sayby commited on
Commit
5e11e42
1 Parent(s): 036034c

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1285.58 +/- 115.25
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:91595fcbb393fcde051d747b33b8ab7bc4ec106a17a30dfba201c129d24607b1
3
+ size 129001
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8347a71af0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8347a71b80>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8347a71c10>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8347a71ca0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f8347a71d30>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f8347a71dc0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8347a71e50>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f8347a71ee0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8347a71f70>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8347a75040>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8347a750d0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f8347a6f5d0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {
23
+ ":type:": "<class 'dict'>",
24
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
25
+ "log_std_init": -2,
26
+ "ortho_init": false,
27
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
28
+ "optimizer_kwargs": {
29
+ "alpha": 0.99,
30
+ "eps": 1e-05,
31
+ "weight_decay": 0
32
+ }
33
+ },
34
+ "observation_space": {
35
+ ":type:": "<class 'gym.spaces.box.Box'>",
36
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
37
+ "dtype": "float32",
38
+ "_shape": [
39
+ 28
40
+ ],
41
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
42
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
43
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
44
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "_np_random": null
46
+ },
47
+ "action_space": {
48
+ ":type:": "<class 'gym.spaces.box.Box'>",
49
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
50
+ "dtype": "float32",
51
+ "_shape": [
52
+ 8
53
+ ],
54
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
55
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
56
+ "bounded_below": "[ True True True True True True True True]",
57
+ "bounded_above": "[ True True True True True True True True]",
58
+ "_np_random": null
59
+ },
60
+ "n_envs": 4,
61
+ "num_timesteps": 2000000,
62
+ "_total_timesteps": 2000000,
