Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +105 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1285.58 +/- 115.25
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:91595fcbb393fcde051d747b33b8ab7bc4ec106a17a30dfba201c129d24607b1
|
3 |
+
size 129001
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f8347a71af0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8347a71b80>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8347a71c10>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8347a71ca0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f8347a71d30>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f8347a71dc0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8347a71e50>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f8347a71ee0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8347a71f70>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8347a75040>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8347a750d0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f8347a6f5d0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {
|
23 |
+
":type:": "<class 'dict'>",
|
24 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
25 |
+
"log_std_init": -2,
|
26 |
+
"ortho_init": false,
|
27 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
28 |
+
"optimizer_kwargs": {
|
29 |
+
"alpha": 0.99,
|
30 |
+
"eps": 1e-05,
|
31 |
+
"weight_decay": 0
|
32 |
+
}
|
33 |
+
},
|
34 |
+
"observation_space": {
|
35 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
36 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
37 |
+
"dtype": "float32",
|
38 |
+
"_shape": [
|
39 |
+
28
|
40 |
+
],
|
41 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
42 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
43 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
44 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"_np_random": null
|
46 |
+
},
|
47 |
+
"action_space": {
|
48 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
49 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
50 |
+
"dtype": "float32",
|
51 |
+
"_shape": [
|
52 |
+
8
|
53 |
+
],
|
54 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
55 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
56 |
+
"bounded_below": "[ True True True True True True True True]",
|
57 |
+
"bounded_above": "[ True True True True True True True True]",
|
58 |
+
"_np_random": null
|
59 |
+
},
|
60 |
+
"n_envs": 4,
|
61 |
+
"num_timesteps": 2000000,
|
62 |
+
"_total_timesteps": 2000000,
|
63 |
+
"_num_timesteps_at_start": 0,
|
64 |
+
"seed": null,
|
65 |
+
"action_noise": null,
|
66 |
+
"start_time": 1670105538550912755,
|
67 |
+
"learning_rate": 0.00096,
|
68 |
+
"tensorboard_log": "./tensorboard",
|
69 |
+
"lr_schedule": {
|
70 |
+
":type:": "<class 'function'>",
|
71 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
72 |
+
},
|
73 |
+
"_last_obs": {
|
74 |
+
":type:": "<class 'numpy.ndarray'>",
|
75 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAD9E671bu4C/jatSv6/dkb77/E+/Ax0vwBv9ET8YvnO+vUj2vebtAL8w5Nw+CxHVvoKMYz6qBu4/uMq3PbXhIcC/fhS/yG0dQJ9aYT/gQhG95YFYv97kMT/mZt09+E7jPyIEEz/oerE+ZELRvwqFW78/6oW9n441v0iyLb5DHW4/W0gMv/aLRj/Y6j6911vUvnuJ670GOs8+K3ZvPowdFL1sPpY/Ua+Ovz4lGj8N984/klaYP2UOer8gioa+vYstv/ZX8D9C8DW/QlEgv4FQHMAiBBM/6HqxPiOXHD8KhVu/mKn5Pl+l4D2k9SM/W8x6P+Lxxb4HDv8/4wzCvaufnb8o5RE9jx/nP7qGpz+KetM/og8nvxUip76ofRI/sdcHvuijlz8ohEO/p039vrfHl76+yyI/Yd7bvaf3bL/LmQ0+IgQTP+h6sT4jlxw/CoVbv4PLaT+S09w/ErdnP+36tr+b5qY/9nr5PpDWmD9p4Rm/v3bZv77SKz6y5sA+w+boP+u+tj+/fdU9WDKLvpRiPr+aEaY/LcqRvsCp7z8lXNO/87dOP0ClnT8wNSJAd5tBvhfj3r/oerE+ZELRv3dFlT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
76 |
+
},
|
77 |
+
"_last_episode_starts": {
|
78 |
+
":type:": "<class 'numpy.ndarray'>",
|
79 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
80 |
+
},
|
81 |
+
"_last_original_obs": {
|
82 |
+
":type:": "<class 'numpy.ndarray'>",
|
83 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAt+Ac2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAxpfSuwAAAAAf1uW/AAAAACaQkT0AAAAADtHuPwAAAAB/1PC9AAAAAKrA9T8AAAAA3mQNvgAAAAA1yN6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbM2ANAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgACvTT0AAAAA5eXsvwAAAADQy6W9AAAAAH9P3j8AAAAATm5jPQAAAAC9QPE/AAAAABkPsL0AAAAAH+34vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIp1obYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBGqo48AAAAAD1x778AAAAAXd3vvQAAAADtf/s/AAAAAKSb+zwAAAAAFeHlPwAAAAA0LNU9AAAAAFPr+L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADGHL+1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACATGaDvQAAAABkzve/AAAAAN9z9rwAAAAAPV72PwAAAAB589C9AAAAAFJ99j8AAAAAd2EGvAAAAACtnem/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
84 |
+
},
|
85 |
+
"_episode_num": 0,
|
86 |
+
"use_sde": true,
|
87 |
+
"sde_sample_freq": -1,
|
