satyaalmasian commited on
Commit
ece9d45
1 Parent(s): 91a731d

Delete BERTWithDateLayerTokenClassification.py

Browse files
BERTWithDateLayerTokenClassification.py DELETED
@@ -1,154 +0,0 @@
1
- import torch
2
- import torch.utils.checkpoint
3
- from torch import nn
4
- from torch.nn import CrossEntropyLoss
5
- from transformers.models.bert.modeling_bert import BertPreTrainedModel, BertModel, \
6
- BERT_INPUTS_DOCSTRING, _TOKENIZER_FOR_DOC, _CHECKPOINT_FOR_DOC, TokenClassifierOutput, _CONFIG_FOR_DOC
7
- from transformers.file_utils import (
8
- add_code_sample_docstrings,
9
- add_start_docstrings_to_model_forward,
10
- )
11
-
12
-
13
- class DateEmebdding(nn.Module):
14
- """Construct the embeddings the creation date"""
15
-
16
- def __init__(self, config):
17
- super().__init__()
18
- self.word_embeddings = nn.Embedding(config.date_vocab_size, config.date_hidden_size,
19
- padding_idx=config.pad_token_id)
20
- self.position_embeddings = nn.Embedding(config.date_max_position_embeddings, config.date_hidden_size)
21
-
22
- # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
23
- # any TensorFlow checkpoint file
24
- self.LayerNorm = nn.LayerNorm(config.date_hidden_size, eps=config.layer_norm_eps)
25
- self.dropout = nn.Dropout(config.hidden_dropout_prob)
26
-
27
- # position_ids (1, len position emb) is contiguous in memory and exported when serialized
28
- self.register_buffer("position_ids", torch.arange(config.date_max_position_embeddings).expand((1, -1)))
29
- self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
30
- self.dense = nn.Linear(config.date_hidden_size, config.date_hidden_size)
31
- self.activation = nn.Tanh()
32
-
33
- def forward(
34
- self, input_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
35
- ):
36
-
37
- try:
38
-
39
- if input_ids is not None:
40
- input_shape = input_ids.shape
41
- else:
42
- input_shape = inputs_embeds.size()[:-1]
43
-
44
- seq_length = input_shape[1]
45
-
46
- if position_ids is None:
47
- position_ids = self.position_ids[:, past_key_values_length: seq_length + past_key_values_length]
48
-
49
- if inputs_embeds is None:
50
- inputs_embeds = self.word_embeddings(input_ids)
51
-
52
- embeddings = inputs_embeds
53
- if self.position_embedding_type == "absolute":
54
- position_embeddings = self.position_embeddings(position_ids)
55
- embeddings += position_embeddings
56
- embeddings = self.LayerNorm(embeddings)
57
- embeddings = self.dropout(embeddings)
58
- max_over_time = torch.max(embeddings, 1)[0]
59
- except Exception as ex:
60
- print(type(ex).__name__, ex.args)
61
- import pdb
62
- pdb.set_trace()
63
- return max_over_time
64
-
65
-
66
- class BERTWithDateLayerTokenClassification(BertPreTrainedModel):
67
- _keys_to_ignore_on_load_unexpected = [r"pooler"]
68
-
69
- def __init__(self, config):
70
- super().__init__(config)
71
- self.num_labels = config.num_labels
72
-
73
- self.bert = BertModel(config, add_pooling_layer=False)
74
- self.date_embedding = DateEmebdding(config)
75
- self.dropout = nn.Dropout(config.hidden_dropout_prob)
76
- self.classifier = nn.Linear(config.date_hidden_size + config.hidden_size, config.num_labels)
77
- # self.classifier = nn.Linear(config.hidden_size, config.num_labels)
78
-
79
- self.init_weights()
80
-
81
- @add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
82
- @add_code_sample_docstrings(
83
- tokenizer_class=_TOKENIZER_FOR_DOC,
84
- checkpoint=_CHECKPOINT_FOR_DOC,
85
- output_type=TokenClassifierOutput,
86
- config_class=_CONFIG_FOR_DOC,
87
- )
88
- def forward(
89
- self,
90
- input_ids=None,
91
- input_date_ids=None,
92
- attention_mask=None,
93
- token_type_ids=None,
94
- position_ids=None,
95
- head_mask=None,
96
- inputs_embeds=None,
97
- labels=None,
98
- output_attentions=None,
99
- output_hidden_states=None,
100
- return_dict=None,
101
- ):
102
- r"""
103
- labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
104
- Labels for computing the token classification loss. Indices should be in ``[0, ..., config.num_labels -
105
- 1]``.
106
- """
107
- try:
108
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
109
-
110
- _, seq_length = input_ids.shape
111
- outputs = self.bert(
112
- input_ids,
113
- attention_mask=attention_mask,
114
- token_type_ids=token_type_ids,
115
- position_ids=position_ids,
116
- head_mask=head_mask,
117
- inputs_embeds=inputs_embeds,
118
- output_attentions=output_attentions,
119
- output_hidden_states=output_hidden_states,
120
- return_dict=return_dict,
121
- )
122
- date_output = self.date_embedding(input_date_ids)
123
- sequence_output = torch.cat((outputs[0], date_output.unsqueeze(1).repeat(1, seq_length, 1)), 2)
124
-
125
- sequence_output = self.dropout(sequence_output)
126
- logits = self.classifier(sequence_output)
127
-
128
- loss = None
129
- if labels is not None:
130
- loss_fct = CrossEntropyLoss()
131
- # Only keep active parts of the loss
132
- if attention_mask is not None:
133
- active_loss = attention_mask.view(-1) == 1
134
- active_logits = logits.view(-1, self.num_labels)
135
- active_labels = torch.where(
136
- active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels)
137
- )
138
- loss = loss_fct(active_logits, active_labels)
139
- else:
140
- loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
141
-
142
- if not return_dict:
143
- output = (logits,) + outputs[2:]
144
- return ((loss,) + output) if loss is not None else output
145
- except:
146
- import pdb
147
- pdb.set_trace()
148
- raise BrokenPipeError("Problems in forward pass")
149
- return TokenClassifierOutput(
150
- loss=loss,
151
- logits=logits,
152
- hidden_states=outputs.hidden_states,
153
- attentions=outputs.attentions,
154
- )