63
+ "_num_timesteps_at_start": 0,
64
+ "seed": null,
65
+ "action_noise": null,
66
+ "start_time": 1670105538550912755,
67
+ "learning_rate": 0.00096,
68
+ "tensorboard_log": "./tensorboard",
69
+ "lr_schedule": {
70
+ ":type:": "<class 'function'>",
71
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
72
+ },
73
+ "_last_obs": {
74
+ ":type:": "<class 'numpy.ndarray'>",
75
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAD9E671bu4C/jatSv6/dkb77/E+/Ax0vwBv9ET8YvnO+vUj2vebtAL8w5Nw+CxHVvoKMYz6qBu4/uMq3PbXhIcC/fhS/yG0dQJ9aYT/gQhG95YFYv97kMT/mZt09+E7jPyIEEz/oerE+ZELRvwqFW78/6oW9n441v0iyLb5DHW4/W0gMv/aLRj/Y6j6911vUvnuJ670GOs8+K3ZvPowdFL1sPpY/Ua+Ovz4lGj8N984/klaYP2UOer8gioa+vYstv/ZX8D9C8DW/QlEgv4FQHMAiBBM/6HqxPiOXHD8KhVu/mKn5Pl+l4D2k9SM/W8x6P+Lxxb4HDv8/4wzCvaufnb8o5RE9jx/nP7qGpz+KetM/og8nvxUip76ofRI/sdcHvuijlz8ohEO/p039vrfHl76+yyI/Yd7bvaf3bL/LmQ0+IgQTP+h6sT4jlxw/CoVbv4PLaT+S09w/ErdnP+36tr+b5qY/9nr5PpDWmD9p4Rm/v3bZv77SKz6y5sA+w+boP+u+tj+/fdU9WDKLvpRiPr+aEaY/LcqRvsCp7z8lXNO/87dOP0ClnT8wNSJAd5tBvhfj3r/oerE+ZELRv3dFlT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
76
+ },
77
+ "_last_episode_starts": {
78
+ ":type:": "<class 'numpy.ndarray'>",
79
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
80
+ },
81
+ "_last_original_obs": {
82
+ ":type:": "<class 'numpy.ndarray'>",
83
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAt+Ac2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAxpfSuwAAAAAf1uW/AAAAACaQkT0AAAAADtHuPwAAAAB/1PC9AAAAAKrA9T8AAAAA3mQNvgAAAAA1yN6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbM2ANAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgACvTT0AAAAA5eXsvwAAAADQy6W9AAAAAH9P3j8AAAAATm5jPQAAAAC9QPE/AAAAABkPsL0AAAAAH+34vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIp1obYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBGqo48AAAAAD1x778AAAAAXd3vvQAAAADtf/s/AAAAAKSb+zwAAAAAFeHlPwAAAAA0LNU9AAAAAFPr+L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADGHL+1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACATGaDvQAAAABkzve/AAAAAN9z9rwAAAAAPV72PwAAAAB589C9AAAAAFJ99j8AAAAAd2EGvAAAAACtnem/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
84
+ },
85
+ "_episode_num": 0,
86
+ "use_sde": true,
87
+ "sde_sample_freq": -1,
88
+ "_current_progress_remaining": 0.0,
89
+ "ep_info_buffer": {
90
+ ":type:": "<class 'collections.deque'>",
91
