saraperera commited on
Commit
73289f7
1 Parent(s): 5cf1187

End of training

Browse files
Files changed (1) hide show
  1. README.md +76 -0
README.md ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: BSC-TeMU/roberta-base-bne
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - amazon_reviews_multi
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: khipu-finetuned-amazon_reviews_multi
12
+ results:
13
+ - task:
14
+ name: Text Classification
15
+ type: text-classification
16
+ dataset:
17
+ name: amazon_reviews_multi
18
+ type: amazon_reviews_multi
19
+ config: es
20
+ split: validation
21
+ args: es
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.91125
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # khipu-finetuned-amazon_reviews_multi
32
+
33
+ This model is a fine-tuned version of [BSC-TeMU/roberta-base-bne](https://huggingface.co/BSC-TeMU/roberta-base-bne) on the amazon_reviews_multi dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.2624
36
+ - Accuracy: 0.9113
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 2e-05
56
+ - train_batch_size: 16
57
+ - eval_batch_size: 16
58
+ - seed: 42
59
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
+ - lr_scheduler_type: linear
61
+ - num_epochs: 2
62
+
63
+ ### Training results
64
+
65
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
66
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
67
+ | 0.2548 | 1.0 | 63 | 0.2700 | 0.9052 |
68
+ | 0.1491 | 2.0 | 126 | 0.2624 | 0.9113 |
69
+
70
+
71
+ ### Framework versions
72
+
73
+ - Transformers 4.34.0
74
+ - Pytorch 2.0.1+cu118
75
+ - Datasets 2.14.5
76
+ - Tokenizers 0.14.0