88 |
+
"_current_progress_remaining": 0.0,
|
89 |
+
"ep_info_buffer": {
|
90 |
+
":type:": "<class 'collections.deque'>",
|
91 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIVdYuM+/xmMAWyUTegDjAF0lEdAp6Swgow223V9lChoBkdAg3KWCmMwUWgHTegDaAhHQKentKFqSHN1fZQoaAZHQI5KfRzBAOdoB03oA2gIR0CnqCBdt2s8dX2UKGgGR0CR20FxXGOuaAdN6ANoCEdAp6swgV45cXV9lChoBkdAkFozA31jAmgHTegDaAhHQKexOTpxFRZ1fZQoaAZHQJOekB7u2JBoB03oA2gIR0CntDsaCL/CdX2UKGgGR0CTQXEOy3TeaAdN6ANoCEdAp7SwZOzpo3V9lChoBkdAhiZJHRTjvWgHTegDaAhHQKe302hIvrZ1fZQoaAZHQJRwZ4ptrKxoB03oA2gIR0CnvdBxxT86dX2UKGgGR0CRAnnBLwnZaAdN6ANoCEdAp8DRJ7LMcXV9lChoBkdAlM/3os7MgWgHTegDaAhHQKfBPgAp8Wt1fZQoaAZHQJMXQKD0165oB03oA2gIR0CnxFurIYFadX2UKGgGR0CROBhRZU1iaAdN6ANoCEdAp8qVQEZBLXV9lChoBkdAk8dLblA/s2gHTegDaAhHQKfNlEBKcut1fZQoaAZHQJQ9EB5ooNNoB03oA2gIR0CnzgDQqqffdX2UKGgGR0CSOBxFy7wsaAdN6ANoCEdAp9FB6jWTYHV9lChoBkdAkqxGMOwxFmgHTegDaAhHQKfXdX9zfaZ1fZQoaAZHQIcEcnXumaZoB03oA2gIR0Cn2n4Vh1DCdX2UKGgGR0CROnA9V3lkaAdN6ANoCEdAp9rmvwEyL3V9lChoBkdAj6qR33YcvWgHTegDaAhHQKfeDXJYDDF1fZQoaAZHQJJo47aIvaloB03oA2gIR0Cn5D0tAcDKdX2UKGgGR0CQ6NsnRb8naAdN6ANoCEdAp+c5s41gpnV9lChoBkdAkgso1DSgG2gHTegDaAhHQKfno1D0Dlp1fZQoaAZHQJJbe3OObRZoB03oA2gIR0Cn6rAXl8w6dX2UKGgGR0CLMXw2ETQFaAdN6ANoCEdAp/Cu3Ytg8nV9lChoBkdAhKsoiC8OC2gHTegDaAhHQKfzyldkauR1fZQoaAZHQInMZiRW915oB03oA2gIR0Cn9DmReTmodX2UKGgGR0CPJdlhgE2YaAdN6ANoCEdAp/dKKHfuTnV9lChoBkdAk22gHRkVe2gHTegDaAhHQKf9husLfDV1fZQoaAZHQJC9A2bXpW5oB03oA2gIR0CoAJNknTiLdX2UKGgGR0CMp37qIJqqaAdN6ANoCEdAqAD9VR1ox3V9lChoBkdAkV3qNp/PPmgHTegDaAhHQKgEKwwCbMJ1fZQoaAZHQJD0heAuqWFoB03oA2gIR0CoCkX531SPdX2UKGgGR0CTPSNsWO6vaAdN6ANoCEdAqA0//DLr5nV9lChoBkdAkymbzkIX02gHTegDaAhHQKgNsL+glGB1fZQoaAZHQJE3NgH/tIFoB03oA2gIR0CoENTj3mFKdX2UKGgGR0CUifo9cKPXaAdN6ANoCEdAqBboHxBmgHV9lChoBkdAk19OPaL4vmgHTegDaAhHQKgaAPjGT9t1fZQoaAZHQJVmcRK6FuhoB03oA2gIR0CoGmvMSsbOdX2UKGgGR0CRRJ7nxJ/YaAdN6ANoCEdAqB2L2xptanV9lChoBkdAkWaL+DOC5GgHTegDaAhHQKgjgE9t/F11fZQoaAZHQJLJg4ku6EtoB03oA2gIR0CoJonUUfxMdX2UKGgGR0CS97zoEB8yaAdN6ANoCEdAqCbzqB3A23V9lChoBkdAg1M7LdN34mgHTegDaAhHQKgqEDsdDIB1fZQoaAZHQI9ywiHIp6RoB03oA2gIR0CoMB9d3SrpdX2UKGgGR0CR2EJb+tKaaAdN6ANoCEdAqDMofnwG4nV9lChoBkdAi0yo8ZDRdGgHTegDaAhHQKgzlPD50r91fZQoaAZHQIiyXEwWWQhoB03oA2gIR0CoNqHiNsFddX2UKGgGR0CSBWp1ie/YaAdN6ANoCEdAqDyjKgZjx3V9lChoBkdAjrvOgxrSE2gHTegDaAhHQKg/yR7qptJ1fZQoaAZHQJF8LcpLEk1oB03oA2gIR0CoQDS0Sh8IdX2UKGgGR0CIJKxdIGyHaAdN6ANoCEdAqENSG+K0lnV9lChoBkdAkK65XdTHbWgHTegDaAhHQKhJZMMZxaR1fZQoaAZHQJBXrcpLEk1oB03oA2gIR0CoTGJkf9xZdX