araffin commited on
Commit
9218129
1 Parent(s): 7f60782

Initial commit

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLanderContinuous-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: DDPG
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 223.87 +/- 80.41
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLanderContinuous-v2
20
+ type: LunarLanderContinuous-v2
21
+ ---
22
+
23
+ # **DDPG** Agent playing **LunarLanderContinuous-v2**
24
+ This is a trained model of a **DDPG** agent playing **LunarLanderContinuous-v2**
25
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
26
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
27
+
28
+ The RL Zoo is a training framework for Stable Baselines3
29
+ reinforcement learning agents,
30
+ with hyperparameter optimization and pre-trained agents included.
31
+
32
+ ## Usage (with SB3 RL Zoo)
33
+
34
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
35
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
36
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
37
+
38
+ ```
39
+ # Download model and save it into the logs/ folder
40
+ python -m utils.load_from_hub --algo ddpg --env LunarLanderContinuous-v2 -orga sb3 -f logs/
41
+ python enjoy.py --algo ddpg --env LunarLanderContinuous-v2 -f logs/
42
+ ```
43
+
44
+ ## Training (with the RL Zoo)
45
+ ```
46
+ python train.py --algo ddpg --env LunarLanderContinuous-v2 -f logs/
47
+ # Upload the model and generate video (when possible)
48
+ python -m utils.push_to_hub --algo ddpg --env LunarLanderContinuous-v2 -f logs/ -orga sb3
49
+ ```
50
+
51
+ ## Hyperparameters
52
+ ```python
53
+ OrderedDict([('buffer_size', 200000),
54
+ ('gamma', 0.98),
55
+ ('gradient_steps', -1),
56
+ ('learning_rate', 0.001),
57
+ ('learning_starts', 10000),
58
+ ('n_timesteps', 300000.0),
59
+ ('noise_std', 0.1),
60
+ ('noise_type', 'normal'),
61
+ ('policy', 'MlpPolicy'),
62
+ ('policy_kwargs', 'dict(net_arch=[400, 300])'),
63
+ ('train_freq', [1, 'episode']),
64
+ ('normalize', False)])
65
+ ```
args.yml ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - ddpg
4
+ - - env
5
+ - LunarLanderContinuous-v2
6
+ - - env_kwargs
7
+ - null
8
+ - - eval_episodes
9
+ - 10
10
+ - - eval_freq
11
+ - 10000
12
+ - - gym_packages
13
+ - []
14
+ - - hyperparams
15
+ - null
16
+ - - log_folder
17
+ - rl-trained-agents/
18
+ - - log_interval
19
+ - -1
20
+ - - n_evaluations
21
+ - 20
22
+ - - n_jobs
23
+ - 1
24
+ - - n_startup_trials
25
+ - 10
26
+ - - n_timesteps
27
+ - -1
28
+ - - n_trials
29
+ - 10
30
+ - - num_threads
31
+ - -1
32
+ - - optimize_hyperparameters
