satyaalmasian
commited on
Commit
•
ece9d45
1
Parent(s):
91a731d
Delete BERTWithDateLayerTokenClassification.py
Browse files
BERTWithDateLayerTokenClassification.py
DELETED
@@ -1,154 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.utils.checkpoint
|
3 |
-
from torch import nn
|
4 |
-
from torch.nn import CrossEntropyLoss
|
5 |
-
from transformers.models.bert.modeling_bert import BertPreTrainedModel, BertModel, \
|
6 |
-
BERT_INPUTS_DOCSTRING, _TOKENIZER_FOR_DOC, _CHECKPOINT_FOR_DOC, TokenClassifierOutput, _CONFIG_FOR_DOC
|
7 |
-
from transformers.file_utils import (
|
8 |
-
add_code_sample_docstrings,
|
9 |
-
add_start_docstrings_to_model_forward,
|
10 |
-
)
|
11 |
-
|
12 |
-
|
13 |
-
class DateEmebdding(nn.Module):
|
14 |
-
"""Construct the embeddings the creation date"""
|
15 |
-
|
16 |
-
def __init__(self, config):
|
17 |
-
super().__init__()
|
18 |
-
self.word_embeddings = nn.Embedding(config.date_vocab_size, config.date_hidden_size,
|
19 |
-
padding_idx=config.pad_token_id)
|
20 |
-
self.position_embeddings = nn.Embedding(config.date_max_position_embeddings, config.date_hidden_size)
|
21 |
-
|
22 |
-
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
23 |
-
# any TensorFlow checkpoint file
|
24 |
-
self.LayerNorm = nn.LayerNorm(config.date_hidden_size, eps=config.layer_norm_eps)
|
25 |
-
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
26 |
-
|
27 |
-
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
28 |
-
self.register_buffer("position_ids", torch.arange(config.date_max_position_embeddings).expand((1, -1)))
|
29 |
-
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
|
30 |
-
self.dense = nn.Linear(config.date_hidden_size, config.date_hidden_size)
|
31 |
-
self.activation = nn.Tanh()
|
32 |
-
|
33 |
-
def forward(
|
34 |
-
self, input_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
|
35 |
-
):
|
36 |
-
|
37 |
-
try:
|
38 |
-
|
39 |
-
if input_ids is not None:
|
40 |
-
input_shape = input_ids.shape
|
41 |
-
else:
|
42 |
-
input_shape = inputs_embeds.size()[:-1]
|
43 |
-
|
44 |
-
seq_length = input_shape[1]
|
45 |
-
|
46 |
-
if position_ids is None:
|
47 |
-
position_ids = self.position_ids[:, past_key_values_length: seq_length + past_key_values_length]
|
48 |
-
|
49 |
-
if inputs_embeds is None:
|
50 |
-
inputs_embeds = self.word_embeddings(input_ids)
|
51 |
-
|
52 |
-
embeddings = inputs_embeds
|
53 |
-
if self.position_embedding_type == "absolute":
|
54 |
-
position_embeddings = self.position_embeddings(position_ids)
|
55 |
-
embeddings += position_embeddings
|
56 |
-
embeddings = self.LayerNorm(embeddings)
|
57 |
-
embeddings = self.dropout(embeddings)
|
58 |
-
max_over_time = torch.max(embeddings, 1)[0]
|
59 |
-
except Exception as ex:
|
60 |
-
print(type(ex).__name__, ex.args)
|
61 |
-
import pdb
|
62 |
-
pdb.set_trace()
|
63 |
-
return max_over_time
|
64 |
-
|
65 |
-
|
66 |
-
class BERTWithDateLayerTokenClassification(BertPreTrainedModel):
|
67 |
-
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
68 |
-
|
69 |
-
def __init__(self, config):
|
70 |
-
super().__init__(config)
|
71 |
-
self.num_labels = config.num_labels
|
72 |
-
|
73 |
-
self.bert = BertModel(config, add_pooling_layer=False)
|
74 |
-
self.date_embedding = DateEmebdding(config)
|
75 |
-
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
76 |
-
self.classifier = nn.Linear(config.date_hidden_size + config.hidden_size, config.num_labels)
|
77 |
-
# self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
78 |
-
|
79 |
-
self.init_weights()
|
80 |
-
|
81 |
-
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
82 |
-
@add_code_sample_docstrings(
|
83 |
-
tokenizer_class=_TOKENIZER_FOR_DOC,
|
84 |
-
checkpoint=_CHECKPOINT_FOR_DOC,
|
85 |
-
output_type=TokenClassifierOutput,
|
86 |
-
config_class=_CONFIG_FOR_DOC,
|
87 |
-
)
|
88 |
-
def forward(
|
89 |
-
self,
|
90 |
-
input_ids=None,
|
91 |
-
input_date_ids=None,
|
92 |
-
attention_mask=None,
|
93 |
-
token_type_ids=None,
|
94 |
-
position_ids=None,
|
95 |
-
head_mask=None,
|
96 |
-
inputs_embeds=None,
|
97 |
-
labels=None,
|
98 |
-
output_attentions=None,
|
99 |
-
output_hidden_states=None,
|
100 |
-
return_dict=None,
|
101 |
-
):
|
102 |
-
r"""
|
103 |
-
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
104 |
-
Labels for computing the token classification loss. Indices should be in ``[0, ..., config.num_labels -
|
105 |
-
1]``.
|
106 |
-
"""
|
107 |
-
try:
|
108 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
109 |
-
|
110 |
-
_, seq_length = input_ids.shape
|
111 |
-
outputs = self.bert(
|
112 |
-
input_ids,
|
113 |
-
attention_mask=attention_mask,
|
114 |
-
token_type_ids=token_type_ids,
|
115 |
-
position_ids=position_ids,
|
116 |
-
head_mask=head_mask,
|
117 |
-
inputs_embeds=inputs_embeds,
|
118 |
-
output_attentions=output_attentions,
|
119 |
-
output_hidden_states=output_hidden_states,
|
120 |
-
return_dict=return_dict,
|
121 |
-
)
|
122 |
-
date_output = self.date_embedding(input_date_ids)
|
123 |
-
sequence_output = torch.cat((outputs[0], date_output.unsqueeze(1).repeat(1, seq_length, 1)), 2)
|
124 |
-
|
125 |
-
sequence_output = self.dropout(sequence_output)
|
126 |
-
logits = self.classifier(sequence_output)
|
127 |
-
|
128 |
-
loss = None
|
129 |
-
if labels is not None:
|
130 |
-
loss_fct = CrossEntropyLoss()
|
131 |
-
# Only keep active parts of the loss
|
132 |
-
if attention_mask is not None:
|
133 |
-
active_loss = attention_mask.view(-1) == 1
|
134 |
-
active_logits = logits.view(-1, self.num_labels)
|
135 |
-
active_labels = torch.where(
|
136 |
-
active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels)
|
137 |
-
)
|
138 |
-
loss = loss_fct(active_logits, active_labels)
|
139 |
-
else:
|
140 |
-
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
141 |
-
|
142 |
-
if not return_dict:
|
143 |
-
output = (logits,) + outputs[2:]
|
144 |
-
return ((loss,) + output) if loss is not None else output
|
145 |
-
except:
|
146 |
-
import pdb
|
147 |
-
pdb.set_trace()
|
148 |
-
raise BrokenPipeError("Problems in forward pass")
|
149 |
-
return TokenClassifierOutput(
|
150 |
-
loss=loss,
|
151 |
-
logits=logits,
|
152 |
-
hidden_states=outputs.hidden_states,
|
153 |
-
attentions=outputs.attentions,
|
154 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|