sarahmiller137 commited on
Commit
3ba003f
·
1 Parent(s): b0256c1

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +33 -0
README.md CHANGED
@@ -1,3 +1,36 @@
1
  ---
 
2
  license: cc
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language: en
3
  license: cc
4
+ tags:
5
+ - named-entity-recognition
6
+ - token-classification
7
+ task:
8
+ - named-entity-recognition
9
+ - token-classification
10
+ datasets: ncbi_disease
11
+ metrics:
12
+ - precision
13
+ - recall
14
+ - f1
15
+ - accuracy
16
  ---
17
+
18
+ ## Model information:
19
+ microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract model finetuned using the ncbi_disease dataset from the datasets library.
20
+
21
+ ## Intended uses:
22
+ This model is intended to be used for named entity recoginition tasks. The model will identify disease entities in text. The model will predict lables based upon the NCBI-disease dataset, please see the dataset information for details.
23
+
24
+ ## Limitations:
25
+ Note that the dataset and model may not be fully represetative or suitable for all needs it is recommended that the paper for the dataset and the base model card should be reviewed before using the model -
26
+ - [NCBI Disease](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3951655/pdf/nihms557856.pdf)
27
+ - [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-ft-ncbi-disease](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract)
28
+
29
+
30
+ ## How to use:
31
+ Load the model from the library using the following checkpoints:
32
+ ```python
33
+ from transformers import AutoTokenizer, AutoModel
34
+ tokenizer = AutoTokenizer.from_pretrained("sarahmiller137/BiomedNLP-PubMedBERT-base-uncased-abstract-ft-ncbi-disease")
35
+ model = AutoModel.from_pretrained("sarahmiller137/BiomedNLP-PubMedBERT-base-uncased-abstract-ft-ncbi-disease")
36
+ ```