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIVdYuM+/xmMAWyUTegDjAF0lEdAp6Swgow223V9lChoBkdAg3KWCmMwUWgHTegDaAhHQKentKFqSHN1fZQoaAZHQI5KfRzBAOdoB03oA2gIR0CnqCBdt2s8dX2UKGgGR0CR20FxXGOuaAdN6ANoCEdAp6swgV45cXV9lChoBkdAkFozA31jAmgHTegDaAhHQKexOTpxFRZ1fZQoaAZHQJOekB7u2JBoB03oA2gIR0CntDsaCL/CdX2UKGgGR0CTQXEOy3TeaAdN6ANoCEdAp7SwZOzpo3V9lChoBkdAhiZJHRTjvWgHTegDaAhHQKe302hIvrZ1fZQoaAZHQJRwZ4ptrKxoB03oA2gIR0CnvdBxxT86dX2UKGgGR0CRAnnBLwnZaAdN6ANoCEdAp8DRJ7LMcXV9lChoBkdAlM/3os7MgWgHTegDaAhHQKfBPgAp8Wt1fZQoaAZHQJMXQKD0165oB03oA2gIR0CnxFurIYFadX2UKGgGR0CROBhRZU1iaAdN6ANoCEdAp8qVQEZBLXV9lChoBkdAk8dLblA/s2gHTegDaAhHQKfNlEBKcut1fZQoaAZHQJQ9EB5ooNNoB03oA2gIR0CnzgDQqqffdX2UKGgGR0CSOBxFy7wsaAdN6ANoCEdAp9FB6jWTYHV9lChoBkdAkqxGMOwxFmgHTegDaAhHQKfXdX9zfaZ1fZQoaAZHQIcEcnXumaZoB03oA2gIR0Cn2n4Vh1DCdX2UKGgGR0CROnA9V3lkaAdN6ANoCEdAp9rmvwEyL3V9lChoBkdAj6qR33YcvWgHTegDaAhHQKfeDXJYDDF1fZQoaAZHQJJo47aIvaloB03oA2gIR0Cn5D0tAcDKdX2UKGgGR0CQ6NsnRb8naAdN6ANoCEdAp+c5s41gpnV9lChoBkdAkgso1DSgG2gHTegDaAhHQKfno1D0Dlp1fZQoaAZHQJJbe3OObRZoB03oA2gIR0Cn6rAXl8w6dX2UKGgGR0CLMXw2ETQFaAdN6ANoCEdAp/Cu3Ytg8nV9lChoBkdAhKsoiC8OC2gHTegDaAhHQKfzyldkauR1fZQoaAZHQInMZiRW915oB03oA2gIR0Cn9DmReTmodX2UKGgGR0CPJdlhgE2YaAdN6ANoCEdAp/dKKHfuTnV9lChoBkdAk22gHRkVe2gHTegDaAhHQKf9husLfDV1fZQoaAZHQJC9A2bXpW5oB03oA2gIR0CoAJNknTiLdX2UKGgGR0CMp37qIJqqaAdN6ANoCEdAqAD9VR1ox3V9lChoBkdAkV3qNp/PPmgHTegDaAhHQKgEKwwCbMJ1fZQoaAZHQJD0heAuqWFoB03oA2gIR0CoCkX531SPdX2UKGgGR0CTPSNsWO6vaAdN6ANoCEdAqA0//DLr5nV9lChoBkdAkymbzkIX02gHTegDaAhHQKgNsL+glGB1fZQoaAZHQJE3NgH/tIFoB03oA2gIR0CoENTj3mFKdX2UKGgGR0CUifo9cKPXaAdN6ANoCEdAqBboHxBmgHV9lChoBkdAk19OPaL4vmgHTegDaAhHQKgaAPjGT9t1fZQoaAZHQJVmcRK6FuhoB03oA2gIR0CoGmvMSsbOdX2UKGgGR0CRRJ7nxJ/YaAdN6ANoCEdAqB2L2xptanV9lChoBkdAkWaL+DOC5GgHTegDaAhHQKgjgE9t/F11fZQoaAZHQJLJg4ku6EtoB03oA2gIR0CoJonUUfxMdX2UKGgGR0CS97zoEB8yaAdN6ANoCEdAqCbzqB3A23V9lChoBkdAg1M7LdN34mgHTegDaAhHQKgqEDsdDIB1fZQoaAZHQI9ywiHIp6RoB03oA2gIR0CoMB9d3SrpdX2UKGgGR0CR2EJb+tKaaAdN6ANoCEdAqDMofnwG4nV9lChoBkdAi0yo8ZDRdGgHTegDaAhHQKgzlPD50r91fZQoaAZHQIiyXEwWWQhoB03oA2gIR0CoNqHiNsFddX2UKGgGR0CSBWp1ie/YaAdN6ANoCEdAqDyjKgZjx3V9lChoBkdAjrvOgxrSE2gHTegDaAhHQKg/yR7qptJ1fZQoaAZHQJF8LcpLEk1oB03oA2gIR0CoQDS0Sh8IdX2UKGgGR0CIJKxdIGyHaAdN6ANoCEdAqENSG+K0lnV9lChoBkdAkK65XdTHbWgHTegDaAhHQKhJZMMZxaR1fZQoaAZHQJBXrcpLEk1oB03oA2gIR0CoTGJkf9xZdX2UKGgGR0CRxlSZjQRgaAdN6ANoCEdAqEzOaScLB3V9lChoBkdAj0HwPI4lyGgHTegDaAhHQKhP4wCbMHN1fZQoaAZHQJCtVuXNTtNoB03