araffin commited on
Commit
0f8c52d
1 Parent(s): 5ee9d85

Initial commit

Browse files
.gitattributes CHANGED
@@ -25,3 +25,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
29
+ vec_normalize.pkl filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - Acrobot-v1
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: -74.60 +/- 11.48
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: Acrobot-v1
20
+ type: Acrobot-v1
21
+ ---
22
+
23
+ # **PPO** Agent playing **Acrobot-v1**
24
+ This is a trained model of a **PPO** agent playing **Acrobot-v1**
25
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
26
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
27
+
28
+ The RL Zoo is a training framework for Stable Baselines3
29
+ reinforcement learning agents,
30
+ with hyperparameter optimization and pre-trained agents included.
31
+
32
+ ## Usage (with SB3 RL Zoo)
33
+
34
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
35
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
36
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
37
+
38
+ ```
39
+ # Download model and save it into the logs/ folder
40
+ python -m utils.load_from_hub --algo ppo --env Acrobot-v1 -orga sb3 -f logs/
41
+ python enjoy.py --algo ppo --env Acrobot-v1 -f logs/
42
+ ```
43
+
44
+ ## Training (with the RL Zoo)
45
+ ```
46
+ python train.py --algo ppo --env Acrobot-v1 -f logs/
47
+ # Upload the model and generate video (when possible)
48
+ python -m utils.push_to_hub --algo ppo --env Acrobot-v1 -f logs/ -orga sb3
49
+ ```
50
+
51
+ ## Hyperparameters
52
+ ```python
53
+ OrderedDict([('ent_coef', 0.0),
54
+ ('gae_lambda', 0.94),
55
+ ('gamma', 0.99),
56
+ ('n_envs', 16),
57
+ ('n_epochs', 4),
58
+ ('n_steps', 256),
59
+ ('n_timesteps', 1000000.0),
60
+ ('normalize', True),
61
+ ('policy', 'MlpPolicy'),
62
+ ('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})])
63
+ ```
args.yml ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - ppo
4
+ - - env
5
+ - Acrobot-v1
6
+ - - env_kwargs
7
+ - null
8
+ - - eval_episodes
9
+ - 10
10
+ - - eval_freq
11
+ - 10000
12
+ - - gym_packages
13
+ - []
14
+ - - hyperparams
15
+ - null
16
+ - - log_folder
17
+ - rl-trained-agents/
18
+ - - log_interval
19
+ - -1
20
+ - - n_evaluations
21
+ - 20
22
+ - - n_jobs
23
+ - 1
24
+ - - n_startup_trials
25
+ - 10
26
+ - - n_timesteps
27
+ - -1
28
+ - - n_trials
29
+ - 10
30
+ - - num_threads
