lunarlander-v2-test / config.json
savv0210's picture
Push LunarLander-v2 model
6682ca7 verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7897d26ae290>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7897d26ae320>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7897d26ae3b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7897d26ae440>", "_build": "<function ActorCriticPolicy._build at 0x7897d26ae4d0>", "forward": "<function ActorCriticPolicy.forward at 0x7897d26ae560>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7897d26ae5f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7897d26ae680>", "_predict": "<function ActorCriticPolicy._predict at 0x7897d26ae710>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7897d26ae7a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7897d26ae830>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7897d26ae8c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7897d2664f80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1733176181506549794, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM3RvD0pAAW6VUruu17xKjjLsZC7puZUtwAAgD8AAIA/sz2kPRTeibrqm0267TlKtjS6grum8Gw5AACAPwAAgD+zroG9w4FKuju9d7ucxD82WNnfuk6RjToAAIA/AACAP1ptgj0peF+68OfvO//SCzav9Ko5oZQENQAAgD8AAIA/DS6lPexBzLnzsFM2Hpk3MSVAEjuArIK1AACAPwAAAAAz3t487AGyuW6Zzzom0SQ2PwuDO6s287kAAIA/AACAP83hwTxc63e60M1NuUK9PLQ9bZw6a7pwOAAAgD8AAIA/GtugPT1qC7l+Iz+8cd2VvKYa6rqd1UK9AAAAAAAAAABmyLy8zeSoPzTsIL5UXoq+YM0pvVXYzb0AAAAAAAAAADOB/jwp3Hm6RZ2ZOjsWFTYsiH8723ywuQAAgD8AAIA/DQifPeFcmroenaS2V2+bsTdbzbqe/8E1AACAPwAAgD+ap7s8SN+Sug/RnDpThIs1Wlziun/CtbkAAIA/AACAPwDoXLvla28+t3aVvUW5FL7sEeK6m4ravQAAAAAAAAAAALwQvG5chj9iZ8a9QDaBvqktZr3TKu28AAAAAAAAAABmtbK9XKM7um78k7mu9Hy1zOlBu979uzgAAIA/AACAP+DwHD4zGko/oLgCvYrWbr4qU5U9tWmivQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGRLxdIGyHGMAWyUTegDjAF0lEdAlW566STyKHV9lChoBkdAYx2oMrmQsGgHTegDaAhHQJVygSDh99d1fZQoaAZHQGG3STQmeDpoB03oA2gIR0CVesIsyzomdX2UKGgGR0Bl0uUB4lhPaAdN6ANoCEdAlYBB3/xUenV9lChoBkdAZtbQb+98JGgHTegDaAhHQJWDEyM1jy51fZQoaAZHQFyrhcJMQEpoB03oA2gIR0CVhGLG7z06dX2UKGgGR0Beas94eLeiaAdN6ANoCEdAlYrSoS+QEXV9lChoBkdAYeOQtBfKIWgHTegDaAhHQJWN5lBhQWN1fZQoaAZHQGGWV4Pf8/FoB03oA2gIR0CVjymeDnNgdX2UKGgGR0Bd1XssxwhoaAdN6ANoCEdAlZGoAOrhi3V9lChoBkdAYjHalk6LfmgHTegDaAhHQJWZxD0Dlo11fZQoaAZHQDIMI+nqFAVoB00QAWgIR0CVnAqEeyRkdX2UKGgGR0Bgq+1lXiiqaAdN6ANoCEdAlZ8xqj8DS3V9lChoBkdAZGm4LkS26WgHTegDaAhHQJW7nMbFS891fZQoaAZHQGIz4mLLpzNoB03oA2gIR0CVu/gLZzxPdX2UKGgGR0BjSasIVuaXaAdN6ANoCEdAlcDCK77KrHV9lChoBkdAYHL/ffoA4mgHTegDaAhHQJXEOr2g3991fZQoaAZHQGYmIdELH+9oB03oA2gIR0CVxLJpnHvMdX2UKGgGR0Bi1VWOp84QaAdN6ANoCEdAlceqB3A2ynV9lChoBkdAY2RBMzuWr2gHTegDaAhHQJXNtD+irT91fZQoaAZHwCMj3j+717JoB0viaAhHQJXR/g0j1PF1fZQoaAZHQGaRXXqZ+hJoB03oA2gIR0CV0xBwdbPhdX2UKGgGR0Blv5okAxSHaAdN6ANoCEdAldWXIQvpQnV9lChoBkdAYzgE+xGDtmgHTegDaAhHQJXWwlRgqmV1fZQoaAZHQFFk9kjHGS9oB00OAWgIR0CV1/6XjU/fdX2UKGgGR0BhdzFn7HhkaAdN6ANoCEdAleHs98qnWXV9lChoBkdAYycVkc0cfmgHTegDaAhHQJXjaPHT7VJ1fZQoaAZHQGKd0VSGahJoB03oA2gIR0CV5ZE61b7kdX2UKGgGR0BizGOp84PxaAdN6ANoCEdAle03SF49o3V9lChoBkdAZNL7+kxh2GgHTegDaAhHQJXveyquKXR1fZQoaAZHQGEEDpLVWjpoB03oA2gIR0CV8osmfGuLdX2UKGgGR0BjD21x82JjaAdN6ANoCEdAlfpGVNYbKnV9lChoBkdAY5ME/SpiqmgHTegDaAhHQJYLmrWAf+11fZQoaAZHQGdoz3Zf2K5oB03oA2gIR0CWEVFaB7NTdX2UKGgGR0Bm2rGLk0aZaAdN6ANoCEdAlhWEGeMAFXV9lChoBkdAZKI0MPSUkmgHTegDaAhHQJYfDHPu5SZ1fZQoaAZHQGB3cuJ1q35oB03oA2gIR0CWI4n8baRIdX2UKGgGR0BjCK+lCTllaAdN6ANoCEdAliSa7iADrHV9lChoBkdAYIZaURnOB2gHTegDaAhHQJYnOktVaOh1fZQoaAZHQGN8ThHbypdoB03oA2gIR0CWKFkk8ifQdX2UKGgGR0BkCdO2y9mIaAdN6ANoCEdAlik4rBj4H3V9lChoBkdAZeQAFxGUfWgHTegDaAhHQJYv255JK8N1fZQoaAZHQF8tYKpkwvhoB03oA2gIR0CWMO/5tWMkdX2UKGgGR0A8VtZV4oqkaAdL5mgIR0CWMQndO6/ZdX2UKGgGR0BjN+KZUkv9aAdN6ANoCEdAljMZWq94/3V9lChoBkdAYcnk9U0el2gHTegDaAhHQJY6ixGDtgN1fZQoaAZHQGS56t9x6v9oB03oA2gIR0CWPLtnf2sadX2UKGgGR0BjGw7ihnJ1aAdN6ANoCEdAlkDDd1uBMHV9lChoBkdAZnpAj6eoUGgHTegDaAhHQJZLJLPD50t1fZQoaAZHQF8y9WZJCjVoB03oA2gIR0CWS4uAI6bOdX2UKGgGR0BiqtL+PzWgaAdN6ANoCEdAlmRMyBTXKHV9lChoBkdAGX0oBq9GqmgHTSoBaAhHQJZmsjeKsMl1fZQoaAZHQGSoFg+hXbNoB03oA2gIR0CWZ80FbFCLdX2