oA2gIR0CoVdsIVuaXdX2UKGgGR0CKceqPOpsHaAdN6ANoCEdAqFjR+MIeHXV9lChoBkdAkSq97rs0HmgHTegDaAhHQKhZPBpHqeN1fZQoaAZHQI3j15fMOgBoB03oA2gIR0CoXEOmzjWDdX2UKGgGR0CL9TTCtRvWaAdN6ANoCEdAqGJSJ0nw5XV9lChoBkdAi784FRpDeGgHTegDaAhHQKhlW5n13+x1fZQoaAZHQIzUDHQyAQRoB03oA2gIR0CoZcY9ovi+dX2UKGgGR0CDrtCxeLNwaAdN6ANoCEdAqGjLwQUYbnV9lChoBkdAh7bEYO2AoWgHTegDaAhHQKhuuf+0gKZ1fZQoaAZHQIfuLPjXFtNoB03oA2gIR0CoccjA8B+4dX2UKGgGR0CMBe5CF9KFaAdN6ANoCEdAqHIxIe5nUXV9lChoBkdAimeVQQ+UyGgHTegDaAhHQKh1LMewLVp1fZQoaAZHQI4cyiRGMGZoB03oA2gIR0CoeyLdN34cdX2UKGgGR0CPc7BoEjgRaAdN6ANoCEdAqH4t1loUSXV9lChoBkdAiKo33g1m8WgHTegDaAhHQKh+mGHHmzV1fZQoaAZHQI9PeJFb3XZoB03oA2gIR0CogaLxiG34dX2UKGgGR0CH9KWszVMFaAdN6ANoCEdAqIeelGgBcXV9lChoBkdAj+wnlXA/LWgHTegDaAhHQKiKn76YVqN1fZQoaAZHQInUVdu5z5poB03oA2gIR0Coiwd7v5P/dX2UKGgGR0COFKBDohZAaAdN6ANoCEdAqI4R42S+xnV9lChoBkdAjgHoClrM1WgHTegDaAhHQKiUIQSzw+d1fZQoaAZHQI2vpzV+Zw5oB03oA2gIR0Colyp5VwPzdX2UKGgGR0COFkGY8dPtaAdN6ANoCEdAqJeWdTYNAnV9lChoBkdAlCqg+Y+jd2gHTegDaAhHQKiaombb1yx1fZQoaAZHQJNnGRGMGX5oB03oA2gIR0CoopAEdNnHdX2UKGgGR0CTt81ct5D7aAdN6ANoCEdAqKWS8jAzpHV9lChoBkdAkgNAg5imVWgHTegDaAhHQKimAJMxoIx1fZQoaAZHQJON5eIEbHZoB03oA2gIR0CoqRtliBoVdX2UKGgGR0CVfH8kD6nBaAdN6ANoCEdAqK8xJ2+wknV9lChoBkdAlPh/114gR2gHTegDaAhHQKiyPyauwHJ1fZQoaAZHQJYJX6TGHYZoB03oA2gIR0CosqXf642CdX2UKGgGR0CV8jDZlFtsaAdN6ANoCEdAqLW6D0163XV9lChoBkdAlQDvQnhKlGgHTegDaAhHQKi7zjiGWUt1fZQoaAZHQJWBCfRNRFZoB03oA2gIR0Covta6J66bdX2UKGgGR0CTP80DEFW5aAdN6ANoCEdAqL9LPQfIS3V9lChoBkdAlEUs580DU2gHTegDaAhHQKjCbCSidrh1fZQoaAZHQJWpLSkTHsFoB03oA2gIR0CoyJRKQJXydX2UKGgGR0CWcKVH4GliaAdN6ANoCEdAqMuibUgB93V9lChoBkdAlFPmi5/b02gHTegDaAhHQKjMDin5zo51fZQoaAZHQJOIBiUgSvloB03oA2gIR0Cozyg+hXbNdX2UKGgGR0CVTEeZof0VaAdN6ANoCEdAqNU7MibDuXV9lChoBkdAkwYcUM5OrWgHTegDaAhHQKjYOKsMiKR1fZQoaAZHQJVEjj2i+L5oB03oA2gIR0Co2KPwVj7RdX2UKGgGR0CTW2vWpZOjaAdN6ANoCEdAqNvTQE6kqXVlLg=="
92
+ },
93
+ "ep_success_buffer": {
94
+ ":type:": "<class 'collections.deque'>",
95
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
96
+ },
97
+ "_n_updates": 62500,
98
+ "n_steps": 8,
99
+ "gamma": 0.99,
100
+ "gae_lambda": 0.9,
101
+ "ent_coef": 0.0,
102
+ "vf_coef": 0.4,
103
+ "max_grad_norm": 0.5,
104
+ "normalize_advantage": false
105
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9a59ba3c8a84e8ca5076e33840c3a3717e4eb22744f41fa6918e81d6c4fa86fc
3
+ size 56126
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6a4772c8c8ea6bd1ed39d7b08a92700a20492e092d31c22e5a482fe247660e9c