31
+ - -1
32
+ - - optimize_hyperparameters
33
+ - false
34
+ - - pruner
35
+ - median
36
+ - - sampler
37
+ - tpe
38
+ - - save_freq
39
+ - -1
40
+ - - save_replay_buffer
41
+ - false
42
+ - - seed
43
+ - 822121794
44
+ - - storage
45
+ - null
46
+ - - study_name
47
+ - null
48
+ - - tensorboard_log
49
+ - ''
50
+ - - trained_agent
51
+ - ''
52
+ - - truncate_last_trajectory
53
+ - true
54
+ - - uuid
55
+ - true
56
+ - - vec_env
57
+ - dummy
58
+ - - verbose
59
+ - 1
config.yml ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - ent_coef
3
+ - 0.0
4
+ - - gae_lambda
5
+ - 0.94
6
+ - - gamma
7
+ - 0.99
8
+ - - n_envs
9
+ - 16
10
+ - - n_epochs
11
+ - 4
12
+ - - n_steps
13
+ - 256
14
+ - - n_timesteps
15
+ - 1000000.0
16
+ - - normalize
17
+ - true
18
+ - - policy
19
+ - MlpPolicy
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
ppo-Acrobot-v1.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:db73911b69e28140e45d684aa35c5ae0064d1229e028f779d8cd76b441901fbb
3
+ size 142427
ppo-Acrobot-v1/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.1a8
ppo-Acrobot-v1/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f11de148950>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f11de1489e0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f11de148a70>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f11de148b00>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f11de148b90>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f11de148c20>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f11de148cb0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f11de148d40>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f11de148dd0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f11de148e60>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f11de148ef0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f11de19a840>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gASVrwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwaFlGgKiUMYAACAvwAAgL8AAIC/AACAv9sPScHWMeLBlHSUYowEaGlnaJRoEGgSSwCFlGgUh5RSlChLAUsGhZRoColDGAAAgD8AAIA/AACAPwAAgD/bD0lB1jHiQZR0lGKMDWJvdW5kZWRfYmVsb3eUaBBoEksAhZRoFIeUUpQoSwFLBoWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQwYBAQEBAQGUdJRijA1ib3VuZGVkX2Fib3ZllGgQaBJLAIWUaBSHlFKUKEsBSwaFlGgoiUMGAQEBAQEBlHSUYowKX25wX3JhbmRvbZROjAZfc2hhcGWUSwaFlHViLg==",
26
+ "dtype": "float32",
27
+ "low": "[ -1. -1. -1. -1. -12.566371 -28.274334]",
