shuka_v1 / shuka_model.py
rahular's picture
Upload ShukaPipeline
72c03b9 verified
####################################################################
## Built on top of Ultravox: https://github.com/fixie-ai/ultravox ##
####################################################################
import logging
from typing import Any, Dict, Optional, Set, Tuple, Union
import peft
import torch
import torch.nn as nn
import torch.nn.functional as F
import transformers
import transformers.activations
import transformers.modeling_outputs
import transformers.models
from .shuka_config import ShukaConfig
from .whisper_model_modified import WhisperEncoder as ModifiedWhisperEncoder
class ShukaModel(
transformers.LlamaPreTrainedModel,
transformers.GenerationMixin,
):
"""
The Shuka model which consists of an audio encoder and a language model.
Audio input is processed by the audio encoder, then every `stack_factor` frames are stacked together and
projected to the language model's embedding space using a few linear layers.
The text is embedded by the language model as usual and then the audio and text embeddings are merged together.
A special token `<|audio|>` is used to indicate the start of the audio embeddings in the merged embeddings.
Parameters:
config: Model configuration class with all the parameters of the model.
"""
config_class = ShukaConfig
config: ShukaConfig # for type hinting
_no_split_modules = ["Wav2Vec2Model", "WhisperEncoder", "LlamaDecoderLayer"]
def __init__(self, config: ShukaConfig):
super().__init__(config)
self.keep_params: Set[str] = set()
self.vocab_size = config.vocab_size
self.audio_tower = self._create_audio_tower(config)
self.multi_modal_projector = ShukaProjector(config)
self.language_model = self._create_language_model(config)
self.post_init()
def get_input_embeddings(self):
return self.language_model.get_input_embeddings()
def set_input_embeddings(self, value):
self.language_model.set_input_embeddings(value)
def get_output_embeddings(self):
return self.language_model.get_output_embeddings()
def set_output_embeddings(self, new_embeddings):
self.language_model.set_output_embeddings(new_embeddings)
def set_decoder(self, decoder):
self.language_model.set_decoder(decoder)
def get_decoder(self):
return self.language_model.get_decoder()
def tie_weights(self):
return self.language_model.tie_weights()
def _setup_cache(
self, cache_cls, max_batch_size: int, max_cache_len: Optional[int] = None
):
self.language_model._setup_cache(cache_cls, max_batch_size, max_cache_len)
def _reorder_cache(self, past_key_values, beam_idx):
return self.language_model._reorder_cache(past_key_values, beam_idx)
def resize_token_embeddings(
self,
new_num_tokens: Optional[int] = None,
pad_to_multiple_of: Optional[int] = None,
) -> nn.Embedding:
model_embeds = self.language_model.resize_token_embeddings(
new_num_tokens, pad_to_multiple_of
)
# update vocab size
self.config.text_config.vocab_size = model_embeds.num_embeddings
self.config.vocab_size = model_embeds.num_embeddings
self.vocab_size = model_embeds.num_embeddings
return model_embeds
def forward(
self,
input_ids: torch.Tensor,
audio_values: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
audio_token_start_idx: Optional[torch.Tensor] = None,
audio_token_len: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple] = None,
**kwargs,
) -> Union[Tuple, transformers.modeling_outputs.CausalLMOutputWithPast]:
"""
Forward pass for the Shuka model.
`input_ids` are the tokenized text input. They are embedded by the language model as usual.
`audio_values` are processed by the audio encoder and then every `stack_factor` frames are stacked together and
projected to the language model's embedding space using a few linear layers.
The audio and text embeddings are merged together. A special token `<|audio|>` is used to indicate the start
of the audio embeddings in the merged embeddings.
Args:
input_ids: The tokenized text input.
audio_values: The processed audio values.
inputs_embeds: The embeddings for the input tokens.
labels: The tokenized text labels.
attention_mask: The attention mask for the input.
position_ids: The position ids for the input.
past_key_values: The past key value cache for the language model attention layers.
