ppo-LunarLander-v2 / config.json
satanicmangoes's picture
1stpush
e7c2fa3
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x785ec29b2170>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x785ec29b2200>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x785ec29b2290>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x785ec29b2320>", "_build": "<function ActorCriticPolicy._build at 0x785ec29b23b0>", "forward": "<function ActorCriticPolicy.forward at 0x785ec29b2440>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x785ec29b24d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x785ec29b2560>", "_predict": "<function ActorCriticPolicy._predict at 0x785ec29b25f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x785ec29b2680>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x785ec29b2710>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x785ec29b27a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x785ec2b56780>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1692535834163937472, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOZV6D1/pWo/S8amvCptjb4hst09XtjdvQAAAAAAAAAAIM4IPgCZtz7WDgy+/xGKvnEQuby9Atm9AAAAAAAAAADNfKs6rreAujENNLi+DzKzI/QROzgzUjcAAIA/AACAP401wj3EW5w+FkoLvl+9i762Mau9VRpivQAAAAAAAAAARqiPPtNYdz+F05c9bE+yvruhSj7VEhe+AAAAAAAAAAAaPV29Ga4QPqpwEz79JSC+R/qnPSIlOT0AAAAAAAAAAIA7Y717fJC6cxK2OysmNjhJrDM7cReWtwAAgD8AAIA/ZsmLPM7FfD/Sy9g84/u5vu0xs7zynoW9AAAAAAAAAACajpq8jwp7ujjn4jc3Yv0yKW4tu205BLcAAIA/AACAP2Yri7zebrU/1oMRv07Ajz0DQYE80GK7PQAAAAAAAAAAgNjVPUy2Mz4bwoO9fWPyvVC+yrwOFys9AAAAAAAAAADN7HW69nB6uvOIrrSkQD2wLVkfuwbkbDMAAIA/AACAP80Ktzxh1Fk+Jg8TPf1LMb4g4Ly7Yjp3PQAAAAAAAAAATcaRvcNBWrroUWG60d9RtQPMPrrDEII5AACAPwAAgD8zO5079tB6urbqdraewmSxbD7+Onx5lDUAAIA/AACAPwA3GD2vFTo9nt8FPazVSb7bJJ48orWnvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGRRbzkIX0qMAWyUTegDjAF0lEdAoHMPAGjbjHV9lChoBkdAb0ZYbsF+u2gHTY4CaAhHQKBzMMefZmJ1fZQoaAZHQG0k/bKzRhNoB02sA2gIR0Cgc4yu6mO3dX2UKGgGR0BByz8HfMwDaAdL5mgIR0CgdZg6uGKydX2UKGgGR0BgyhXjlxOtaAdN6ANoCEdAoHdchLXcxnV9lChoBkdAMkRlDneSCGgHTRwBaAhHQKCA7Y5DJEJ1fZQoaAZHQHA/9g8bJfZoB01YAmgIR0CggfZbY9PldX2UKGgGR0Bn8zNwBHTaaAdN6ANoCEdAoIJ2nZTQ3XV9lChoBkdAcemRDkU9IWgHTZ8BaAhHQKCCizImw7l1fZQoaAZHQHBQHko4MnZoB02MAmgIR0Cggpwqy4WldX2UKGgGR0BtZSuloDgZaAdNKwJoCEdAoIOOvnr6cnV9lChoBkdAchTBg/keZGgHTTYDaAhHQKCEHBXS0Bx1fZQoaAZHQHEiIZ62OQ1oB02hAmgIR0CghoIuf29MdX2UKGgGR0BDONlAeJYUaAdL22gIR0CghsIQvpQldX2UKGgGR0BvWZK15Sm7aAdNqQNoCEdAoIpYqiGnGnV9lChoBkdAHNBltj0+T2gHS+VoCEdAoIti0+kgwHV9lChoBkdAbylhG6PKdWgHTSsBaAhHQKCLa+zMRpV1fZQoaAZHQHDv5DZ13dNoB02WA2gIR0Cgi8Oc2BJ7dX2UKGgGR0BwHvPIGQjmaAdNgAJoCEdAoIydtZV4o3V9lChoBkdAa5T9RaX8fmgHTSwCaAhHQKCNTXeWOZN1fZQoaAZHQHI74u5BkZtoB01xAWgIR0CgjoE2gnMMdX2UKGgGR0BxAYkmhM8HaAdNeAFoCEdAoJE8xoIv8XV9lChoBkdAcQ3hufmLcmgHTakCaAhHQKCSZ1AZ88d1fZQoaAZHQHKZEzO5avBoB02EA2gIR0CgkwrDye7MdX2UKGgGR0BmvUlAu7HyaAdN6ANoCEdAoJTvFglWwXV9lChoBkdAbB+vqTr3TWgHTZ4CaAhHQKCVTRtP5591fZQoaAZHQG+xM8YAKfFoB025AmgIR0CglilDv3JxdX2UKGgGR0Bmsn3SKFZgaAdN6ANoCEdAoJaD/MnqmnV9lChoBkdAbVAXHim2s2gHTXQBaAhHQKCYoeYD1Xh1fZQoaAZHQHIV+ZPVNHpoB03zAWgIR0CgmNNFSbYsdX2UKGgGR0BxDnq7iADraAdNAgJoCEdAoJkvEAHVw3V9lChoBkdAcPNVC5VfeGgHTXACaAhHQKCbOyqMm4R1fZQoaAZHQEoCk7fYSQJoB0vnaAhHQKCbO3CKrJd1fZQoaAZHQHGfRdIGyHFoB01JAmgIR0CgnAUygwoLdX2UKGgGR0A5j0+1SflIaAdL7mgIR0CgpvKj8DSxdX2UKGgGR0BxOAFV1fVqaAdNbAFoCEdAoKcM9ECvHXV9lChoBkdAbVxTVDrquGgHTZgBaAhHQKCntuRcNYt1fZQoaAZHQGWRU3Ov+wVoB03oA2gIR0Cgp85TZQHidX2UKGgGR0BwjubjLjgiaAdN0gJoCEdAoKkQWSEDhnV9lChoBkdAbVSdyT6i02gHTfQCaAhHQKCq4KtxMnJ1fZQoaAZHQHFZKxC6YmdoB01lAWgIR0Cgq4cqnWJ8dX2UKGgGR0BkZEuOCGvfaAdN6ANoCEdAoKujW7OE/XV9lChoBkdAbSVLzPKMemgHTY4BaAhHQKCu4IvalDZ1fZQoaAZHQHBKZlFtsN5oB00MAmgIR0Cgr4NRFZxJdX2UKGgGR0BxM8uEmICVaAdNfgFoCEdAoLAKdtl7MXV9lChoBkdAba3JlrdnCmgHTTcBaAhHQKCwL5i3G4t1fZQoaAZHQHLdSRbKRuFoB02GAmgIR0CgsFqJEYwZdX2UKGgGR0ByRlDNQj2SaAdNfAFoCEdAoLCSxZ+x4nV9lChoBkdAcVoCZWq95GgHTWICaAhHQKCx4XVLBbh1fZQoaAZHQHFf2SU1Q69oB03kAWgIR0Cgss3yI55rdX2UKGgGR0BwTUwrUb1iaAdNhQFoCEdAoLPgob4rSXV9lChoBkdAZ7/WuoxYaGgHTegDaAhHQKC0ND0lJH11fZQoaAZHQG52xc/t6X1oB02WAmgIR0CgtYCj+JgtdX2UKGgGR0Bwbk97ngYQaAdNNQFoCEdAoLedqSHM2XV9lChoBkdAYGwydnTRY2gHTegDaAhHQKC3yEX+ERJ1fZQoaAZHQHCMbNwBHTZoB00dA2gIR0CguDQGOdXldX2UKGgGR0BtAxhWo3rEaAdNvAFoCEdAoLlX0f5k9XV9lChoBkdAcLaDDjzZpWgHTVUCaAhHQKC5zfsu3+d1fZQoaAZHQG9xomois4loB024AWgIR0CgumVy/9HddX2UKGgGR0Bx2ARJ2+wlaAdN8AFoCEdAoLsynHeaa3V9lChoBkdAcOhylenhsWgHTTgBaAhHQKC7gWuX/o91fZQoaAZHQHAPCGN70FtoB00CAmgIR0CgvC4bKifydX2UKGgGR0BwMfCyhSLqaAdNogNoCEdAoLzUFhXr+3V9lChoBkdAbL0xwAEMb2gHTd8BaAhHQKC9N7AtWdV1fZQoaAZHQHCRW3OObRZoB00rAmgIR0CgvUzl1bJPdX2UKGgGR0Bwm1vKlpGnaAdNEQNoCEdAoL5LKA8SwnV9lChoBkdAcePXEIgNgGgHTRcCaAhHQKDJ9lIVdop1fZQoaAZHQG50yzgMtshoB01aAWgIR0CgyjnPeHi4dX2UKGgGR0BvLg9vCMxXaAdNhAFoCEdAoMsz1XeWOnV9lChoBkdASgCUaAFxGWgHS/hoCEdAoMwYOJ+DvnV9lChoBkdAckMSTQmeDmgHTWEBaAhHQKDMHaL4vex1fZQoaAZHQHKFUh7mdRRoB01aAWgIR0CgzHb6xgRcdX2UKGgGR0Bu2i33Hq/uaAdNIQJoCEdAoMykdYGMXXV9lChoBkdAcX4jps41g2gHTUUBaAhHQKDOudVea8Z1fZQoaAZHQHB83X2/SIBoB01uAWgIR0Cgz0PqkdmydX2UKGgGR0ByKyCNCJGfaAdN7wFoCEdAoNB2YBvJinV9lChoBkdAQE0TlDF6zGgHS85oCEdAoNCOepXIVHV9lChoBkdAcUp3QUpNK2gHTRcCaAhHQKDRsG/N7jV1fZQoaAZHQGzZMtkFwDNoB00yAWgIR0Cg0d3dTHbRdX2UKGgGR0BxcpwkxASnaAdNqQFoCEdAoNHskB0ZFXV9lChoBkdAbqD+KjzqbGgHTZ0CaAhHQKDSnvx6OYJ1fZQoaAZHQHBZ8zdk8RtoB00EAmgIR0Cg0uuVPepGdX2UKGgGR0BnN/qiXY16aAdN6ANoCEdAoNVMDIRywXV9lChoBkdAbtPSGahHsmgHTTEBaAhHQKDVbjin5zp1fZQoaAZHQHG6V4oqkM1oB00iAWgIR0Cg1tmgJ1JUdX2UKGgGR0Bv+EKPXCj2aAdNeAFoCEdAoNeLTOPeYXV9lChoBkdAbAB9WIXTE2gHTRkBaAhHQKDX+a72+PB1fZQoaAZHQF5vxfv4M4NoB03oA2gIR0Cg2NS3b212dX2UKGgGR0BxGSHM2WIHaAdNRAJoCEdAoNlB9ZzPr3V9lChoBkdAcUu+PzWf9WgHTVECaAhHQKDZWOFQEZB1fZQoaAZHQHFUoBaLXMBoB02EAWgIR0Cg2mmOMl1KdX2UKGgGR0Bwuqjh1klNaAdN0gFoCEdAoNrOeFtbcHV9lChoBkdAcERUornTzGgHTaMCaAhHQKDbAm7aqS51fZQoaAZHQG2iAXdj5KxoB00YA2gIR0Cg20nVPN3XdX2UKGgGR0BrX918stkGaAdNnQFoCEdAoNwniBGx2XV9lChoBkdAcW9ttQ9A5mgHTTQBaAhHQKDcS1MM7U51fZQoaAZHQHBzVOO801toB017AWgIR0Cg3i0IkZ75dX2UKGgGR0Bx/8rJ8v25aAdNMQJoCEdAoN5j9MsYmHV9lChoBkdAcp9/wiJO32gHTZEDaAhHQKDehXYDklx1fZQoaAZHQG8BFyzXz19oB00SAWgIR0Cg4ENTcZccdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}