Upload model
Browse files- config.json +15 -0
- pytorch_model.bin +3 -0
- rna_torsionbert_config.py +16 -0
- rna_torsionbert_model.py +38 -0
config.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"RNATorsionBERTModel"
|
4 |
+
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "rna_torsionbert_config.RNATorsionBertConfig",
|
7 |
+
"AutoModel": "rna_torsionbert_model.RNATorsionBERTModel"
|
8 |
+
},
|
9 |
+
"hidden_size": 1024,
|
10 |
+
"k": 3,
|
11 |
+
"model_type": "rna_torsionbert",
|
12 |
+
"num_classes": 18,
|
13 |
+
"torch_dtype": "float32",
|
14 |
+
"transformers_version": "4.29.0"
|
15 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4e770ee16a98d493a917a3b445c84ae2b4c22e5a94fa129e0bc9d222107596b9
|
3 |
+
size 347678917
|
rna_torsionbert_config.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PretrainedConfig
|
2 |
+
|
3 |
+
|
4 |
+
class RNATorsionBertConfig(PretrainedConfig):
|
5 |
+
model_type = "rna_torsionbert"
|
6 |
+
def __init__(self, k: int = 3, num_classes: int = 18, hidden_size: int = 1024, **kwargs):
|
7 |
+
"""
|
8 |
+
Initialise the model.
|
9 |
+
:param k: the k-mer size.
|
10 |
+
:param num_classes: the number of labels.
|
11 |
+
:param hidden_size: size of the hidden layer after BERT hidden states.
|
12 |
+
"""
|
13 |
+
self.k = k
|
14 |
+
self.num_classes = num_classes
|
15 |
+
self.hidden_size = hidden_size
|
16 |
+
super().__init__(**kwargs)
|
rna_torsionbert_model.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torch import nn
|
2 |
+
from transformers import PreTrainedModel, AutoModel, AutoConfig
|
3 |
+
|
4 |
+
from .rna_torsionbert_config import RNATorsionBertConfig
|
5 |
+
|
6 |
+
|
7 |
+
class RNATorsionBERTModel(PreTrainedModel):
|
8 |
+
config_class = RNATorsionBertConfig
|
9 |
+
|
10 |
+
def __init__(self, config):
|
11 |
+
super().__init__(config)
|
12 |
+
self.init_model(config.k)
|
13 |
+
self.dnabert = AutoModel.from_pretrained(
|
14 |
+
self.model_name, config=self.dnabert_config, trust_remote_code=True
|
15 |
+
)
|
16 |
+
self.regressor = nn.Sequential(
|
17 |
+
nn.LayerNorm(self.dnabert_config.hidden_size),
|
18 |
+
nn.Linear(self.dnabert_config.hidden_size, config.hidden_size),
|
19 |
+
nn.GELU(),
|
20 |
+
nn.Linear(config.hidden_size, config.num_classes),
|
21 |
+
nn.Softmax(dim=-1)
|
22 |
+
)
|
23 |
+
|
24 |
+
def init_model(self, k: int):
|
25 |
+
model_name = f"zhihan1996/DNA_bert_{k}"
|
26 |
+
revisions = {3: "ed28178", 4: "c8499f0", 5: "c296157", 6: "a79a8fd"}
|
27 |
+
dnabert_config = AutoConfig.from_pretrained(
|
28 |
+
model_name,
|
29 |
+
revision=revisions[k],
|
30 |
+
trust_remote_code=True,
|
31 |
+
)
|
32 |
+
self.dnabert_config = dnabert_config
|
33 |
+
self.model_name = model_name
|
34 |
+
|
35 |
+
def forward(self, tensor):
|
36 |
+
z = self.dnabert(**tensor).last_hidden_state
|
37 |
+
output = self.regressor(z)
|
38 |
+
return {"logits": output}
|