**kwargs: Additional keyword arguments. Passed directly to the language model.
"""
if inputs_embeds is None:
# B x T -> B x T x D
inputs_embeds = self.get_input_embeddings().forward(input_ids)
if audio_values is not None:
assert (
audio_token_start_idx is not None and audio_token_len is not None
), "audio_token_start_idx and audio_token_len must be provided if audio_values are provided."
assert (
len(audio_token_start_idx) == len(audio_token_len) == len(audio_values)
), "audio_token_start_idx, audio_token_len, and audio_values must have the same batch size."
audio_values = audio_values.to(inputs_embeds.dtype)
# B x A/3200 x D
audio_tower_output = self.audio_tower.forward(
audio_values
).last_hidden_state
audio_embeds = self.multi_modal_projector.forward(audio_tower_output)
# combine audio and text embeddings
for i, (audio, start, length) in enumerate(
zip(audio_embeds, audio_token_start_idx, audio_token_len)
):
length = min(length, audio.shape[0])
inputs_embeds[i, start : start + length] = audio[:length]
lm_output = self.language_model.forward(
inputs_embeds=inputs_embeds,
labels=labels,
attention_mask=attention_mask,
past_key_values=past_key_values,
**kwargs,
)
return lm_output
def prepare_inputs_for_generation(
self,
input_ids: torch.Tensor,
audio_values: Optional[torch.FloatTensor] = None,
audio_token_start_idx: Optional[torch.Tensor] = None,
audio_token_len: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple] = None,
attention_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
**kwargs,
) -> Dict[str, Any]:
model_input = self.language_model.prepare_inputs_for_generation(
input_ids=input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
**kwargs,
)
if past_key_values is None and audio_values is not None:
# We only want to use audio features in the 1st generation step
model_input["audio_values"] = audio_values
model_input["audio_token_start_idx"] = audio_token_start_idx
model_input["audio_token_len"] = audio_token_len
return model_input
@classmethod
def _create_audio_tower(cls, config: ShukaConfig) -> Union[
transformers.Wav2Vec2Model,
transformers.models.whisper.modeling_whisper.WhisperEncoder,
]:
if config.audio_model_id is not None:
if (
"whisper" in config.audio_model_id is not None
or "saaras" in config.audio_model_id is not None
):
audio_tower = ModifiedWhisperEncoder.from_pretrained(
config.audio_model_id
)
else:
audio_tower = transformers.AutoModel.from_pretrained(
config.audio_model_id
)
else:
if (
"whisper" in config.audio_config._name_or_path
or "saaras" in config.audio_config._name_or_path
):
audio_tower = ModifiedWhisperEncoder(config.audio_config)
else:
audio_tower = transformers.AutoModel.from_config(config.audio_config)
if isinstance(
audio_tower,
(transformers.Wav2Vec2BertModel, transformers.WhisperModel),
):
# For these models we only need the encoder part
# Wav2Vec2BertModel -> Wav2Vec2BertEncoder
# WhisperModel -> WhisperEncoder
audio_tower = audio_tower.encoder
audio_tower = apply_lora(audio_tower, config.audio_model_lora_config)
return audio_tower
@classmethod
def _create_language_model(
cls, config: ShukaConfig
) -> transformers.LlamaForCausalLM:
if config.text_model_id is not None:
language_model = transformers.AutoModelForCausalLM.from_pretrained(
config.text_model_id, attn_implementation=config._attn_implementation
)
else:
language_model = transformers.AutoModelForCausalLM.from_config(
config.text_config, attn_implementation=config._attn_implementation
)
language_model = apply_lora(language_model, config.text_model_lora_config)
return language_model
def merge_and_unload(self):
if isinstance(self.language_model, peft.PeftModel):
self.language_model = self.language_model.merge_and_unload()
if isinstance(self.audio_tower, peft.PeftModel):
self.audio_tower = self.audio_tower.merge_and_unload()
self.config.text_model_id = None
self.keep_params.update(
set(
[
f"language_model.{name}"
for name, _ in self.language_model.named_parameters()
]
)
)
self.config.audio_model_id = None
self.keep_params.update(
set(
[
f"audio_tower.{name}"
for name, _ in self.audio_tower.named_parameters()
]
)
)
for param in ["text_model_lora_config", "audio_model_lora_config"]:
if hasattr(self.config, param):
delattr(self.config, param)
def push_to_hub(self, *args, **kwargs):
self.merge_and_unload()
self.to(self.language_model.dtype)
return super().push_to_hub(*args, **kwargs)
def state_dict(self, *args, **kwargs):
named_params = dict(self.named_parameters())
state_dict = super().state_dict(*args, **kwargs)
state_dict = {
k: v
for k, v in state_dict.items()
if k in self.keep_params or k in named_params
# or (k in named_params and named_params[k].requires_grad)
}
return state_dict
def load_state_dict(
self,
state_dict: Dict[str, Any],
*args,
**kwargs,
):
self.keep_params.update(set(state_dict.keys()))
return super().load_state_dict(state_dict, *args, **kwargs)
def print_trainable_parameters(self):
"""
Prints the number of trainable parameters in the model (reuses Peft model's method)
"""
count_params = peft.peft_model.PeftModel.get_nb_trainable_parameters
trainable_params, all_param = count_params(self)
logging.info(
f"trainable params: {trainable_params:,d} || all params: {all_param:,d}"
f" || trainable%: {100 * trainable_params / all_param:.1f}%"
)
lm_trainable_params, lm_all_params = count_params(self.language_model)
audio_trainable_params, audio_all_params = count_params(self.audio_tower)
projector_trainable_params = (
trainable_params - lm_trainable_params - audio_trainable_params
)
projector_all_params = all_param - lm_all_params - audio_all_params
logging.info(
f"Trainable%: "
f" LLM: {100 * lm_trainable_params / lm_all_params:.1f}%"
f" || Audio Encoder: {100 * audio_trainable_params / audio_all_params:.1f}%"
f" || Projector: {100 * projector_trainable_params / projector_all_params:.1f}%"
)
def apply_lora(model: torch.nn.Module, lora_config: dict) -> torch.nn.Module:
"""
Applies LoRA finetuning to the model. If the `r` parameter is set to 0, the model is frozen instead.
