saraleivam commited on
Commit
21788f0
1 Parent(s): 6ec863f

Add new SentenceTransformer model.

Browse files
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ unigram.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,349 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: saraleivam/GURU2-paraphrase-multilingual-MiniLM-L12-v2
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ pipeline_tag: sentence-similarity
7
+ tags:
8
+ - sentence-transformers
9
+ - sentence-similarity
10
+ - feature-extraction
11
+ - generated_from_trainer
12
+ - dataset_size:100
13
+ - loss:SoftmaxLoss
14
+ widget:
15
+ - source_sentence: ilustracion,diseño ux uidiseño ux
16
+ sentences:
17
+ - Create AI-generated art using NightCafe. Apply styles and techniques to customize
18
+ artwork . Produce a digital art portfolio showcasing AI creativity
19
+ - The nature of discrete-time signals. Discrete-time signals are vectors in a vector
20
+ space. Discrete-time signals can be analyzed in the frequency domain via the Fourier
21
+ transform
22
+ - Describe software engineering, Software Development Lifecycle (SDLC), and software
23
+ development tools, technologies and stacks. . List different types of programming
24
+ languages and create basic programming constructs such as loops and conditions
25
+ using Python. . Outline approaches to application architecture and design, patterns,
26
+ and deployment architectures. . Summarize the skills required in software engineering
27
+ and describe the career options it provides.
28
+ - source_sentence: profesional
29
+ sentences:
30
+ - Create a Facebook Prophet Machine learning model & Forecast the price of Bitcoin
31
+ for the future 30 days. Learn to Visualize Bitcoin using Plotly Express. Learn
32
+ to Extract Financial Data and Analyze it using Google Sheets
33
+ - What Industry 4.0 is and what factors have enabled the IIoT.. Key skills to develop
34
+ to be employed in the IIoT space.. What platforms are, and also market information
35
+ on Software and Services.. What the top application areas are (examples include
36
+ manufacturing and oil & gas).
37
+ - Writing
38
+ - source_sentence: ilustracion,diseño ux uidiseño ux
39
+ sentences:
40
+ - Creativity, Problem Solving, Writing
41
+ - Anatomy of the Upper and Lower Extremities
42
+ - Evaluate the performance of a classifier using visual diagnostic tools from Yellowbrick.
43
+ Diagnose and handle class imbalance problems
44
+ - source_sentence: Maestría en educación
45
+ sentences:
46
+ - Explain the seminal ideas leading to the birth of AI, the major difficulties and
47
+ how the international community overtook them.. Describe what AI is today in terms
48
+ of goals, scientific community, companies’ interests. Describe the taxonomy of
49
+ the know-how on AI in terms of techniques, software and hardware methodologies.
50
+ . Explain the need for national strategies on AI and identify the major Italian
51
+ and European players on AI
52
+ - How a hardware component can be adapted at runtime to better respond to users/environment
53
+ needs using FPGAs
54
+ - A framework to evaluate DeFi risk; Environmental implications of cryptocurrency;
55
+ and winners and losers in the future of finance.
56
+ - source_sentence: ilustracion,diseño ux uidiseño ux
57
+ sentences:
58
+ - Planning
59
+ - 1. Transform numbers between number bases and perform arithmetic in number
60
+ bases . 2. Identify, describe and compute sequences of numbers and their sums.
61
+ . 3. Represent and describe space numerically using coordinates and graphs.. 4.
62
+ Study, represent and describe variations of quantities via functions and their
63
+ graphs.
64
+ - Create PivotTables to assess specific relationships within the data.. Create line,
65
+ bar, and pie charts to present the information from the PivotTables.. Compose
66
+ a dashboard with the charts and tables created to present a global picture of
67
+ the data.