UKGgGR0BiAj79AHE/aAdN6ANoCEdAlnHFb3XZoXV9lChoBkdAY1r6yjYZmGgHTegDaAhHQJZ3qNyYG+t1fZQoaAZHQGHEZooNNJxoB03oA2gIR0CWfI0waisXdX2UKGgGR0Bl8fO4XoC/aAdN6ANoCEdAln2zqnm7rnV9lChoBkdAYrjmVZ9uxmgHTegDaAhHQJZ+k1cdHUd1fZQoaAZHQGPtBvBJqZdoB03oA2gIR0CWhYqFAVwhdX2UKGgGR0Bm24emvW6LaAdN6ANoCEdAloag/keZHHV9lChoBkdAXHXhn8Koh2gHTegDaAhHQJaGvCwbEP11fZQoaAZHQGEBUPYnOSpoB03oA2gIR0CWiM9ZRsMzdX2UKGgGR0BkiL2criEQaAdN6ANoCEdAlo/V/x2B8XV9lChoBkdAZbFkp7TlT2gHTegDaAhHQJaVLtzCDVZ1fZQoaAZHQGJ4XCKrJbNoB03oA2gIR0CWnaO5rgwXdX2UKGgGR0BeleirT6SDaAdN6ANoCEdAlp3+xSpBHHV9lChoBkdAYeBOafBeomgHTegDaAhHQJa2xdY4hll1fZQoaAZHQGULwqRU3n9oB03oA2gIR0CWuREX+ERKdX2UKGgGR0Bg0quMdcSoaAdN6ANoCEdAlroc9KVY6nV9lChoBkdAY0VRkVeruWgHTegDaAhHQJbDV7+kxh51fZQoaAZHQDJMyFfzBhxoB00uAWgIR0CWw2udPLxJdX2UKGgGR0BjA5S1maphaAdN6ANoCEdAlseGVzIV/XV9lChoBkdAY/AOoYNy52gHTegDaAhHQJbLL+kxh2J1fZQoaAZHQGJ7YPwuuihoB03oA2gIR0CWzGG9HtngdX2UKGgGR0BgP78UEgW8aAdN6ANoCEdAls1WwFC9iHV9lChoBkdAZmEUO/cnE2gHTegDaAhHQJbUbvG6wt91fZQoaAZHQGY4sSsbNr1oB03oA2gIR0CW1ZFxXGOudX2UKGgGR0Bm0TihnJ1aaAdN6ANoCEdAltWsU/OdG3V9lChoBkdAYQ80sOG0u2gHTegDaAhHQJbXzwx33Yd1fZQoaAZHQGKBK4x1xKhoB03oA2gIR0CW4cmyPdVOdX2UKGgGR0BjVRDst03gaAdN6ANoCEdAlufRq46OpHV9lChoBkdAZj05f+jubGgHTegDaAhHQJbwiSX+l0p1fZQoaAZHQGSTakyk9EFoB03oA2gIR0CXBliz9jwydX2UKGgGR0BhsMBXCCSSaAdN6ANoCEdAlwiweii7CnV9lChoBkdAYxJYPoV2zWgHTegDaAhHQJcJzb48EFJ1fZQoaAZHQGO0PpY9xIdoB03oA2gIR0CXFfWcjJMhdX2UKGgGR0BlY2oHcDbKaAdN6ANoCEdAlxYOdCmdiHV9lChoBkdAYUPrP+n622gHTegDaAhHQJca7afzz3B1fZQoaAZHQGJal+mWMS9oB03oA2gIR0CXHlP420iRdX2UKGgGR0BjCIxQBPsSaAdN6ANoCEdAlx9ZPl+3IHV9lChoBkdAZLu8WbgCOmgHTegDaAhHQJcgLUPQOWl1fZQoaAZHQGGJGQCCBf9oB03oA2gIR0CXJtG1QZXNdX2UKGgGR0BiO/J1aGHpaAdN6ANoCEdAlyfNjwx33nV9lChoBkdAZgLkgfU4JmgHTegDaAhHQJcn5UADJU51fZQoaAZHQGbZkx7AtWdoB03oA2gIR0CXKcnlGPPtdX2UKGgGR0BincAq/dqMaAdN6ANoCEdAlzBgf2bobHV9lChoBkdAY5oNYr8R+WgHTegDaAhHQJc1IPmPo3d1fZQoaAZHQF8SOinHeadoB03oA2gIR0CXPPDP4VRDdX2UKGgGR0BExKDbrTpgaAdL+2gIR0CXPsouwosqdX2UKGgGR0BZP0eZG8VYaAdN6ANoCEdAl0GAAU+LWXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}