28
+ "high": "[ 1. 1. 1. 1. 12.566371 28.274334]",
29
+ "bounded_below": "[ True True True True True True]",
30
+ "bounded_above": "[ True True True True True True]",
31
+ "_np_random": null,
32
+ "_shape": [
33
+ 6
34
+ ]
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gASVTQsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLA4wFZHR5cGWUjAVudW1weZSMBWR0eXBllJOUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpRoE4wFc3RhdGWUfZQojANrZXmUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoB4wHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAU1wAoWUaAmMAnU0lImIh5RSlChLA2gNTk5OSv////9K/////0sAdJRiiULACQAAAAAAgFPCs5yHA7WTcuyrW+jmsvLPtoHa1QbvYaExTaBrtczZE+YYn3SceS/IpRuAxHkBSZ4PQ+Rd4BiTkhNVzNRKKWTSCJW+NNCeRHJ6A/Ctvwpzm3s+6WCxBtp1A0ULbn3WFmrrBDRmg7fz9aUvae9CY0O1XPfCd1LMRkQ3LQiJbtCOrnf7GLaAT3ue+U8y7BLYuY5ehakZyq49di1nK0KAnsXuxx/1IgFdS88kD8wZUmREV5hwnQr1Ehe16VreO8T/Qc86sV+2h90z2FiJqqLNf3s/yZS3bA9DHzGZfRtgkKu3Bx0ZTN7I+466APXPqRreJf4gBqUW/NB248FO9cpD0wFaed9QV63NqpiFOs/RYeEwD8e32dZFRfi9SK5aLvuApJMu2LOfZweypHIkyPjeY5W+tsm2bdPmVoCAOiyi73cf5k0LQeJNWqZU/wuy/f8myghZ9qrjf+2JSJMaB9VNMXWmxuq4Dq0fkhzJr1ML7SgftfSG29O5koFUMozQL58gAzyX96ZMcpWbZ+3/zlaVhGln5egXC8MtIK6xIFCvh/vD/F1jLgYIp14MM597MuPmTpa+OaKek7bql9Cp8/0skhg5QSCvCaijm8wenxrfqLyRxDPCpS+L3isJC5LrjFgWnsdxQXVrJK8uaobJcTIJ5NrYYfA2l5gH27iPI9EqhzFtZJXiE4vXpH18f3kouYV9RowPzOtmYsbmstR/Mx/VY7E0XBmnMidL4dYTUXgxaDbFxWy3y6miL2yw0I2O09vPWV7LqbwMbthlU26lrLfnJDz88B+7y4pFCwvsHgCsMWq6pvroAF4Ms+++JnhzrL0GLrtfJ7667p42Vg78GirmKIRMFH0p6aLRPV4V/fclE3PLBj0InU315M5v7fDFj/IreJeFUhIAy5/BlvLdgwIfBMBWvyjhqGRBo2KmdiDAO9BPhdi6oGmZUCxTDjUyMd8rjeRdntTE+L9sHQUSvUfpRjKcSIjZXcjsMMSwwU0QzIXewD4nZg8EAZ72iHnChWveW7cB5EQRFE+YPvvyNAw4OvORF+DjDtmLUz6jNz0JbkuKbhIQEEVbpDRkoeIGA4HATymZeE4TX/hvhOxJfX5liXD9/Uon8OjJ/hhIrDNUYR2NOV2R1L+VuK/JA9o0izGPiCC9vi7UK1u4re8tvPrBInC6BH2DpMvWSRepdH0frFxGsH/kRB/S77USeMs38a+yorDaa9Wsb9WnuQg10vl087jhvwSZx77fGq52NV1h/UnZAjnqJOjCPBgQrY0wsSeSW6SOSdItAOupiWkVvSzHz+gopd/3FUUPbjdik7Vd6O6ycGOFwp4+wyZqq1MKHww5exJND6De8NB4fGBzsvKoT8O1fAC3Y2Z+3mLYwkCJXULx2zNSO90bQi0L0BhTF1AidNtqRkak72V+V1kos6m4F+kyZiOiwxfcHKWHmpQe3A8HpX6nacx0Zso0WyF/W/sOLo//2g0YD9koIjgKvw//f9Em4CvxNBUMnJYTVQJGysF4QMShnM6byaMNJhRVALf+X0+SgLJkEwLfKdBbKxjA035OEc2YKmUpvooVUUt+9U8d7cKRgNYKKPwCHyYfLJSQt4ZEdThgjeywDxgsGzPax5SklOLroSYn39feofatZDzJXevfPTHyi1ZLwpe6Hwkbqz1FuOnHiShPedbEA9b/HCtBytSZrgUwlwHpQlAiBTSxpN7TFzVZrrhRd6N8W+FeE9SAGCHwXchFR4SCGThPyRGO/XWkMPJ42BLUOmMGepDQgWH646tjoJSE3EXcA5iDS+Nq6Oh521oC2UPAnvxIj1QbVh8IbxlBytRTTjc0c14E9cyhIPlgIoHriuEFSMXSEzOGL1MmL6UCbiXfsRg9Z6OwWCCl3VeGg5bEZ1kjJkvs08k7wtPk4ATAjaTL3QoY2gf106zFbJtL4D5gmLMJ9OuzE2Fn5uaAqqpjXIqqEXxS9jtpsRU9VTHCg68RwXQVIUhuVJgHq8fOigBMrW7Am5+jjo/GNNlcFcp813dFiXy4qHhjGSEjNXp3ln03NZkOgqXQ8SalJlPOvyrAS9wW9EtjQKhcrBSWSsQ8C3o/Mc/sR/CMRB85ZIojR/tiCKtOutxQMIusIOnYHK8g6kPpTQ8J/PfJ8pa3GEoYoA67axQTXsysd2Y6ZDwpz1HkAeISVK2AlCcuQssrQv8dVLAcins/2kjRFp5Vp82HSX9j6Ci9GH5mkdyqV84vWsdwRz4JNXHZoHVZKnrxSdA1HUwRUI/5oWiqnGk9KyiS4Mv9dQIVluJ1+/pAHYEdG9YgLHiNE2zA7aIQbqqlGX6jH1CrHSPL9mnlHdPiKjozwRXu02UQuzlGJn+/PUkU6cPYLLeLc8e7S2qfCZxbdpHioand7wYKqb5bMb8dA3Dwvm6P6iJXSogJ+Q+0z43li8ydYJqZNZlSjsljr/2c5UU33vMhLDLEXIHT8WzrsS45TsKNbhYfTYx6Ds/8W5yOtiOPWc0+fRlAjbQC++FKo5UaMl2eRCxI4U5/heX2HxJGNk50rICjuFsG/8Q+NUuJgS+y3FMhe+sm1e2MdC+ldkBqEn8oRxajECbP4Wizz1tfJliW/1A5fdGTfUxM3HV72bJgnqswmoAumAx6d36KfuZwEEp0/wcrdo+8/unJ5f2mYeqCrOcaxDJrs6SxW1zVaH/YTZl+RNA0NjPLgaqnlveaes/MkpzsVEQDtvKGFrG1cnmGjZVi2azrSDGQ0Y423nEksDC5awYcOJmVYbeA4DkMSNfj+7Dx2SzH/PVPuXLX9aw9K9QF4Ml48zsSrwsVjIa8+gIdffs2pf2wCKcPtFez6vOT0UDuFHknJjMDg0fI3DnyC7jJqO8V4XpmPyarTp3JJRGhmqTHhpZInn70JMfS+RFry5+rLSOM0T+KWV8fYjs9eyCiZijlR4AiADooXm9G8JIzZCLZX2Dty83iyz7gQzSxYO7ULuTT1stvGuJwbBP4LMhLXkbxdhAmBSDiYNOnc3O+yFsO6Ps9UOQD8S4Pbr8hZ4mFjbicpO635SwpmHINYDeuewln3/GHz69LpCjmpnKPeF9ZxXcq6MR4kJUV2j/dQzqjLniNaQmrMkULdI7W1sMXRFcsz9xs1GVwVqmtMVws8HtvXMYNmosCrrgAFX2ghPz7dXCV6vML5YhfNbDAzzG6MHffrslrhMav3vtlt8Fnld4VaH6IhMkowayT1lSVvfvlKHCWwtKaTcOZrR5LZGalJOpFbVIFUOAo+LnY/25bmc3KloyLzgiTudjPsXEGPNPBIvE/5cMEvU4Lrs0N3tCke4abYDXF9f14QrwLlHSUYowDcG9zlE1wAnWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWKMBl9zaGFwZZQpdWIu",
39
+ "n": 3,
40
+ "dtype": "int64",
41
+ "_np_random": "RandomState(MT19937)",
42
+ "_shape": []
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1003520,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": 0,
49
+ "action_noise": null,
50
+ "start_time": 1614619329.08789,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gASVywIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxOL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvcmwvc3RhYmxlLWJhc2VsaW5lczMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxOL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvcmwvc3RhYmxlLWJhc2VsaW5lczMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": null,
58
+ "_last_episode_starts": null,
59