"""
lora_config = peft.LoraConfig(**lora_config or {})
if lora_config.r == 0:
# freeze the model entirely
for param in model.parameters():
param.requires_grad = False
else:
model = peft.get_peft_model(model, lora_config)
return model
class StackAudioFrames(nn.Module):
"""
Stack the audio embedding frames to reduce the sequence length by a factor of `stack_factor`.
The number of output frames will be `ceil(T / stack_factor) + 1` where `T` is the number of input frames.
NOTE: the extra +1 is intentional: in case the number of audio tokens are over-estimated by the processor,
we want to make sure `processor.audio_token_replacement` (i.e. EOS) doesn't get leaked into the middle of embeddings.
In most cases this extra padding will get removed in the model's forward function so it has no effect.
"""
def __init__(self, stack_factor: int = 8):
super().__init__()
self.stack_factor = stack_factor
def forward(self, audio_embeds: torch.Tensor) -> torch.Tensor:
B, T, C = audio_embeds.shape
T_pad = (T + self.stack_factor - 1) // self.stack_factor * self.stack_factor
audio_embeds = F.pad(audio_embeds, (0, 0, 0, T_pad - T + self.stack_factor))
B, T, C = audio_embeds.shape
audio_embeds = audio_embeds.view(
B, T // self.stack_factor, C * self.stack_factor
)
return audio_embeds
class RMSNorm(transformers.models.llama.modeling_llama.LlamaRMSNorm):
def __init__(self, hidden_size: int, init: float = 1, eps: float = 1e-6):
super().__init__(hidden_size=hidden_size, eps=eps)
self.weight.data.fill_(init)
class SwiGLU(nn.Module):
def forward(self, x):
x, gate = x.chunk(2, dim=-1)
return F.silu(gate) * x
class ShukaProjector(nn.Sequential):
def __init__(self, config: ShukaConfig):
super().__init__()
self.hidden_dim = config.hidden_size
self._pad_and_stack = StackAudioFrames(config.stack_factor)
dim = config.audio_config.hidden_size * config.stack_factor
self.ln_pre = RMSNorm(dim, init=config.norm_init)
self.linear_1 = nn.Linear(dim, self.hidden_dim, bias=False)
dim = self.hidden_dim
self.act = transformers.activations.get_activation(config.projector_act)
dim = dim // 2 if config.projector_act == "swiglu" else dim
self.linear_2 = nn.Linear(dim, config.text_config.hidden_size, bias=False)
self.ln_post = RMSNorm(config.text_config.hidden_size, init=config.norm_init)
def forward(self, audio_features: torch.Tensor) -> torch.Tensor:
audio_features = self._pad_and_stack(audio_features)
audio_features = self.ln_pre(audio_features)
hidden_states = self.linear_1(audio_features)
hidden_states = self.act(hidden_states)
hidden_states = self.linear_2(hidden_states)
hidden_states = self.ln_post(hidden_states)
return hidden_states
ShukaConfig.register_for_auto_class()
ShukaModel.register_for_auto_class()
transformers.AutoConfig.register("shuka", ShukaConfig)
transformers.AutoModel.register(ShukaConfig, ShukaModel)
transformers.activations.ACT2FN["swiglu"] = SwiGLU
transformers.activations.ACT2FN["swiglu"] = SwiGLU