33
+ - false
34
+ - - pruner
35
+ - median
36
+ - - sampler
37
+ - tpe
38
+ - - save_freq
39
+ - -1
40
+ - - save_replay_buffer
41
+ - false
42
+ - - seed
43
+ - 2972747770
44
+ - - storage
45
+ - null
46
+ - - study_name
47
+ - null
48
+ - - tensorboard_log
49
+ - ''
50
+ - - trained_agent
51
+ - ''
52
+ - - truncate_last_trajectory
53
+ - true
54
+ - - uuid
55
+ - true
56
+ - - vec_env
57
+ - dummy
58
+ - - verbose
59
+ - 1
config.yml ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - buffer_size
3
+ - 200000
4
+ - - gamma
5
+ - 0.98
6
+ - - gradient_steps
7
+ - -1
8
+ - - learning_rate
9
+ - 0.001
10
+ - - learning_starts
11
+ - 10000
12
+ - - n_timesteps
13
+ - 300000.0
14
+ - - noise_std
15
+ - 0.1
16
+ - - noise_type
17
+ - normal
18
+ - - policy
19
+ - MlpPolicy
20
+ - - policy_kwargs
21
+ - dict(net_arch=[400, 300])
22
+ - - train_freq
23
+ - - 1
24
+ - episode
ddpg-LunarLanderContinuous-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a633dd6acea02743c250b086396977b00ac3edc25dfb4ba3ee86d7ae7a67b5af
3
+ size 4027831
ddpg-LunarLanderContinuous-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.1a8
ddpg-LunarLanderContinuous-v2/actor.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8f4f6a25222be61502e7419cb58e28d79af8402fc448adb4c58ff412e76df394
3
+ size 999361
ddpg-LunarLanderContinuous-v2/critic.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8a483ecdfee220adbebcc0572ad55b6ec62e0aeb212399567ec780a7d135e6ca
3
+ size 1003329
ddpg-LunarLanderContinuous-v2/data ADDED
@@ -0,0 +1,125 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gASVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnRkMy5wb2xpY2llc5SMCVREM1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.td3.policies",
6
+ "__doc__": "\n Policy class (with both actor and critic) for TD3.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
7
+ "__init__": "<function TD3Policy.__init__ at 0x7fef9ae00170>",
8
+ "_build": "<function TD3Policy._build at 0x7fef9ae00200>",
9
+ "_get_constructor_parameters": "<function TD3Policy._get_constructor_parameters at 0x7fef9ae00290>",
10
+ "make_actor": "<function TD3Policy.make_actor at 0x7fef9ae00320>",
11
+ "make_critic": "<function TD3Policy.make_critic at 0x7fef9ae003b0>",
12
+ "forward": "<function TD3Policy.forward at 0x7fef9ae00440>",
13
+ "_predict": "<function TD3Policy._predict at 0x7fef9ae004d0>",
14
+ "set_training_mode": "<function TD3Policy.set_training_mode at 0x7fef9ae00560>",
15
+ "__abstractmethods__": "frozenset()",
16
+ "_abc_impl": "<_abc_data object at 0x7fef9adfe1b0>"
17
+ },
18