3
+ size 56766
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.15
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.12.1+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8347a71af0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8347a71b80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8347a71c10>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8347a71ca0>", "_build": "<function ActorCriticPolicy._build at 0x7f8347a71d30>", "forward": "<function ActorCriticPolicy.forward at 0x7f8347a71dc0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8347a71e50>", "_predict": "<function ActorCriticPolicy._predict at 0x7f8347a71ee0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8347a71f70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8347a75040>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8347a750d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f8347a6f5d0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670105538550912755, "learning_rate": 0.00096, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAD9E671bu4C/jatSv6/dkb77/E+/Ax0vwBv9ET8YvnO+vUj2vebtAL8w5Nw+CxHVvoKMYz6qBu4/uMq3PbXhIcC/fhS/yG0dQJ9aYT/gQhG95YFYv97kMT/mZt09+E7jPyIEEz/oerE+ZELRvwqFW78/6oW9n441v0iyLb5DHW4/W0gMv/aLRj/Y6j6911vUvnuJ670GOs8+K3ZvPowdFL1sPpY/Ua+Ovz4lGj8N984/klaYP2UOer8gioa+vYstv/ZX8D9C8DW/QlEgv4FQHMAiBBM/6HqxPiOXHD8KhVu/mKn5Pl+l4D2k9SM/W8x6P+Lxxb4HDv8/4wzCvaufnb8o5RE9jx/nP7qGpz+KetM/og8nvxUip76ofRI/sdcHvuijlz8ohEO/p039vrfHl76+yyI/Yd7bvaf3bL/LmQ0+IgQTP+h6sT4jlxw/CoVbv4PLaT+S09w/ErdnP+36tr+b5qY/9nr5PpDWmD9p4Rm/v3bZv77SKz6y5sA+w+boP+u+tj+/fdU9WDKLvpRiPr+aEaY/LcqRvsCp7z8lXNO/87dOP0ClnT8wNSJAd5tBvhfj3r/oerE+ZELRv3dFlT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAt+Ac2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAxpfSuwAAAAAf1uW/AAAAACaQkT0AAAAADtHuPwAAAAB/1PC9AAAAAKrA9T8AAAAA3mQNvgAAAAA1yN6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbM2ANAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgACvTT0AAAAA5eXsvwAAAADQy6W9AAAAAH9P3j8AAAAATm5jPQAAAAC9QPE/AAAAABkPsL0AAAAAH+34vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIp1obYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBGqo48AAAAAD1x778AAAAAXd3vvQAAAADtf/s/AAAAAKSb+zwAAAAAFeHlPwAAAAA0LNU9AAAAAFPr+L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADGHL+1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACATGaDvQAAAABkzve/AAAAAN9z9rwAAAAAPV72PwAAAAB589C9AAAAAFJ99j8AAAAAd2EGvAAAAACtnem/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIVdYuM+/xmMAWyUTegDjAF0lEdAp6Swgow223V9lChoBkdAg3KWCmMwUWgHTegDaAhHQKentKFqSHN1fZQoaAZHQI5KfRzBAOdoB03oA2gIR0CnqCBdt2s8dX2UKGgGR0CR20FxXGOuaAdN6ANoCEdAp6swgV45cXV9lChoBkdAkFozA31jAmgHTegDaAhHQKexOTpxFRZ1fZQoaAZHQJOekB7u2JBoB03oA2gIR0CntDsaCL/CdX2UKGgGR0CTQXEOy3TeaAdN6ANoCEdAp7SwZOzpo3V9lChoBkdAhiZJHRTjvWgHTegDaAhHQKe302hIvrZ1fZQoaAZHQJRwZ4ptrKxoB03oA2gIR0CnvdBxxT86dX2UKGgGR0CRAnnBLwnZaAdN6ANoCEdAp8DRJ7LMcXV9lChoBkdAlM/3os7MgWgHTegDaAhHQKfBPgAp8Wt1fZQoaAZHQJMXQKD0165oB03oA2gIR0CnxFurIYFadX2UKGgGR0CROBhRZU1iaAdN6ANoCEdAp8qVQEZBLXV9lChoBkdAk8dLblA/s2gHTegDaAhHQKfNlEBKcut1fZQoaAZHQJQ9EB5ooNNoB03oA2gIR0CnzgDQqqffdX2UKGgGR0CSOBxFy7wsaAdN6ANoCEdAp9FB6jWTYHV9lChoBkdAkqxGMOwxFmgHTegDaAhHQKfXdX9zfaZ1fZQoaAZHQIcEcnXumaZoB03oA2gIR0Cn2n4Vh1DCdX2UKGgGR0CROnA9V3lkaAdN6ANoCEdAp9rmvwEyL3V9lChoBkdAj6qR33YcvWgHTegDaAhHQKfeDXJYDDF1fZQoaAZHQJJo47aIvaloB03oA2gIR0Cn5D0tAcDKdX2UKGgGR0CQ6NsnRb8naAdN6ANoCEdAp+c5s41gpnV9lChoBkdAkgso1DSgG2gHTegDaAhHQKfno1D0Dlp1fZQoaAZHQJJbe3OObRZoB03oA2gIR0Cn6rAXl8w6dX2UKGgGR0CLMXw2ETQFaAdN6ANoCEdAp/Cu3Ytg8nV9lChoBkdAhKsoiC8OC2gHTegDaAhHQKfzyldkauR1fZQoaAZHQInMZiRW915oB03oA2gIR0Cn9DmReTmodX2UKGgGR0CPJdlhgE2YaAdN6ANoCEdAp/dKKHfuTnV9lChoBkdAk22gHRkVe2gHTegDaAhHQKf9husLfDV1fZQoaAZHQJC9A2bXpW5oB03oA2gIR0CoAJNknTiLdX2UKGgGR0CMp37qIJqqaAdN6ANoCEdAqAD9VR1ox3V9lChoBkdAkV3qNp/PPmgHTegDaAhHQKgEKwwCbMJ1fZQoaAZHQJD0heAuqWFoB03oA2gIR0CoCkX531SPdX2UKGgGR0CTPSNsWO6vaAdN6ANoCEdAqA0//DLr5nV9lChoBkdAkymbzkIX02gHTegDaAhHQKgNsL+glGB1fZQoaAZHQJE3NgH/tIFoB03oA2gIR0CoENTj3mFKdX2UKGgGR0CUifo9cKPXaAdN6ANoCEdAqBboHxBmgHV9lChoBkdAk19OPaL4vmgHTegDaAhHQKgaAPjGT9t1fZQoaAZHQJVmcRK6FuhoB03oA2gIR0CoGmvMSsbOdX2UKGgGR0CRRJ7nxJ/YaAdN6ANoCEdAqB2L2xptanV9lChoBkdAkWaL+DOC5GgHTegDaAhHQKgjgE9t/F11fZQoaAZHQJLJg4ku6EtoB03oA2gIR0CoJonUUfxMdX2UKGgGR0CS97zoEB8yaAdN6ANoCEdAqCbzqB3A23V9lChoBkdAg1M7LdN34mgHTegDaAhHQKgqEDsdDIB1fZQoaAZHQI9ywiHIp6RoB03oA2gIR0CoMB9d3SrpdX2UKGgGR0CR2EJb+tKaaAdN6ANoCEdAqDMofnwG4nV9lChoBkdAi0yo8ZDRdGgHTegDaAhHQKgzlPD50r91fZQoaAZHQIiyXEwWWQhoB03oA2gIR0CoNqHiNsFddX2UKGgGR0CSBWp1ie/YaAdN6ANoCEdAqDyjKgZjx3V9lChoBkdAjrvOgxrSE2gHTegDaAhHQKg/yR7qptJ1fZQoaAZHQJF8LcpLEk1oB03oA2gIR0CoQDS0Sh8IdX2UKGgGR0CIJKxdIGyHaAdN6ANoCEdAqENSG+K0lnV9lChoBkdAkK65XdTHbWgHTegDaAhHQKhJZMMZxaR1fZQoaAZHQJBXrcpLEk1oB03