+ "_last_original_obs": {
60
+ ":type:": "<class 'numpy.ndarray'>",
61
+ ":serialized:": "gASVDQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLBoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUKAAQAAwiZ/P9adpj3xhX8/Md95vWbchL1L5Yy97/h/P2iVcLwmbH8/in2JPdVz3LyypKg8GsV+PyuGyD268X4/Gs65vffUrD3GWN68TPF/P3yCrTy+jX8/McNxPSW7pD0oFwU9nz5/P2s2nb2h+X8/0WxkPLf/X7yXYjS97f9/P16FxbrC2n8/YhEKvXxBWT1RQbU94ud/P/g63jxJ938/m5SFvI1pJT2hf5Y9VqN/PxW9WT2hHX8/WROqvV6sTDq4eNe8sPN+P9QhuT0Zu38/pMY7PWftQbwpiI29liJ/P6c0qL2My38/fdgjvc6Tyb0B/xI9Jc9/P14hHj0PDH8/G4qwPTL6yj2k77M9wRp/Pzsmq73X5H8/M9HrPB7Coz3UBkE9v+R/P9887Dwm/n8/q2H2uyDWUj33Wp89ACR/Px+rp70PwH8/HOU0PW6UUz0OAFY9lvd/P35Agzycyn4/g8TGvS3wxbyl2Hu9Xpl/PyolZb34Zn8/PeCLvQu+xb1epA89lHSUYi4="
62
+ },
63
+ "_episode_num": 0,
64
+ "use_sde": false,
65
+ "sde_sample_freq": -1,
66
+ "_current_progress_remaining": -0.0035199999999999676,
67
+ "ep_info_buffer": {
68
+ ":type:": "<class 'collections.deque'>",
69
+ ":serialized:": "gASV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFGAAAAAAACMAWyUS0eMAXSUR0CEms/FBIFvdX2UKGgGR8BRwAAAAAAAaAdLSGgIR0CEmwp0fYBedX2UKGgGR8BRgAAAAAAAaAdLR2gIR0CEmyiA2AG0dX2UKGgGR8BTAAAAAAAAaAdLTWgIR0CEmxyuIRAbdX2UKGgGR8BQQAAAAAAAaAdLQmgIR0CEmzEx7AtWdX2UKGgGR8BSAAAAAAAAaAdLSWgIR0CEm0zguRLcdX2UKGgGR8BVQAAAAAAAaAdLVmgIR0CEm4uxrzoVdX2UKGgGR8BSAAAAAAAAaAdLSWgIR0CEm5ZElVtGdX2UKGgGR8BPgAAAAAAAaAdLQGgIR0CEm10Rvm5ldX2UKGgGR8BPAAAAAAAAaAdLP2gIR0CEnAOEug6EdX2UKGgGR8BWQAAAAAAAaAdLWmgIR0CEm9MlkYoBdX2UKGgGR8BVwAAAAAAAaAdLWGgIR0CEm+FY+0PZdX2UKGgGR8BUgAAAAAAAaAdLU2gIR0CEnG27Wd3CdX2UKGgGR8BRwAAAAAAAaAdLSGgIR0CEnEDcM3IddX2UKGgGR8BWgAAAAAAAaAdLW2gIR0CEnFNSIgvEdX2UKGgGR8BOgAAAAAAAaAdLPmgIR0CEnKlyimEXdX2UKGgGR8BSAAAAAAAAaAdLSWgIR0CEnM+sYEW7dX2UKGgGR8BPgAAAAAAAaAdLQGgIR0CEnNn6l+EzdX2UKGgGR8BSwAAAAAAAaAdLTGgIR0CEnKgTyrggdX2UKGgGR8BPgAAAAAAAaAdLQGgIR0CEnRjwx33YdX2UKGgGR8BPgAAAAAAAaAdLQGgIR0CEnSNx2jfvdX2UKGgGR8BUwAAAAAAAaAdLVGgIR0CEnTp5/smfdX2UKGgGR8BPAAAAAAAAaAdLP2gIR0CEnYp7TlT4dX2UKGgGR8BdwAAAAAAAaAdLeGgIR0CEndZamoBJdX2UKGgGR8BSgAAAAAAAaAdLS2gIR0CEnaQNkOI7dX2UKGgGR8BWQAAAAAAAaAdLWmgIR0CEnYsV+I/JdX2UKGgGR8BPgAAAAAAAaAdLQGgIR0CEnfrJKaoddX2UKGgGR8BUwAAAAAAAaAdLVGgIR0CEneoUi6g/dX2UKGgGR8BRgAAAAAAAaAdLR2gIR0CEngtga3qidX2UKGgGR8BgIAAAAAAAaAdLgmgIR0CEnkMR6F/QdX2UKGgGR8BSgAAAAAAAaAdLS2gIR0CEnhJBgNPQdX2UKGgGR8BRgAAAAAAAaAdLR2gIR0CEnmH4XXRPdX2UKGgGR8BPAAAAAAAAaAdLP2gIR0CEnlbY9Pk8dX2UKGgGR8BPgAAAAAAAaAdLQGgIR0CEnmdJ8OTadX2UKGgGR8BRwAAAAAAAaAdLSGgIR0CEnmbBGhEjdX2UKGgGR8BPgAAAAAAAaAdLQGgIR0CEnsdupCKKdX2UKGgGR8BXQAAAAAAAaAdLXmgIR0CEn18UEgW8dX2UKGgGR8BVQAAAAAAAaAdLVmgIR0CEnzhHbypadX2UKGgGR8BPAAAAAAAAaAdLP2gIR0CEnyrhisnzdX2UKGgGR8BUAAAAAAAAaAdLUWgIR0CEn4C/XXiBdX2UKGgGR8BQAAAAAAAAaAdLQWgIR0CEnx5yEL6UdX2UKGgGR8BUgAAAAAAAaAdLU2gIR0CEn9h1DBuXdX2UKGgGR8BPgAAAAAAAaAdLQGgIR0CEn86zVtoBdX2UKGgGR8BSwAAAAAAAaAdLTGgIR0CEn9Eb5uZUdX2UKGgGR8BPgAAAAAAAaAdLQGgIR0CEn+13t8eCdX2UKGgGR8BPgAAAAAAAaAdLQGgIR0CErBaQmu1XdX2UKGgGR8BSQAAAAAAAaAdLSmgIR0CErCT1TR6XdX2UKGgGR8BRwAAAAAAAaAdLSGgIR0CErCbx3FDOdX2UKGgGR8BUgAAAAAAAaAdLU2gIR0CErE87p3X7dX2UKGgGR8BRgAAAAAAAaAdLR2gIR0CErI2KEWZadX2UKGgGR8BPAAAAAAAAaAdLP2gIR0CErF3AVO9GdX2UKGgGR8BRwAAAAAAAaAdLSGgIR0CErU2PT5O8dX2UKGgGR8BPgAAAAAAAaAdLQGgIR0CErbmoR7JGdX2UKGgGR8BRwAAAAAAAaAdLSGgIR0CEssLJjlPrdX2UKGgGR8BRgAAAAAAAaAdLR2gIR0CEsnshPj4pdX2UKGgGR8BVgAAAAAAAaAdLV2gIR0CEsz+rlvIfdX2UKGgGR8BWQAAAAAAAaAdLWmgIR0CEsvyksSTRdX2UKGgGR8BRgAAAAAAAaAdLR2gIR0CEsyuyNXHSdX2UKGgGR8BSAAAAAAAAaAdLSWgIR0CEszpX6qKhdX2UKGgGR8BQAAAAAAAAaAdLQWgIR0CEsw0dilSCdX2UKGgGR8BUgAAAAAAAaAdLU2gIR0CEs3+RYA80dX2UKGgGR8BSAAAAAAAAaAdLSWgIR0CEs0uq3mV8dX2UKGgGR8BSAAAAAAAAaAdLSWgIR0CEs1TFVDKHdX2UKGgGR8BVgAAAAAAAaAdLV2gIR0CEs6z3yqdZdX2UKGgGR8BUAAAAAAAAaAdLUWgIR0CEs7fmcOLBdX2UKGgGR8BRwAAAAAAAaAdLSGgIR0CEs+ZSeiBYdX2UKGgGR8BWQAAAAAAAaAdLWmgIR0CEs709QoCudX2UKGgGR8BSgAAAAAAAaAdLS2gIR0CEtDfPX05EdX2UKGgGR8BPAAAAAAAAaAdLP2gIR0CEs/6SDAaedX2UKGgGR8BZwAAAAAAAaAdLaGgIR0CEs/cYZVGTdX2UKGgGR8BUAAAAAAAAaAdLUWgIR0CEtLTS9du6dX2UKGgGR8BPAAAAAAAAaAdLP2gIR0CEtK9EkSmJdX2UKGgGR8BRwAAAAAAAaAdLSGgIR0CEtPrN4Z/DdX2UKGgGR8BPgAAAAAAAaAdLQGgIR0CEtNTfixVydX2UKGgGR8BRwAAAAAAAaAdLSGgIR0CEtMfK6nR+dX2UKGgGR8BRwAAAAAAAaAdLSGgIR0CEtQ74BV+7dX2UKGgGR8BXQAAAAAAAaAdLXmgIR0CEtT6Ww/xEdX2UKGgGR8BRwAAAAAAAaAdLSGgIR0CEtWdRR/EwdX2UKGgGR8BPgAAAAAAAaAdLQGgIR0CEtW+oLofTdX2UKGgGR8BRgAAAAAAAaAdLR2gIR0CEtWxnnMdMdX2UKGgGR8BYwAAAAAAAaAdLZGgIR0CEtaF/QSi/dX2UKGgGR8BYgAAAAAAAaAdLY2gIR0CEteEzwc5sdX2UKGgGR8BPgAAAAAAAaAdLQGgIR0CEtcLVnVXndX2UKGgGR8BPgAAAAAAAaAdLQGgIR0CEtYmlZX+3dX2UKGgGR8BSgAAAAAAAaAdLS2gIR0CEtYwmmce9dX2UKGgGR8BTgAAAAAAAaAdLT2gIR0CEtd7v5P/JdX2UKGgGR8BRwAAAAAAAaAdLSGgIR0CEtnKraM72dX2UKGgGR8BSAAAAAAAAaAdLSWgIR0CEtnPGhmGudX2UKGgGR8BRwAAAAAAAaAdLSGgIR0CEtrlfZ26kdX2UKGgGR8BSgAAAAAAAaAdLS2gIR0CEtqYBvJiidX2UKGgGR8BRwAAAAAAAaAdLSGgIR0CEtobONYKZdX2UKGgGR8BRwAAAAAAAaAdLSGgIR0CEtv4rz5GjdX2UKGgGR8BSAAAAAAAAaAdLSWgIR0CEtzUiILw4dX2UKGgGR8BRgAAAAAAAaAdLR2gIR0CEtyWgOBlMdX2UKGgGR8BPAAAAAAAAaAdLP2gIR0CEt0ma6STydX2UKGgGR8BVQAAAAAAAaAdLVmgIR0CEtyUSIxgzdX2UKGgGR8BVAAAAAAAAaAdLVWgIR0CEt3dBSk0rdX2UKGgGR8BSgAAAAAAAaAdLS2gIR0CEt3PAwfyPdX2UKGgGR8BRgAAAAAAAaAdLR2gIR0CEt0H+IdlvdX2UKGgGR8BRwAAAAAAAaAdLSGgIR0CEt0ptrKvFdWUu"