+ "verbose": 1,
19
+ "policy_kwargs": {
20
+ "net_arch": [
21
+ 400,
22
+ 300
23
+ ],
24
+ "n_critics": 1
25
+ },
26
+ "observation_space": {
27
+ ":type:": "<class 'gym.spaces.box.Box'>",
28
+ ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwiFlGgKiUMgAACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgQaBJLAIWUaBSHlFKUKEsBSwiFlGgKiUMgAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UdJRijA1ib3VuZGVkX2JlbG93lGgQaBJLAIWUaBSHlFKUKEsBSwiFlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMIAAAAAAAAAACUdJRijA1ib3VuZGVkX2Fib3ZllGgQaBJLAIWUaBSHlFKUKEsBSwiFlGgoiUMIAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE6MBl9zaGFwZZRLCIWUdWIu",
29
+ "dtype": "float32",
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null,
35
+ "_shape": [
36
+ 8
37
+ ]
38
+ },
39
+ "action_space": {
40
+ ":type:": "<class 'gym.spaces.box.Box'>",
41
+ ":serialized:": "gASVFwwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwKFlGgKiUMIAACAvwAAgL+UdJRijARoaWdolGgQaBJLAIWUaBSHlFKUKEsBSwKFlGgKiUMIAACAPwAAgD+UdJRijA1ib3VuZGVkX2JlbG93lGgQaBJLAIWUaBSHlFKUKEsBSwKFlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMCAQGUdJRijA1ib3VuZGVkX2Fib3ZllGgQaBJLAIWUaBSHlFKUKEsBSwKFlGgoiUMCAQGUdJRijApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpRoOIwFc3RhdGWUfZQojANrZXmUaBBoEksAhZRoFIeUUpQoSwFNcAKFlGgHjAJ1NJSJiIeUUpQoSwNoC05OTkr/////Sv////9LAHSUYolCwAkAAAAAAIBTwrOchwO1k3Lsq1vo5rLyz7aB2tUG72GhMU2ga7XM2RPmGJ90nHkvyKUbgMR5AUmeD0PkXeAYk5ITVczUSilk0giVvjTQnkRyegPwrb8Kc5t7PulgsQbadQNFC2591hZq6wQ0ZoO38/WlL2nvQmNDtVz3wndSzEZENy0IiW7Qjq53+xi2gE97nvlPMuwS2LmOXoWpGcquPXYtZytCgJ7F7scf9SIBXUvPJA/MGVJkRFeYcJ0K9RIXtela3jvE/0HPOrFftofdM9hYiaqizX97P8mUt2wPQx8xmX0bYJCrtwcdGUzeyPuOugD1z6ka3iX+IAalFvzQduPBTvXKQ9MBWnnfUFetzaqYhTrP0WHhMA/Ht9nWRUX4vUiuWi77gKSTLtizn2cHsqRyJMj43mOVvrbJtm3T5laAgDosou93H+ZNC0HiTVqmVP8Lsv3/JsoIWfaq43/tiUiTGgfVTTF1psbquA6tH5Icya9TC+0oH7X0htvTuZKBVDKM0C+fIAM8l/emTHKVm2ft/85WlYRpZ+XoFwvDLSCusSBQr4f7w/xdYy4GCKdeDDOfezLj5k6WvjminpO26pfQqfP9LJIYOUEgrwmoo5vMHp8a36i8kcQzwqUvi94rCQuS64xYFp7HcUF1aySvLmqGyXEyCeTa2GHwNpeYB9u4jyPRKocxbWSV4hOL16R9fH95KLmFfUaMD8zrZmLG5rLUfzMf1WOxNFwZpzInS+HWE1F4MWg2xcVst8upoi9ssNCNjtPbz1ley6m8DG7YZVNupay35yQ8/PAfu8uKRQsL7B4ArDFquqb66ABeDLPvviZ4c6y9Bi67Xye+uu6eNlYO/Boq5iiETBR9Kemi0T1eFf33JRNzywY9CJ1N9eTOb+3wxY/yK3iXhVISAMufwZby3YMCHwTAVr8o4ahkQaNipnYgwDvQT4XYuqBpmVAsUw41MjHfK43kXZ7UxPi/bB0FEr1H6UYynEiI2V3I7DDEsMFNEMyF3sA+J2YPBAGe9oh5woVr3lu3AeREERRPmD778jQMODrzkRfg4w7Zi1M+ozc9CW5Lim4SEBBFW6Q0ZKHiBgOBwE8pmXhOE1/4b4TsSX1+ZYlw/f1KJ/Doyf4YSKwzVGEdjTldkdS/lbivyQPaNIsxj4ggvb4u1CtbuK3vLbz6wSJwugR9g6TL1kkXqXR9H6xcRrB/5EQf0u+1EnjLN/GvsqKw2mvVrG/Vp7kINdL5dPO44b8Emce+3xqudjVdYf1J2QI56iTowjwYEK2NMLEnklukjknSLQDrqYlpFb0sx8/oKKXf9xVFD243YpO1XejusnBjhcKePsMmaqtTCh8MOXsSTQ+g3vDQeHxgc7LyqE/DtXwAt2Nmft5i2MJAiV1C8dszUjvdG0ItC9AYUxdQInTbakZGpO9lfldZKLOpuBfpMmYjosMX3Bylh5qUHtwPB6V+p2nMdGbKNFshf1v7Di6P/9oNGA/ZKCI4Cr8P/3/RJuAr8TQVDJyWE1UCRsrBeEDEoZzOm8mjDSYUVQC3/l9PkoCyZBMC3ynQWysYwNN+ThHNmCplKb6KFVFLfvVPHe3CkYDWCij8Ah8mHyyUkLeGRHU4YI3ssA8YLBsz2seUpJTi66EmJ9/X3qH2rWQ8yV3r3z0x8otWS8KXuh8JG6s9Rbjpx4koT3nWxAPW/xwrQcrUma4FMJcB6UJQIgU0saTe0xc1Wa64UXejfFvhXhPUgBgh8F3IRUeEghk4T8kRjv11pDDyeNgS1DpjBnqQ0IFh+uOrY6CUhNxF3AOYg0vjaujoedtaAtlDwJ78SI9UG1YfCG8ZQcrUU043NHNeBPXMoSD5YCKB64rhBUjF0hMzhi9TJi+lAm4l37EYPWejsFggpd1XhoOWxGdZIyZL7NPJO8LT5OAEwI2ky90KGNoH9dOsxWybS+A+YJizCfTrsxNhZ+bmgKqqY1yKqhF8UvY7abEVPVUxwoOvEcF0FSFIblSYB6vHzooATK1uwJufo46PxjTZXBXKfNd3RYl8uKh4YxkhIzV6d5Z9NzWZDoKl0PEmpSZTzr8qwEvcFvRLY0CoXKwUlkrEPAt6PzHP7EfwjEQfOWSKI0f7YgirTrrcUDCLrCDp2ByvIOpD6U0PCfz3yfKWtxhKGKAOu2sUE17MrHdmOmQ8Kc9R5AHiElStgJQnLkLLK0L/HVSwHIp7P9pI0RaeVafNh0l/Y+govRh+ZpHcqlfOL1rHcEc+CTVx2aB1WSp68UnQNR1MEVCP+aFoqpxpPSsokuDL/XUCFZbidfv6QB2BHRvWICx4jRNswO2iEG6qpRl+ox9Qqx0jy/Zp5R3T4io6M8EV7tNlELs5RiZ/vz1JFOnD2Cy3i3PHu0tqnwmcW3aR4qGp3e8GCqm+WzG/HQNw8L5uj+oiV0qICfkPtM+N5YvMnWCamTWZUo7JY6/9nOVFN97zISwyxFyB0/Fs67EuOU7CjW4WH02Meg7P/FucjrYjj1nNPn0ZQI20AvvhSqOVGjJdnkQsSOFOf4Xl9h8SRjZOdKyAo7hbBv/EPjVLiYEvstxTIXvrJtXtjHQvpXZAahJ/KEcWoxAmz+Fos89bXyZYlv9QOX3Rk31MTNx1e9myYJ6rMJqALpgMend+in7mcBBKdP8HK3aPvP7pyeX9pmHqgqznGsQya7OksVtc1Wh/2E2ZfkTQNDYzy4Gqp5b3mnrPzJKc7FREA7byhhaxtXJ5ho2VYtms60gxkNGONt5xJLAwuWsGHDiZlWG3gOA5DEjX4/uw8dksx/z1T7ly1/WsPSvUBeDJePM7Eq8LFYyGvPoCHX37NqX9sAinD7RXs+rzk9FA7hR5JyYzA4NHyNw58gu4yajvFeF6Zj8mq06dySURoZqkx4aWSJ5+9CTH0vkRa8ufqy0jjNE/illfH2I7PXsgomYo5UeAIgA6KF5vRvCSM2Qi2V9g7cvN4ss+4EM0sWDu1C7k09bLbxricGwT+CzIS15G8XYQJgUg4mDTp3NzvshbDuj7PVDkA/EuD26/IWeJhY24nKTut+UsKZhyDWA3rnsJZ9/xh8+vS6Qo5qZyj3hfWcV3KujEeJCVFdo/3UM6oy54jWkJqzJFC3SO1tbDF0RXLM/cbNRlcFaprTFcLPB7b1zGDZqLAq64ABV9oIT8+3VwlerzC+WIXzWwwM8xujB3367Ja4TGr977ZbfBZ5XeFWh+iITJKMGsk9ZUlb375ShwlsLSmk3Dma0eS2RmpSTqRW1SBVDgKPi52P9uW5nNypaMi84Ik7nYz7FxBjzTwSLxP+XDBL1OC67NDd7QpHuGm2A1xfX9eEK8C5R0lGKMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVijAZfc2hhcGWUSwKFlHViLg==",
42
+ "dtype": "float32",
43
+ "low": "[-1. -1.]",
44
+ "high": "[1. 1.]",
45
+ "bounded_below": "[ True True]",
46
+ "bounded_above": "[ True True]",
47
+ "_np_random": "RandomState(MT19937)",
48
+ "_shape": [
49
+ 2
50
+ ]
51
+ },
52
+ "n_envs": 1,
53
+ "num_timesteps": 300131,
54
+ "_total_timesteps": 300000,
55
+ "_num_timesteps_at_start": 0,
56
+ "seed": 0,
57
+ "action_noise": {