68
+ ---
69
+
70
+ # SentenceTransformer based on saraleivam/GURU2-paraphrase-multilingual-MiniLM-L12-v2
71
+
72
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [saraleivam/GURU2-paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/saraleivam/GURU2-paraphrase-multilingual-MiniLM-L12-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
73
+
74
+ ## Model Details
75
+
76
+ ### Model Description
77
+ - **Model Type:** Sentence Transformer
78
+ - **Base model:** [saraleivam/GURU2-paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/saraleivam/GURU2-paraphrase-multilingual-MiniLM-L12-v2) <!-- at revision a73bbb48c69aae3d4ddfec208a2b666c7f5978c8 -->
79
+ - **Maximum Sequence Length:** 128 tokens
80
+ - **Output Dimensionality:** 384 tokens
81
+ - **Similarity Function:** Cosine Similarity
82
+ <!-- - **Training Dataset:** Unknown -->
83
+ <!-- - **Language:** Unknown -->
84
+ <!-- - **License:** Unknown -->
85
+
86
+ ### Model Sources
87
+
88
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
89
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
90
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
91
+
92
+ ### Full Model Architecture
93
+
94
+ ```
95
+ SentenceTransformer(
96
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
97
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
98
+ )
99
+ ```
100
+
101
+ ## Usage
102
+
103
+ ### Direct Usage (Sentence Transformers)
104
+
105
+ First install the Sentence Transformers library:
106
+
107
+ ```bash
108
+ pip install -U sentence-transformers
109
+ ```
110
+
111
+ Then you can load this model and run inference.
112
+ ```python
113
+ from sentence_transformers import SentenceTransformer
114
+
115
+ # Download from the 🤗 Hub
116
+ model = SentenceTransformer("saraleivam/GURU-train-paraphrase-multilingual-MiniLM-L12-v2")
117
+ # Run inference
118
+ sentences = [
119
+ 'ilustracion,diseño ux uidiseño ux',
120
+ 'Create PivotTables to assess specific relationships within the data.. Create line, bar, and pie charts to present the information from the PivotTables.. Compose a dashboard with the charts and tables created to present a global picture of the data.',
121
+ '1. Transform numbers between number bases and perform arithmetic in number bases . 2. Identify, describe and compute sequences of numbers and their sums. . 3. Represent and describe space numerically using coordinates and graphs.. 4. Study, represent and describe variations of quantities via functions and their graphs.',
122
+ ]
123
+ embeddings = model.encode(sentences)
124
+ print(embeddings.shape)
125
+ # [3, 384]
126
+
127
+ # Get the similarity scores for the embeddings
128
+ similarities = model.similarity(embeddings, embeddings)
129
+ print(similarities.shape)
130
+ # [3, 3]
131
+ ```
132
+
133
+ <!--
134
+ ### Direct Usage (Transformers)
135
+
136
+ <details><summary>Click to see the direct usage in Transformers</summary>
137
+
138
+ </details>
139
+ -->
140
+
141
+ <!--
142
+ ### Downstream Usage (Sentence Transformers)
143
+
144
+ You can finetune this model on your own dataset.
