|
|
|
from transformers import pipeline, AutoModelForTokenClassification, AutoTokenizer |
|
|
|
model= transformers.AutoModelForSequenceClassification.from_pretrained(".") |
|
tokenizer=transformers.AutoTokenizer.from_pretrained(".") |
|
|
|
|
|
|
|
|
|
dosya=["dvd.tsv","Books.tsv","Kitchen.tsv","electronics.tsv"][3] |
|
|
|
|
|
|
|
data = [line.strip().split("\t") for line in open(dosya)] |
|
|
|
sa= pipeline("sentiment-analysis", model=model, tokenizer=tokenizer) |
|
|
|
|
|
real=[d[1] for d in data] |
|
|
|
pred=[sa(d[0]) for d in data] |
|
pred2=[p[0]['label'].split("_")[1] for p in pred] |
|
|
|
|
|
res=[a==b for (a,b) in zip(pred2, real)] |
|
sum(res)/len(res) |
|
|
|
|