58
+ ":type:": "<class 'stable_baselines3.common.noise.NormalActionNoise'>",
59
+ ":serialized:": "gASVFAEAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5ub2lzZZSMEU5vcm1hbEFjdGlvbk5vaXNllJOUKYGUfZQojANfbXWUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5SMBW51bXB5lIwHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsChZRoCYwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKJQxAAAAAAAAAAAAAAAAAAAAAAlHSUYowGX3NpZ21hlGgIaAtLAIWUaA2HlFKUKEsBSwKFlGgViUMQmpmZmZmZuT+amZmZmZm5P5R0lGJ1Yi4=",
60
+ "_mu": "[0. 0.]",
61
+ "_sigma": "[0.1 0.1]"
62
+ },
63
+ "start_time": 1614710447.042065,
64
+ "learning_rate": {
65
+ ":type:": "<class 'function'>",
66
+ ":serialized:": "gASV2QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxVL3ZvbHVtZS9VU0VSU1RPUkUvcmFmZl9hbi9wcm9qZWN0cy90b3JjaHktYmFzZWxpbmVzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS3xDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVS92b2x1bWUvVVNFUlNUT1JFL3JhZmZfYW4vcHJvamVjdHMvdG9yY2h5LWJhc2VsaW5lcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP1BiTdLxqfyFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
67
+ },
68
+ "tensorboard_log": null,
69
+ "lr_schedule": {
70
+ ":type:": "<class 'function'>",
71
+ ":serialized:": "gASV2QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxVL3ZvbHVtZS9VU0VSU1RPUkUvcmFmZl9hbi9wcm9qZWN0cy90b3JjaHktYmFzZWxpbmVzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS3xDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVS92b2x1bWUvVVNFUlNUT1JFL3JhZmZfYW4vcHJvamVjdHMvdG9yY2h5LWJhc2VsaW5lcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP1BiTdLxqfyFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
72
+ },
73
+ "_last_obs": null,
74
+ "_last_episode_starts": null,
75
+ "_last_original_obs": {
76
+ ":type:": "<class 'numpy.ndarray'>",
77
+ ":serialized:": "gASVqgAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwFLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUMgGhOXvT36DrmkjCCzttZ6sO5ojTtAhb4zAAAAAAAAgD+UdJRiLg=="
78
+ },
79
+ "_episode_num": 881,
80
+ "use_sde": false,
81
+ "sde_sample_freq": -1,
82
+ "_current_progress_remaining": -0.0004366666666666408,
83
+ "ep_info_buffer": {
84
+ ":type:": "<class 'collections.deque'>",
85
