaAhHQMwuj2ki2Ul1fZQoaAZHQKXuvKuB+WpoB03oA2gIR0DMLo8PnSv1dX2UKGgGR0CmJOlmvnr6aAdN6ANoCEdAzC6N3HJcPnV9lChoBkdApf/vcer+52gHTegDaAhHQMxgTD0th/l1fZQoaAZHQKYobzasZHdoB03oA2gIR0DMYExmseXBdX2UKGgGR0CmVHM5fdAPaAdN6ANoCEdAzGBMkeIVM3V9lChoBkdApj37QE6kqWgHTegDaAhHQMxgTL2pQ1t1fZQoaAZHQKX5uFh5PdloB03oA2gIR0DMYEzkGRmsdX2UKGgGR0Cm7DMANoalaAdN6ANoCEdAzGBNEhq0t3V9lChoBkdApcHXDtPYWmgHTegDaAhHQMxgTTltCRh1fZQoaAZHQKVb/TgEU0xoB03oA2gIR0DMYE1hmXgMdX2UKGgGR0CmQedtVJcxaAdN6ANoCEdAzGBNiDM/yHV9lChoBkdApmUcX531SWgHTegDaAhHQMxgTa4+bEx1fZQoaAZHQKVvCLEUCaJoB03oA2gIR0DMYE3Xbuc+dX2UKGgGR0Cl7B9itq59aAdN6ANoCEdAzGBN69CeE3V9lChoBkdApvZEvqTr3WgHTegDaAhHQMxgThbGFSN1fZQoaAZHQKWvvGWldkdoB03oA2gIR0DMYE49Net0dX2UKGgGR0Cm4Xpaq0dBaAdN6ANoCEdAzGBN5M10knV9lChoBkdApbMMQNCqqGgHTegDaAhHQMxgTK1gH/t1fZQoaAZHQKUIbYV6/qRoB03oA2gIR0DMoQhVXFLndX2UKGgGR0CmLsdDYywfaAdN6ANoCEdAzKEIf8MuvnV9lChoBkdApeXe5WilBWgHTegDaAhHQMyhCKjzqbB1fZQoaAZHQKVx6xREWqNoB03oA2gIR0DMoQjWRRuTdX2UKGgGR0ClzszCtRvWaAdN6ANoCEdAzKEJAhStNnV9lChoBkdApjeSqQzUJGgHTegDaAhHQMyhCS26TW51fZQoaAZHQKYxcuJUHY9oB03oA2gIR0DMoQlUfgaWdX2UKGgGR0Cl0RXlKbrkaAdN6ANoCEdAzKEJeY2KmHV9lChoBkdApilXuAqd6WgHTegDaAhHQMyhCZv1lGx1fZQoaAZHQKVfjXpW3jNoB03oA2gIR0DMoQnHFPzndX2UKGgGR0CleOdCVrylaAdN6ANoCEdAzKEJ7b+LnHV9lChoBkdAplTpItlI3GgHTegDaAhHQMyhCgG0NSZ1fZQoaAZHQKZB/RUm2LJoB03oA2gIR0DMoQolfJFLdX2UKGgGR0CmyLY/NZ/1aAdN6ANoCEdAzKEKTZg5R3V9lChoBkdAphajFjurqGgHTegDaAhHQMyhCfIS13N1fZQoaAZHQKZOxBBzFMtoB03oA2gIR0DMoQi72+PBdX2UKGgGR0ClaFuRDCxeaAdN6ANoCEdAzNKApWFN+XV9lChoBkdApUEetp22X2gHTegDaAhHQMzSgM9SuQp1fZQoaAZHQKXtjo2XLNhoB03oA2gIR0DM0oD4QBgedX2UKGgGR0CmrE8Udq+KaAdN6ANoCEdAzNKBJAdGRXV9lChoBkdApuTvDBMzuWgHTegDaAhHQMzSgUmUnoh1fZQoaAZHQKW+mxQBPsRoB03oA2gIR0DM0oF1+y7gdX2UKGgGR0CmQRmVRk3CaAdN6ANoCEdAzNKBnMdLhHV9lChoBkdApfQK+xnnMmgHTegDaAhHQMzSgcL8aXN1fZQoaAZHQKYIoSpR4yJoB03oA2gIR0DM0oHnbItEdX2UKGgGR0CmQz8S5AhTaAdN6ANoCEdAzNKCDZDiO3V9lChoBkdApZQ4D9wWFmgHTegDaAhHQMzSgjHfdh11fZQoaAZHQKY5KMVk+X9oB03oA2gIR0DM0oJH09QodX2UKGgGR0ClaOcDKYAsaAdN6ANoCEdAzNKCabWmQHV9lChoBkdApf4mSyMUAWgHTegDaAhHQMzSgo8yN4t1fZQoaAZHQKZmCYdhiLFoB03oA2gIR0DM0oI2606YdX2UKGgGR0CmVqcUEgW8aAdN6ANoCEdAzNKBAoG6gHVlLg=="
|
96 |
+
},
|
97 |
+
"ep_success_buffer": {
|
98 |
+
":type:": "<class 'collections.deque'>",
|
99 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
100 |
+
},
|
101 |
+
"_n_updates": 4900,
|
102 |
+