70
+ },
71
+ "ep_success_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
74
+ },
75
+ "_n_updates": 980,
76
+ "n_steps": 256,
77
+ "gamma": 0.99,
78
+ "gae_lambda": 0.94,
79
+ "ent_coef": 0.0,
80
+ "vf_coef": 0.5,
81
+ "max_grad_norm": 0.5,
82
+ "batch_size": 64,
83
+ "n_epochs": 4,
84
+ "clip_range": {
85
+ ":type:": "<class 'function'>",
86
+ ":serialized:": "gASV2QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxVL3ZvbHVtZS9VU0VSU1RPUkUvcmFmZl9hbi9wcm9qZWN0cy90b3JjaHktYmFzZWxpbmVzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS3xDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVS92b2x1bWUvVVNFUlNUT1JFL3JhZmZfYW4vcHJvamVjdHMvdG9yY2h5LWJhc2VsaW5lcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
87
+ },
88
+ "clip_range_vf": null,
89
+ "normalize_advantage": true,
90
+ "target_kl": null,
91
+ "_last_dones": {
92
+ ":type:": "<class 'numpy.ndarray'>",
93
+ ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="
94
+ }
95
+ }
ppo-Acrobot-v1/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:78093c592256bae29dd0cc1cbc83d11c1a8440bf3d6a8ed833dd9d5790b450f8
3
+ size 82269
ppo-Acrobot-v1/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f2bbc77f80c5fae98dd7a0ef26a6810a24f628f190e4838cf9cd22a0d5ae2d8a
3
+ size 41921
ppo-Acrobot-v1/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-Acrobot-v1/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.13.0-44-generic-x86_64-with-debian-bullseye-sid #49~20.04.1-Ubuntu SMP Wed May 18 18:44:28 UTC 2022
2
+ Python: 3.7.10
3
+ Stable-Baselines3: 1.5.1a8
4
+ PyTorch: 1.11.0
5
+ GPU Enabled: True
6
+ Numpy: 1.21.2
7
+ Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:254cff00c400d5887f3336185d65acc48a54a98813683e0e564bf2850eb203fd
3
+ size 927426
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -74.6, "std_reward": 11.482160075525858, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-02T13:35:35.543777"}
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e7a7e49231620a967865fd6c3fca95192702b948a135a6d5219d92e851638b6f
3
+ size 268639
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dc3bb3adf9f4fbd5a974d8923e16876ce0f3a051f924fb3d9c61dc15b33a456a
3
+ size 4761