+ ":serialized:": "gASVQRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI9Gvrp79acUCUhpRSlIwBbJRL3YwBdJRHQME9cczhxYJ1fZQoaAZoCWgPQwhKYd7jTFRZwJSGlFKUaBVN6ANoFkdAwUqACf6Gg3V9lChoBmgJaA9DCOLJbmY0w3JAlIaUUpRoFU0NAWgWR0DBWmUsWfsedX2UKGgGaAloD0MIKjbmdcTicECUhpRSlGgVS5poFkdAwV6pz6rNn3V9lChoBmgJaA9DCJ7RViVRhXFAlIaUUpRoFUvnaBZHQMFhObEHdGl1fZQoaAZoCWgPQwiL+49MByVvQJSGlFKUaBVLyWgWR0DBZP18w5/9dX2UKGgGaAloD0MIL8IU5dLPc8CUhpRSlGgVTQgCaBZHQMFpA0I1LrZ1fZQoaAZoCWgPQwj/A6xVu65xQJSGlFKUaBVNLAFoFkdAwXFsOAiFCnV9lChoBmgJaA9DCMGopE5Ar29AlIaUUpRoFU08AWgWR0DBdncOAiFCdX2UKGgGaAloD0MI5zi3CfcQRsCUhpRSlGgVTegDaBZHQMF9jkjPfKp1fZQoaAZoCWgPQwhuNeuMb69sQJSGlFKUaBVNewFoFkdAwY3Cp71Iy3V9lChoBmgJaA9DCPIMGvonu2xAlIaUUpRoFUupaBZHQMGTqrFOwgV1fZQoaAZoCWgPQwgc7bjh9wVsQJSGlFKUaBVL9WgWR0DBlomAVfu1dX2UKGgGaAloD0MIbCQJwlWxcECUhpRSlGgVS7ZoFkdAwZqQJCSid3V9lChoBmgJaA9DCEgYBiy5G3JAlIaUUpRoFUv7aBZHQMGdxhh6Skl1fZQoaAZoCWgPQwgNHNDSFTZKQJSGlFKUaBVLe2gWR0DBocXI4lyBdX2UKGgGaAloD0MIgO7Lme1xVcCUhpRSlGgVTegDaBZHQMGl01xjriV1fZQoaAZoCWgPQwgFGmzqPEI4QJSGlFKUaBVLhmgWR0DBtYfKEFnqdX2UKGgGaAloD0MIokEKngI6cUCUhpRSlGgVS8VoFkdAwbe5pljEvXV9lChoBmgJaA9DCGmn5nKD/G9AlIaUUpRoFU2WA2gWR0DBvD8+TvAodX2UKGgGaAloD0MItwpioGvOcECUhpRSlGgVS69oFkdAwcqXWiDdxnV9lChoBmgJaA9DCASpFDtabHFAlIaUUpRoFUuwaBZHQMHNcuJk5IZ1fZQoaAZoCWgPQwiKy/EKxHpyQJSGlFKUaBVL/2gWR0DB0HlmcvugdX2UKGgGaAloD0MImbfqOlQbP8CUhpRSlGgVTYQBaBZHQMHVE9n003x1fZQoaAZoCWgPQwhdUUoI1uZrwJSGlFKUaBVNpAFoFkdAwduVDrJKa3V9lChoBmgJaA9DCKG/0CNGTmxAlIaUUpRoFU0+AWgWR0DB4oXM8ox6dX2UKGgGaAloD0MIi3CTUSUTcECUhpRSlGgVTVoBaBZHQMHoBb6pHZt1fZQoaAZoCWgPQwg3iUFgpXlxQJSGlFKUaBVLpWgWR0DB7V3e54GEdX2UKGgGaAloD0MIR6zFp0CAc0CUhpRSlGgVS+xoFkdAwfAz7x/d7HV9lChoBmgJaA9DCN53DI/95mtAlIaUUpRoFU1EAWgWR0DB+lTyDqW1dX2UKGgGaAloD0MIO4veqQC6YUCUhpRSlGgVTX0DaBZHQMIDYUWuX/p1fZQoaAZoCWgPQwgf2scK/t5wQJSGlFKUaBVLn2gWR0DCEUWlj3EidX2UKGgGaAloD0MINdB8zl19bECUhpRSlGgVTV8BaBZHQMIUJFLOAy51fZQoaAZoCWgPQwhGYRdFzz5yQJSGlFKUaBVLyGgWR0DCGelVR1oydX2UKGgGaAloD0MIrKksCjueb0CUhpRSlGgVTT8BaBZHQMIdYrEcbR51fZQoaAZoCWgPQwitpYC0v4pwQJSGlFKUaBVL62gWR0DCIoN1jiGWdX2UKGgGaAloD0MIEalpF1N8b0CUhpRSlGgVTRcBaBZHQMImhdj5Kvp1fZQoaAZoCWgPQwgb8zrikD1cwJSGlFKUaBVN6ANoFkdAwi1Xj4Hoo3V9lChoBmgJaA9DCN2YnrDEZ2xAlIaUUpRoFU1/AWgWR0DCPS+/FirldX2UKGgGaAloD0MILzatFALqbkCUhpRSlGgVS9doFkdAwkM274i5eHV9lChoBmgJaA9DCDJWm//Xnm9AlIaUUpRoFU2KAWgWR0DCRwT39JjEdX2UKGgGaAloD0MIVMa/zzgpbUCUhpRSlGgVTR0BaBZHQMJNp7Hhjvx1fZQoaAZoCWgPQwhQjCyZow5xQJSGlFKUaBVLn2gWR0DCUivBBRhudX2UKGgGaAloD0MI9+Y3THQOcUCUhpRSlGgVS5BoFkdAwlSvDqGDc3V9lChoBmgJaA9DCJAUkWGVuW1AlIaUUpRoFU1PAWgWR0DCVz75CWu6dX2UKGgGaAloD0MIKqkT0MRDbECUhpRSlGgVTSMBaBZHQMJc6F9roGJ1fZQoaAZoCWgPQwhx5ldzAIhvQJSGlFKUaBVLtmgWR0DCYaFxdY4idX2UKGgGaAloD0MI4C9mSxajckCUhpRSlGgVS8FoFkdAwmSaPFvQ4XV9lChoBmgJaA9DCD82yY84KnJAlIaUUpRoFUuvaBZHQMJnpoAGSp11fZQoaAZoCWgPQwiDUN7HkVtwQJSGlFKUaBVLl2gWR0DCaneIKtxNdX2UKGgGaAloD0MIvceZJuzXb0CUhpRSlGgVS61oFkdAwmz/oZAIIHV9lChoBmgJaA9DCNV7Kqc9tStAlIaUUpRoFU3oA2gWR0DCcqqPXCj2dX2UKGgGaAloD0MIar+1E+VGcUCUhpRSlGgVS9JoFkdAwoJcjX4CZHV9lChoBmgJaA9DCIqUZvN4mXBAlIaUUpRoFUuhaBZHQMKF0uxB3Rp1fZQoaAZoCWgPQwg2AYblTz5yQJSGlFKUaBVLtGgWR0DCiH/oPkJbdX2UKGgGaAloD0MI0Jm0qfrBcECUhpRSlGgVS7VoFkdAwotYUaAFxHV9lChoBmgJaA9DCIJXy53ZE3JAlIaUUpRoFUuraBZHQMKOPiAc1fp1fZQoaAZoCWgPQwjwMO2b+0NSwJSGlFKUaBVN6ANoFkdAwpMIlOXVsnV9lChoBmgJaA9DCD4JbM7BrzdAlIaUUpRoFUtdaBZHQMKik9Pci4d1fZQoaAZoCWgPQwikchO1tClvQJSGlFKUaBVNBQFoFkdAwqROXsw+MnV9lChoBmgJaA9DCLeyRGeZ825AlIaUUpRoFUuYaBZHQMKqwWKuSwJ1fZQoaAZoCWgPQwjO/kC5bYNwQJSGlFKUaBVLumgWR0DCrTyi0v4/dX2UKGgGaAloD0MIB1xXzEhCcECUhpRSlGgVTdgBaBZHQMKwpwAEMb51fZQoaAZoCWgPQwgrL/mfPP9wQJSGlFKUaBVLumgWR0DCuEYOWjXWdX2UKGgGaAloD0MIJQaBlUM/aUCUhpRSlGgVTXoBaBZHQMK7v6iTMaF1fZQoaAZoCWgPQwhJoSx8ffRqQJSGlFKUaBVNcwFoFkdAwsIhIOH313V9lChoBmgJaA9DCMjuAiUF92lAlIaUUpRoFU1mAmgWR0DCyPV6zE75dX2UKGgGaAloD0MINA71u7AkcUCUhpRSlGgVS6VoFkdAwtKLhF3IMnV9lChoBmgJaA9DCOVH/Io1ODZAlIaUUpRoFUtOaBZHQMLVQYUvf0p1fZQoaAZoCWgPQwhzuiwmtlxwQJSGlFKUaBVLuWgWR0DC1qTiXIEKdX2UKGgGaAloD0MIG0esxWfycECUhpRSlGgVS6NoFkdAwtmve7cwg3V9lChoBmgJaA9DCJxNRwD3anJAlIaUUpRoFUukaBZHQMLcUMZxaPl1fZQoaAZoCWgPQwhdFhObjz5wQJSGlFKUaBVN4AJoFkdAwt/JHggow3V9lChoBmgJaA9DCKgY528CSXFAlIaUUpRoFUvuaBZHQMLragKWszV1fZQoaAZoCWgPQwjlKha/6ZtwQJSGlFKUaBVLv2gWR0DC70xhx5s1dX2UKGgGaAloD0MIoP8evDacckCUhpRSlGgVS9loFkdAwvKYa/h2n3V9lChoBmgJaA9DCA/wpIXLfnBAlIaUUpRoFUu/aBZHQML2B1RLsa91fZQoaAZoCWgPQwgoDqDfdxluQJSGlFKUaBVL/WgWR0DC+S7DVH4HdX2UKGgGaAloD0MIJefEHtr2Y0CUhpRSlGgVTT4CaBZHQML+Gk9ECvJ1fZQoaAZoCWgPQwiuuaP/5SxxQJSGlFKUaBVLkmgWR0DDB12BWgezdX2UKGgGaAloD0MIKxN+qZ+YbUCUhpRSlGgVS/NoFkdAwwnWo4MnZ3V9lChoBmgJaA9DCC3OGOYET3NAlIaUUpRoFUv9aBZHQMMN0EuYhMd1fZQoaAZoCWgPQwgL7DGR0jJKwJSGlFKUaBVLQGgWR0DDEeLSZ0CBdX2UKGgGaAloD0MILgJjfYMFcECUhpRSlGgVS7FoFkdAwxMOyHmA9XV9lChoBmgJaA9DCK+Xpgjw62jAlIaUUpRoFU1iAWgWR0DDFkgwmE5AdX2UKGgGaAloD0MIKuYg6Gi9LUCUhpRSlGgVS1FoFkdAwxv/bfxc3XV9lChoBmgJaA9DCNb/OcyXQ29AlIaUUpRoFUvzaBZHQMMddvcJtzl1fZQoaAZoCWgPQwj+gXLbPrBxQJSGlFKUaBVL62gWR0DDIV7ILgGbdX2UKGgGaAloD0MIw5ygTY5BccCUhpRSlGgVTbQCaBZHQMMlzyb6P811fZQoaAZoCWgPQwhQHEC/728WQJSGlFKUaBVLRWgWR0DDMMiB9TgmdX2UKGgGaAloD0MI0c/U6xbLRcCUhpRSlGgVS0doFkdAwzHuplz2e3V9lChoBmgJaA9DCNi61Aj9vBFAlIaUUpRoFUtpaBZHQMMzHDLr5Zd1fZQoaAZoCWgPQwiV8e8zLnQiQJSGlFKUaBVLW2gWR0DDNMR/ZuhsdX2UKGgGaAloD0MI6Nms+lydOcCUhpRSlGgVS09oFkdAwzY0zsyBTXV9lChoBmgJaA9DCMx5xr5ku0fAlIaUUpRoFUteaBZHQMM3eIbwSap1fZQoaAZoCWgPQwiXqx+bZK1wQJSGlFKUaBVLtmgWR0DDOQ/Fo+OfdX2UKGgGaAloD0MItwvNdZoeb0CUhpRSlGgVS85oFkdAwzwQsfaHsXV9lChoBmgJaA9DCM7HtaGirnFAlIaUUpRoFUugaBZHQMM/eyYgJTl1fZQoaAZoCWgPQwjymld1Vvc+QJSGlFKUaBVN6ANoFkdAw0Nucm0E5nV9lChoBmgJaA9DCJ0Rpb2BRnJAlIaUUpRoFUvVaBZHQMNYWFRYRul1ZS4="
86
+ },
87
+ "ep_success_buffer": {
88
+ ":type:": "<class 'collections.deque'>",