2UKGgGR0CRxlSZjQRgaAdN6ANoCEdAqEzOaScLB3V9lChoBkdAj0HwPI4lyGgHTegDaAhHQKhP4wCbMHN1fZQoaAZHQJCtVuXNTtNoB03oA2gIR0CoVdsIVuaXdX2UKGgGR0CKceqPOpsHaAdN6ANoCEdAqFjR+MIeHXV9lChoBkdAkSq97rs0HmgHTegDaAhHQKhZPBpHqeN1fZQoaAZHQI3j15fMOgBoB03oA2gIR0CoXEOmzjWDdX2UKGgGR0CL9TTCtRvWaAdN6ANoCEdAqGJSJ0nw5XV9lChoBkdAi784FRpDeGgHTegDaAhHQKhlW5n13+x1fZQoaAZHQIzUDHQyAQRoB03oA2gIR0CoZcY9ovi+dX2UKGgGR0CDrtCxeLNwaAdN6ANoCEdAqGjLwQUYbnV9lChoBkdAh7bEYO2AoWgHTegDaAhHQKhuuf+0gKZ1fZQoaAZHQIfuLPjXFtNoB03oA2gIR0CoccjA8B+4dX2UKGgGR0CMBe5CF9KFaAdN6ANoCEdAqHIxIe5nUXV9lChoBkdAimeVQQ+UyGgHTegDaAhHQKh1LMewLVp1fZQoaAZHQI4cyiRGMGZoB03oA2gIR0CoeyLdN34cdX2UKGgGR0CPc7BoEjgRaAdN6ANoCEdAqH4t1loUSXV9lChoBkdAiKo33g1m8WgHTegDaAhHQKh+mGHHmzV1fZQoaAZHQI9PeJFb3XZoB03oA2gIR0CogaLxiG34dX2UKGgGR0CH9KWszVMFaAdN6ANoCEdAqIeelGgBcXV9lChoBkdAj+wnlXA/LWgHTegDaAhHQKiKn76YVqN1fZQoaAZHQInUVdu5z5poB03oA2gIR0Coiwd7v5P/dX2UKGgGR0COFKBDohZAaAdN6ANoCEdAqI4R42S+xnV9lChoBkdAjgHoClrM1WgHTegDaAhHQKiUIQSzw+d1fZQoaAZHQI2vpzV+Zw5oB03oA2gIR0Colyp5VwPzdX2UKGgGR0COFkGY8dPtaAdN6ANoCEdAqJeWdTYNAnV9lChoBkdAlCqg+Y+jd2gHTegDaAhHQKiaombb1yx1fZQoaAZHQJNnGRGMGX5oB03oA2gIR0CoopAEdNnHdX2UKGgGR0CTt81ct5D7aAdN6ANoCEdAqKWS8jAzpHV9lChoBkdAkgNAg5imVWgHTegDaAhHQKimAJMxoIx1fZQoaAZHQJON5eIEbHZoB03oA2gIR0CoqRtliBoVdX2UKGgGR0CVfH8kD6nBaAdN6ANoCEdAqK8xJ2+wknV9lChoBkdAlPh/114gR2gHTegDaAhHQKiyPyauwHJ1fZQoaAZHQJYJX6TGHYZoB03oA2gIR0CosqXf642CdX2UKGgGR0CV8jDZlFtsaAdN6ANoCEdAqLW6D0163XV9lChoBkdAlQDvQnhKlGgHTegDaAhHQKi7zjiGWUt1fZQoaAZHQJWBCfRNRFZoB03oA2gIR0Covta6J66bdX2UKGgGR0CTP80DEFW5aAdN6ANoCEdAqL9LPQfIS3V9lChoBkdAlEUs580DU2gHTegDaAhHQKjCbCSidrh1fZQoaAZHQJWpLSkTHsFoB03oA2gIR0CoyJRKQJXydX2UKGgGR0CWcKVH4GliaAdN6ANoCEdAqMuibUgB93V9lChoBkdAlFPmi5/b02gHTegDaAhHQKjMDin5zo51fZQoaAZHQJOIBiUgSvloB03oA2gIR0Cozyg+hXbNdX2UKGgGR0CVTEeZof0VaAdN6ANoCEdAqNU7MibDuXV9lChoBkdAkwYcUM5OrWgHTegDaAhHQKjYOKsMiKR1fZQoaAZHQJVEjj2i+L5oB03oA2gIR0Co2KPwVj7RdX2UKGgGR0CTW2vWpZOjaAdN6ANoCEdAqNvTQE6kqXVlLg=="
|
92 |
+
},
|
93 |
+
"ep_success_buffer": {
|
94 |
+
":type:": "<class 'collections.deque'>",
|
95 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
96 |
+
},
|
97 |
+
"_n_updates": 62500,
|
98 |
+
"n_steps": 8,
|
99 |
+
"gamma": 0.99,
|
100 |
+
"gae_lambda": 0.9,
|
101 |
+
"ent_coef": 0.0,
|
102 |
+
"vf_coef": 0.4,
|
103 |
+
"max_grad_norm": 0.5,
|
104 |
+
"normalize_advantage": false
|
105 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9a59ba3c8a84e8ca5076e33840c3a3717e4eb22744f41fa6918e81d6c4fa86fc