145
+
146
+ <details><summary>Click to expand</summary>
147
+
148
+ </details>
149
+ -->
150
+
151
+ <!--
152
+ ### Out-of-Scope Use
153
+
154
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
155
+ -->
156
+
157
+ <!--
158
+ ## Bias, Risks and Limitations
159
+
160
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
161
+ -->
162
+
163
+ <!--
164
+ ### Recommendations
165
+
166
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
167
+ -->
168
+
169
+ ## Training Details
170
+
171
+ ### Training Dataset
172
+
173
+ #### Unnamed Dataset
174
+
175
+
176
+ * Size: 100 training samples
177
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
178
+ * Approximate statistics based on the first 1000 samples:
179
+ | | sentence1 | sentence2 | label |
180
+ |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------|
181
+ | type | string | string | int |
182
+ | details | <ul><li>min: 3 tokens</li><li>mean: 12.47 tokens</li><li>max: 26 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 46.48 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>0: ~39.00%</li><li>1: ~24.00%</li><li>2: ~37.00%</li></ul> |
183
+ * Samples:
184
+ | sentence1 | sentence2 | label |
185
+ |:--------------------------------------------------|:----------------------------------------------------|:---------------|
186
+ | <code>ilustracion,diseño ux ui, sdiseño ux</code> | <code>The Ancient Greeks</code> | <code>2</code> |
187
+ | <code>Marketing digital, Bachiller</code> | <code>The Modern and the Postmodern (Part 1)</code> | <code>2</code> |
188
+ | <code>profesional</code> | <code>Writing</code> | <code>1</code> |
189
+ * Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)
190
+
191
+ ### Training Hyperparameters
192
+
193
+ #### All Hyperparameters
194
+ <details><summary>Click to expand</summary>
195
+
196
+ - `overwrite_output_dir`: False
197
+ - `do_predict`: False
198
+ - `eval_strategy`: no
199
+ - `prediction_loss_only`: True
200
+ - `per_device_train_batch_size`: 8
201
+ - `per_device_eval_batch_size`: 8
202
+ - `per_gpu_train_batch_size`: None
203
+ - `per_gpu_eval_batch_size`: None
204
+ - `gradient_accumulation_steps`: 1
205
+ - `eval_accumulation_steps`: None
206
+ - `learning_rate`: 5e-05
207
+ - `weight_decay`: 0.0
208
+ - `adam_beta1`: 0.9
209
+ - `adam_beta2`: 0.999
210
+ - `adam_epsilon`: 1e-08
211
+ - `max_grad_norm`: 1.0
212
+ - `num_train_epochs`: 3.0
213
+ - `max_steps`: -1
214
+ - `lr_scheduler_type`: linear
215
+ - `lr_scheduler_kwargs`: {}
216
+ - `warmup_ratio`: 0.0
217
+ - `warmup_steps`: 0
218
+ - `log_level`: passive
219
+ - `log_level_replica`: warning
220
+ - `log_on_each_node`: True
221
+ - `logging_nan_inf_filter`: True
222
+ - `save_safetensors`: True
223
+ - `save_on_each_node`: False
224
+ - `save_only_model`: False
225
+ - `restore_callback_states_from_checkpoint`: False
226
+ - `no_cuda`: False
227
+ - `use_cpu`: False
228
+ - `use_mps_device`: False
229
+ - `seed`: 42
230
+ - `data_seed`: None
231
+ - `jit_mode_eval`: False
232
+ - `use_ipex`: False
233
+ - `bf16`: False
234
+ - `fp16`: False
235
+ - `fp16_opt_level`: O1
236
+ - `half_precision_backend`: auto
237
+ - `bf16_full_eval`: False
238
+ - `fp16_full_eval`: False
239
+ - `tf32`: None
240
+ - `local_rank`: 0
241
+ - `ddp_backend`: None
242
+ - `tpu_num_cores`: None
243
+ - `tpu_metrics_debug`: False
244
+ - `debug`: []
245
+ - `dataloader_drop_last`: False
246
+ - `dataloader_num_workers`: 0
247
+ - `dataloader_prefetch_factor`: None
248
+ - `past_index`: -1
249
+ - `disable_tqdm`: False
250
+ - `remove_unused_columns`: True
251
+ - `label_names`: None
252
+ - `load_best_model_at_end`: False
253
+ - `ignore_data_skip`: False
254
+ - `fsdp`: []
255
+ - `fsdp_min_num_params`: 0
256
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
257
+ - `fsdp_transformer_layer_cls_to_wrap`: None
258
