sayakpramanik commited on
Commit
b2de981
·
1 Parent(s): a6325d9

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +78 -0
README.md ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - emotion
7
+ metrics:
8
+ - accuracy
9
+ - f1
10
+ model-index:
11
+ - name: distilbert-base-uncased-finetuned-emotion
12
+ results:
13
+ - task:
14
+ name: Text Classification
15
+ type: text-classification
16
+ dataset:
17
+ name: emotion
18
+ type: emotion
19
+ args: default
20
+ metrics:
21
+ - name: Accuracy
22
+ type: accuracy
23
+ value: 0.923
24
+ - name: F1
25
+ type: f1
26
+ value: 0.9228534433920637
27
+ ---
28
+
29
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
30
+ should probably proofread and complete it, then remove this comment. -->
31
+
32
+ # distilbert-base-uncased-finetuned-emotion
33
+
34
+ This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
35
+ It achieves the following results on the evaluation set:
36
+ - Loss: 0.2166
37
+ - Accuracy: 0.923
38
+ - F1: 0.9229
39
+
40
+ ## Model description
41
+
42
+ More information needed
43
+
44
+ ## Intended uses & limitations
45
+
46
+ More information needed
47
+
48
+ ## Training and evaluation data
49
+
50
+ More information needed
51
+
52
+ ## Training procedure
53
+
54
+ ### Training hyperparameters
55
+
56
+ The following hyperparameters were used during training:
57
+ - learning_rate: 2e-05
58
+ - train_batch_size: 64
59
+ - eval_batch_size: 64
60
+ - seed: 42
61
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
+ - lr_scheduler_type: linear
63
+ - num_epochs: 2
64
+
65
+ ### Training results
66
+
67
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
68
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
69
+ | 0.8472 | 1.0 | 250 | 0.3169 | 0.912 | 0.9105 |
70
+ | 0.2475 | 2.0 | 500 | 0.2166 | 0.923 | 0.9229 |
71
+
72
+
73
+ ### Framework versions
74
+
75
+ - Transformers 4.19.2
76
+ - Pytorch 1.11.0+cu113
77
+ - Datasets 2.2.2
78
+ - Tokenizers 0.12.1