|
3 |
+
size 56126
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6a4772c8c8ea6bd1ed39d7b08a92700a20492e092d31c22e5a482fe247660e9c
|
3 |
+
size 56766
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.8.15
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.12.1+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8347a71af0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8347a71b80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8347a71c10>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8347a71ca0>", "_build": "<function ActorCriticPolicy._build at 0x7f8347a71d30>", "forward": "<function ActorCriticPolicy.forward at 0x7f8347a71dc0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8347a71e50>", "_predict": "<function ActorCriticPolicy._predict at 0x7f8347a71ee0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8347a71f70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8347a75040>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8347a750d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f8347a6f5d0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670105538550912755, "learning_rate": 0.00096, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAD9E671bu4C/jatSv6/dkb77/E+/Ax0vwBv9ET8YvnO+vUj2vebtAL8w5Nw+CxHVvoKMYz6qBu4/uMq3PbXhIcC/fhS/yG0dQJ9aYT/gQhG95YFYv97kMT/mZt09+E7jPyIEEz/oerE+ZELRvwqFW78/6oW9n441v0iyLb5DHW4/W0gMv/aLRj/Y6j6911vUvnuJ670GOs8+K3ZvPowdFL1sPpY/Ua+Ovz4lGj8N984/klaYP2UOer8gioa+vYstv/ZX8D9C8DW/QlEgv4FQHMAiBBM/6HqxPiOXHD8KhVu/mKn5Pl+l4D2k9SM/W8x6P+Lxxb4HDv8/4wzCvaufnb8o5RE9jx/nP7qGpz+KetM/og8nvxUip76ofRI/sdcHvuijlz8ohEO/p039vrfHl76+yyI/Yd7bvaf3bL/LmQ0+IgQTP+h6sT4jlxw/CoVbv4PLaT+S09w/ErdnP+36tr+b5qY/9nr5PpDWmD9p4Rm/v3bZv77SKz6y5sA+w+boP+u+tj+/fdU9WDKLvpRiPr+aEaY/LcqRvsCp7z8lXNO/87dOP0ClnT8wNSJAd5tBvhfj3r/oerE+ZELRv3dFlT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAt+Ac2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAxpfSuwAAAAAf1uW/AAAAACaQkT0AAAAADtHuPwAAAAB/1PC9AAAAAKrA9T8AAAAA3mQNvgAAAAA1yN6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbM2ANAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgACvTT0AAAAA5eXsvwAAAADQy6W9AAAAAH9P3j8AAAAATm5jPQAAAAC9QPE/AAAAABkPsL0AAAAAH+34vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIp1obYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBGqo48AAAAAD1x778AAAAAXd3vvQAAAADtf/s/AAAAAKSb+zwAAAAAFeHlPwAAAAA0LNU9AAAAAFPr+L