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
259
+ - `deepspeed`: None
260
+ - `label_smoothing_factor`: 0.0
261
+ - `optim`: adamw_torch
262
+ - `optim_args`: None
263
+ - `adafactor`: False
264
+ - `group_by_length`: False
265
+ - `length_column_name`: length
266
+ - `ddp_find_unused_parameters`: None
267
+ - `ddp_bucket_cap_mb`: None
268
+ - `ddp_broadcast_buffers`: False
269
+ - `dataloader_pin_memory`: True
270
+ - `dataloader_persistent_workers`: False
271
+ - `skip_memory_metrics`: True
272
+ - `use_legacy_prediction_loop`: False
273
+ - `push_to_hub`: False
274
+ - `resume_from_checkpoint`: None
275
+ - `hub_model_id`: None
276
+ - `hub_strategy`: every_save
277
+ - `hub_private_repo`: False
278
+ - `hub_always_push`: False
279
+ - `gradient_checkpointing`: False
280
+ - `gradient_checkpointing_kwargs`: None
281
+ - `include_inputs_for_metrics`: False
282
+ - `eval_do_concat_batches`: True
283
+ - `fp16_backend`: auto
284
+ - `push_to_hub_model_id`: None
285
+ - `push_to_hub_organization`: None
286
+ - `mp_parameters`:
287
+ - `auto_find_batch_size`: False
288
+ - `full_determinism`: False
289
+ - `torchdynamo`: None
290
+ - `ray_scope`: last
291
+ - `ddp_timeout`: 1800
292
+ - `torch_compile`: False
293
+ - `torch_compile_backend`: None
294
+ - `torch_compile_mode`: None
295
+ - `dispatch_batches`: None
296
+ - `split_batches`: None
297
+ - `include_tokens_per_second`: False
298
+ - `include_num_input_tokens_seen`: False
299
+ - `neftune_noise_alpha`: None
300
+ - `optim_target_modules`: None
301
+ - `batch_eval_metrics`: False
302
+ - `batch_sampler`: batch_sampler
303
+ - `multi_dataset_batch_sampler`: proportional
304
+
305
+ </details>
306
+
307
+ ### Framework Versions
308
+ - Python: 3.10.12
309
+ - Sentence Transformers: 3.0.1
310
+ - Transformers: 4.41.2
311
+ - PyTorch: 2.3.0+cu121
312
+ - Accelerate: 0.31.0
313
+ - Datasets: 2.20.0
314
+ - Tokenizers: 0.19.1
315
+
316
+ ## Citation
317
+
318
+ ### BibTeX
319
+
320
+ #### Sentence Transformers and SoftmaxLoss
321
+ ```bibtex
322
+ @inproceedings{reimers-2019-sentence-bert,
323
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
324
+ author = "Reimers, Nils and Gurevych, Iryna",
325
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
326
+ month = "11",
327
+ year = "2019",
328
+ publisher = "Association for Computational Linguistics",
329
+ url = "https://arxiv.org/abs/1908.10084",
330
+ }
331
+ ```
332
+
333
+ <!--
334
+ ## Glossary
335
+
336
+ *Clearly define terms in order to be accessible across audiences.*
337
+ -->
338
+
339
+ <!--
340
+ ## Model Card Authors
341
+
342
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
343
+ -->
344
+
345
+ <!--
346
+ ## Model Card Contact
347
+
348
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
349
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "saraleivam/GURU2-paraphrase-multilingual-MiniLM-L12-v2",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.41.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 250037
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.3.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:10638dedb66190cca1295b17691805155289ebd197bf4996b4633ae512dcfbc1
3
+ size 470637416
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cad551d5600a84242d0973327029452a1e3672ba6313c2a3c3d69c4310e12719
3
+ size 17082987
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "do_lower_case": true,
48
+ "eos_token": "</s>",
49
+ "mask_token": "<mask>",
50
+ "max_length": 128,
51
+ "model_max_length": 128,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "<pad>",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "</s>",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "<unk>"
64
+ }
unigram.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da145b5e7700ae40f16691ec32a0b1fdc1ee3298db22a31ea55f57a966c4a65d
3
+ size 14763260