oA2gIR0CoTGJkf9xZdX2UKGgGR0CRxlSZjQRgaAdN6ANoCEdAqEzOaScLB3V9lChoBkdAj0HwPI4lyGgHTegDaAhHQKhP4wCbMHN1fZQoaAZHQJCtVuXNTtNoB03oA2gIR0CoVdsIVuaXdX2UKGgGR0CKceqPOpsHaAdN6ANoCEdAqFjR+MIeHXV9lChoBkdAkSq97rs0HmgHTegDaAhHQKhZPBpHqeN1fZQoaAZHQI3j15fMOgBoB03oA2gIR0CoXEOmzjWDdX2UKGgGR0CL9TTCtRvWaAdN6ANoCEdAqGJSJ0nw5XV9lChoBkdAi784FRpDeGgHTegDaAhHQKhlW5n13+x1fZQoaAZHQIzUDHQyAQRoB03oA2gIR0CoZcY9ovi+dX2UKGgGR0CDrtCxeLNwaAdN6ANoCEdAqGjLwQUYbnV9lChoBkdAh7bEYO2AoWgHTegDaAhHQKhuuf+0gKZ1fZQoaAZHQIfuLPjXFtNoB03oA2gIR0CoccjA8B+4dX2UKGgGR0CMBe5CF9KFaAdN6ANoCEdAqHIxIe5nUXV9lChoBkdAimeVQQ+UyGgHTegDaAhHQKh1LMewLVp1fZQoaAZHQI4cyiRGMGZoB03oA2gIR0CoeyLdN34cdX2UKGgGR0CPc7BoEjgRaAdN6ANoCEdAqH4t1loUSXV9lChoBkdAiKo33g1m8WgHTegDaAhHQKh+mGHHmzV1fZQoaAZHQI9PeJFb3XZoB03oA2gIR0CogaLxiG34dX2UKGgGR0CH9KWszVMFaAdN6ANoCEdAqIeelGgBcXV9lChoBkdAj+wnlXA/LWgHTegDaAhHQKiKn76YVqN1fZQoaAZHQInUVdu5z5poB03oA2gIR0Coiwd7v5P/dX2UKGgGR0COFKBDohZAaAdN6ANoCEdAqI4R42S+xnV9lChoBkdAjgHoClrM1WgHTegDaAhHQKiUIQSzw+d1fZQoaAZHQI2vpzV+Zw5oB03oA2gIR0Colyp5VwPzdX2UKGgGR0COFkGY8dPtaAdN6ANoCEdAqJeWdTYNAnV9lChoBkdAlCqg+Y+jd2gHTegDaAhHQKiaombb1yx1fZQoaAZHQJNnGRGMGX5oB03oA2gIR0CoopAEdNnHdX2UKGgGR0CTt81ct5D7aAdN6ANoCEdAqKWS8jAzpHV9lChoBkdAkgNAg5imVWgHTegDaAhHQKimAJMxoIx1fZQoaAZHQJON5eIEbHZoB03oA2gIR0CoqRtliBoVdX2UKGgGR0CVfH8kD6nBaAdN6ANoCEdAqK8xJ2+wknV9lChoBkdAlPh/114gR2gHTegDaAhHQKiyPyauwHJ1fZQoaAZHQJYJX6TGHYZoB03oA2gIR0CosqXf642CdX2UKGgGR0CV8jDZlFtsaAdN6ANoCEdAqLW6D0163XV9lChoBkdAlQDvQnhKlGgHTegDaAhHQKi7zjiGWUt1fZQoaAZHQJWBCfRNRFZoB03oA2gIR0Covta6J66bdX2UKGgGR0CTP80DEFW5aAdN6ANoCEdAqL9LPQfIS3V9lChoBkdAlEUs580DU2gHTegDaAhHQKjCbCSidrh1fZQoaAZHQJWpLSkTHsFoB03oA2gIR0CoyJRKQJXydX2UKGgGR0CWcKVH4GliaAdN6ANoCEdAqMuibUgB93V9lChoBkdAlFPmi5/b02gHTegDaAhHQKjMDin5zo51fZQoaAZHQJOIBiUgSvloB03oA2gIR0Cozyg+hXbNdX2UKGgGR0CVTEeZof0VaAdN6ANoCEdAqNU7MibDuXV9lChoBkdAkwYcUM5OrWgHTegDaAhHQKjYOKsMiKR1fZQoaAZHQJVEjj2i+L5oB03oA2gIR0Co2KPwVj7RdX2UKGgGR0CTW2vWpZOjaAdN6ANoCEdAqNvTQE6kqXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8d00c50e3909d32211be2e9d2112e228c7ee05bb7fc9e0739fe06b70abce38d8
3
+ size 1179379
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1285.5845696119068, "std_reward": 115.25062532895737, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-03T23:11:28.519069"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:90cf9d8f1f1276316c0f09977c6669d87de3321d8e16d8839c0dac0513cd54b5
3
+ size 2521