"n_steps": 512,
|
103 |
+
"gamma": 0.99,
|
104 |
+
"gae_lambda": 0.9,
|
105 |
+
"ent_coef": 0.0,
|
106 |
+
"vf_coef": 0.5,
|
107 |
+
"max_grad_norm": 0.5,
|
108 |
+
"batch_size": 128,
|
109 |
+
"n_epochs": 20,
|
110 |
+
"clip_range": {
|
111 |
+
":type:": "<class 'function'>",
|
112 |
+
":serialized:": "gASV2QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxVL3ZvbHVtZS9VU0VSU1RPUkUvcmFmZl9hbi9wcm9qZWN0cy90b3JjaHktYmFzZWxpbmVzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS3xDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVS92b2x1bWUvVVNFUlNUT1JFL3JhZmZfYW4vcHJvamVjdHMvdG9yY2h5LWJhc2VsaW5lcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP9mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
113 |
+
},
|
114 |
+
"clip_range_vf": null,
|
115 |
+
"normalize_advantage": true,
|
116 |
+
"target_kl": null,
|
117 |
+
"_last_dones": {
|
118 |
+
":type:": "<class 'numpy.ndarray'>",
|
119 |
+
":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="
|
120 |
+
}
|
121 |
+
}
|
ppo-HalfCheetahBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0607ff06a6d2602bcad8a1581b2cfb68fb6821cd9b158df4c232e199aadc274e
|
3 |
+
size 1201047
|
ppo-HalfCheetahBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f44afd630b64b37ace15edcdb48ea0dc3194f610cb0c2fa9e6572bb694ef3b7d
|
3 |
+
size 601342
|
ppo-HalfCheetahBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-HalfCheetahBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.13.0-44-generic-x86_64-with-debian-bullseye-sid #49~20.04.1-Ubuntu SMP Wed May 18 18:44:28 UTC 2022
|
2 |
+
Python: 3.7.10
|
3 |
+
Stable-Baselines3: 1.5.1a8
|
4 |
+
PyTorch: 1.11.0
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.2
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1f42e6c8552a7e6129380758517e17a0ff91c27f700686144f44afd49e022528
|
3 |
+
size 1178269
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 2871.4609909, "std_reward": 69.64659415599343, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-02T14:04:25.415097"}
|
train_eval_metrics.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1d69f0d8a1ba070f61d1914c6030dcd0adf910f6b2d9bb61bf88f4934878e67f
|
3 |
+
size 97314
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:35c333ccdf65b21fc690c256102439dc95cebcdea242d27ae916cd538b4d1d57
|
3 |
+
size 6786
|