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADGHL+1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACATGaDvQAAAABkzve/AAAAAN9z9rwAAAAAPV72PwAAAAB589C9AAAAAFJ99j8AAAAAd2EGvAAAAACtnem/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIVdYuM+/xmMAWyUTegDjAF0lEdAp6Swgow223V9lChoBkdAg3KWCmMwUWgHTegDaAhHQKentKFqSHN1fZQoaAZHQI5KfRzBAOdoB03oA2gIR0CnqCBdt2s8dX2UKGgGR0CR20FxXGOuaAdN6ANoCEdAp6swgV45cXV9lChoBkdAkFozA31jAmgHTegDaAhHQKexOTpxFRZ1fZQoaAZHQJOekB7u2JBoB03oA2gIR0CntDsaCL/CdX2UKGgGR0CTQXEOy3TeaAdN6ANoCEdAp7SwZOzpo3V9lChoBkdAhiZJHRTjvWgHTegDaAhHQKe302hIvrZ1fZQoaAZHQJRwZ4ptrKxoB03oA2gIR0CnvdBxxT86dX2UKGgGR0CRAnnBLwnZaAdN6ANoCEdAp8DRJ7LMcXV9lChoBkdAlM/3os7MgWgHTegDaAhHQKfBPgAp8Wt1fZQoaAZHQJMXQKD0165oB03oA2gIR0CnxFurIYFadX2UKGgGR0CROBhRZU1iaAdN6ANoCEdAp8qVQEZBLXV9lChoBkdAk8dLblA/s2gHTegDaAhHQKfNlEBKcut1fZQoaAZHQJQ9EB5ooNNoB03oA2gIR0CnzgDQqqffdX2UKGgGR0CSOBxFy7wsaAdN6ANoCEdAp9FB6jWTYHV9lChoBkdAkqxGMOwxFmgHTegDaAhHQKfXdX9zfaZ1fZQoaAZHQIcEcnXumaZoB03oA2gIR0Cn2n4Vh1DCdX2UKGgGR0CROnA9V3lkaAdN6ANoCEdAp9rmvwEyL3V9lChoBkdAj6qR33YcvWgHTegDaAhHQKfeDXJYDDF1fZQoaAZHQJJo47aIvaloB03oA2gIR0Cn5D0tAcDKdX2UKGgGR0CQ6NsnRb8naAdN6ANoCEdAp+c5s41gpnV9lChoBkdAkgso1DSgG2gHTegDaAhHQKfno1D0Dlp1fZQoaAZHQJJbe3OObRZoB03oA2gIR0Cn6rAXl8w6dX2UKGgGR0CLMXw2ETQFaAdN6ANoCEdAp/Cu3Ytg8nV9lChoBkdAhKsoiC8OC2gHTegDaAhHQKfzyldkauR1fZQoaAZHQInMZiRW915oB03oA2gIR0Cn9DmReTmodX2UKGgGR0CPJdlhgE2YaAdN6ANoCEdAp/dKKHfuTnV9lChoBkdAk22gHRkVe2gHTegDaAhHQKf9husLfDV1fZQoaAZHQJC9A2bXpW5oB03oA2gIR0CoAJNknTiLdX2UKGgGR0CMp37qIJqqaAdN6ANoCEdAqAD9VR1ox3V9lChoBkdAkV3qNp/PPmgHTegDaAhHQKgEKwwCbMJ1fZQoaAZHQJD0heAuqWFoB03oA2gIR0CoCkX531SPdX2UKGgGR0CTPSNsWO6vaAdN6ANoCEdAqA0//DLr5nV9lChoBkdAkymbzkIX02gHTegDaAhHQKgNsL+glGB1fZQoaAZHQJE3NgH/tIFoB03oA2gIR0CoENTj3mFKdX2UKGgGR0CUifo9cKPXaAdN6ANoCEdAqBboHxBmgHV9lChoBkdAk19OPaL4vmgHTegDaAhHQKgaAPjGT9t1fZQoaAZHQJVmcRK6FuhoB03oA2gIR0CoGmvMSsbOdX2UKGgGR0CRRJ7nxJ/YaAdN6ANoCEdAqB2L2xptanV9lChoBkdAkWaL+DOC5GgHTegDaAhHQKgjgE9t/F11fZQoaAZHQJLJg4ku6EtoB03oA2gIR0CoJonUUfxMdX2UKGgGR0CS97zoEB8yaAdN6ANoCEdAqCbzqB3A23V9lChoBkdAg1M7LdN34mgHTegDaAhHQKgqEDsdDIB1fZQoaAZHQI9ywiHIp6RoB03oA2gIR0CoMB9d3SrpdX2UKGgGR0CR2EJb+tKaaAdN6ANoCEdAqDMofnwG4nV9lChoBkdAi0yo8ZDRdGgHTegDaAhHQKgzlPD50r91fZQoaAZHQIiyXEwWWQhoB03oA2gIR0CoNqHiNsFddX2UKGgGR0CSBWp1ie/YaAdN6ANoCEdAqDyjKgZjx3V9lChoBkdAjrvOgxrSE2gHTegDaAhHQKg/yR7qptJ1fZQoaAZHQJF8LcpLEk1oB03oA2gIR0CoQDS0Sh8IdX2UKGgGR0CIJKxdIGyHaAdN6ANoCEdAqENSG+K0lnV9lChoBkdAkK65XdTHbWgHTegDaAhHQKhJZMMZxaR1fZQoaAZHQJBXrcpLEk1oB03oA2gIR0CoTGJkf9xZdX2UKGgGR0CRxlSZjQRgaAdN6ANoCEdAqEzOaScLB3V9lChoBkdAj0HwPI4lyGgHTegDaAhHQKhP4wCbMHN1fZQoaAZHQJCtVuXNTtNoB03oA2gIR0CoVdsIVuaXdX2UKGgGR0CKceqPOpsHaAdN6ANoCEdAqFjR+MIeHXV9lChoBkdAkSq97rs0HmgHTegDaAhHQKhZPBpHqeN1fZQoaAZHQI3j15fMOgBoB03oA2gIR0CoXEOmzjWDdX2UKGgGR0CL9TTCtRvWaAdN6ANoCEdAqGJSJ0nw5XV9lChoBkdAi784FRpDeGgHTegDaAhHQKhlW5n13+x1fZQoaAZHQIzUDHQyAQRoB03oA2gIR0CoZcY9ovi+dX2UKGgGR0CDrtCxeLNwaAdN6ANoCEdAqGjLwQUYbnV9lChoBkdAh7bEYO2AoWgHTegDaAhHQKhuuf+0gKZ1fZQoaAZHQIfuLPjXFtNoB03oA2gIR0CoccjA8B+4dX2UKGgGR0CMBe5CF9KFaAdN6ANoCEdAqHIxIe5nUXV9lChoBkdAimeVQQ+UyGgHTegDaAhHQKh1LMewLVp1fZQoaAZHQI4cyiRGMGZoB03oA2gIR0CoeyLdN34cdX2UKGgGR0CPc7BoEjgRaAdN6ANoCEdAqH4t1loUSXV9lChoBkdAiKo33g1m8WgHTegDaAhHQKh+mGHHmzV1fZQoaAZHQI9PeJFb3XZoB03oA2gIR0CogaLxiG34dX2UKGgGR0CH9KWszVMFaAdN6ANoCEdAqIeelGgBcXV9lChoBkdAj+wnlXA/LWgHTegDaAhHQKiKn76YVqN1fZQoaAZHQInUVdu5z5poB03oA2gIR0Coiwd7v5P/dX2UKGgGR0COFKBDohZAaAdN6ANoCEdAqI4R42S+xnV9lChoBkdAjgHoClrM1WgHTegDaAhHQKiUIQSzw+d1fZQoaAZHQI2vpzV+Zw5oB03oA2gIR0Colyp5VwPzdX2UKGgGR0COFkGY8dPtaAdN6ANoCEdAqJeWdTYNAnV9lChoBkdAlCqg+Y+jd2gHTegDaAhHQKiaombb1yx1fZQoaAZHQJNnGRGMGX5oB03oA2gIR0CoopAEdNnHdX2UKGgGR0CTt81ct5D7aAdN6ANoCEdAqKWS8jAzpHV9lChoBkdAkgNAg5imVWgHTegDaAhHQKimAJMxoIx1fZQoaAZHQJON5eIEbHZoB03oA2gIR0CoqRtliBoVdX2UKGgGR0CVfH8kD6nBaAdN6ANoCEdAqK8xJ2+wknV9lChoBkdAlPh/114gR2gHTegDaAhHQKiyPyauwHJ1fZQoaAZHQJYJX6TGHYZoB03oA2gIR0CosqXf642CdX2UKGgGR0CV8jDZlFtsaAdN6ANoCEdAqLW6D0163XV9lChoBkdAlQDvQnhKlGgHTegDaAhHQKi7zjiGWUt1fZQoaAZHQJWBCfRNRFZoB03oA2gIR0Covta6J66bdX2UKGgGR0CTP80DEFW5aAdN6ANoCEdAqL9LPQfIS3V9lChoBkdAlEUs580DU2gHTegDaAhHQKjCbCSidrh1fZQoaAZHQJWpLSkTHsFoB03oA2gIR0CoyJRKQJXydX2UKGgGR0CWcKVH4GliaAdN6ANoCEdAqMuibUgB93V9lChoBkdAlFPmi5/b02gHTegDaAhHQKjMDin5zo51fZQoaAZHQJOIBiUgSvloB03oA2gIR0Cozyg+hXbNdX2UKGgGR0CVTEeZof0VaAdN6ANoCEdAqNU7MibDuXV9lChoBkdAkwYcUM5OrWgHTegDaAhHQKjYOKsMiKR1fZQoaAZHQJVEjj2i+L5oB03oA2gIR0Co2KPwVj7RdX2UKGgGR0CTW2vWpZOjaAdN6ANoCEdAqNvTQE6kqXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8d00c50e3909d32211be2e9d2112e228c7ee05bb7fc9e0739fe06b70abce38d8
|
3 |
+
size 1179379
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1285.5845696119068, "std_reward": 115.25062532895737, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-03T23:11:28.519069"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:90cf9d8f1f1276316c0f09977c6669d87de3321d8e16d8839c0dac0513cd54b5
|
3 |
+
size 2521
|