89
+ ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
90
+ },
91
+ "_n_updates": 290148,
92
+ "buffer_size": 1,
93
+ "batch_size": 100,
94
+ "learning_starts": 10000,
95
+ "tau": 0.005,
96
+ "gamma": 0.98,
97
+ "gradient_steps": -1,
98
+ "optimize_memory_usage": false,
99
+ "replay_buffer_class": {
100
+ ":type:": "<class 'abc.ABCMeta'>",
101
+ ":serialized:": "gASVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
102
+ "__module__": "stable_baselines3.common.buffers",
103
+ "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
104
+ "__init__": "<function ReplayBuffer.__init__ at 0x7fef9b27db90>",
105
+ "add": "<function ReplayBuffer.add at 0x7fef9b27dc20>",
106
+ "sample": "<function ReplayBuffer.sample at 0x7fef9ade47a0>",
107
+ "_get_samples": "<function ReplayBuffer._get_samples at 0x7fef9ade4830>",
108
+ "__abstractmethods__": "frozenset()",
109
+ "_abc_impl": "<_abc_data object at 0x7fef9b2d45d0>"
110
+ },
111
+ "replay_buffer_kwargs": {},
112
+ "train_freq": {
113
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
114
+ ":serialized:": "gASVZAAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMB2VwaXNvZGWUhZRSlIaUgZQu"
115
+ },
116
+ "use_sde_at_warmup": false,
117
+ "policy_delay": 1,
118
+ "target_noise_clip": 0.0,
119
+ "target_policy_noise": 0.1,
120
+ "_last_dones": {
121
+ ":type:": "<class 'numpy.ndarray'>",
122
+ ":serialized:": "gASViQAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwGFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAQCUdJRiLg=="
123
+ },
124
+ "remove_time_limit_termination": false
125
+ }
ddpg-LunarLanderContinuous-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37c612dd4389e6bbd080adfef3f5c0bb034c04fa719b68add88b2be6918676b5
3
+ size 2003997
ddpg-LunarLanderContinuous-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ddpg-LunarLanderContinuous-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.13.0-44-generic-x86_64-with-debian-bullseye-sid #49~20.04.1-Ubuntu SMP Wed May 18 18:44:28 UTC 2022
2
+ Python: 3.7.10
3
+ Stable-Baselines3: 1.5.1a8
4
+ PyTorch: 1.11.0
5
+ GPU Enabled: True
6
+ Numpy: 1.21.2
7
+ Gym: 0.21.0
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:93abe6a50e400b4d5340564a8131c2d0f8e5339424243aa9cec41be8fbcff32f
3
+ size 213128
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 223.86709460000003, "std_reward": 80.40817956608241, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-02T22:39:30.763660"}
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9d8e82f3880f8ef17646b9eb528b328d4c92817993b01c6c17334c4a5df96664
3
+ size 30325