Training complete
Browse files
README.md
CHANGED
@@ -25,16 +25,16 @@ model-index:
|
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
-
value: 0.
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
-
value: 0.
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
-
value: 0.
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
-
value: 0.
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -44,11 +44,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
44 |
|
45 |
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
-
- Loss: 0.
|
48 |
-
- Precision: 0.
|
49 |
-
- Recall: 0.
|
50 |
-
- F1: 0.
|
51 |
-
- Accuracy: 0.
|
52 |
|
53 |
## Model description
|
54 |
|
@@ -79,14 +79,14 @@ The following hyperparameters were used during training:
|
|
79 |
|
80 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
|
86 |
|
87 |
### Framework versions
|
88 |
|
89 |
-
- Transformers 4.
|
90 |
- Pytorch 2.0.1+cu118
|
91 |
-
- Datasets 2.
|
92 |
- Tokenizers 0.13.3
|
|
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
+
value: 0.9361138695796094
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
+
value: 0.9518680578929654
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
+
value: 0.9439252336448599
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
+
value: 0.986342497203744
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
44 |
|
45 |
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
+
- Loss: 0.0624
|
48 |
+
- Precision: 0.9361
|
49 |
+
- Recall: 0.9519
|
50 |
+
- F1: 0.9439
|
51 |
+
- Accuracy: 0.9863
|
52 |
|
53 |
## Model description
|
54 |
|
|
|
79 |
|
80 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
+
| 0.0775 | 1.0 | 1756 | 0.0831 | 0.9068 | 0.9352 | 0.9208 | 0.9791 |
|
83 |
+
| 0.0411 | 2.0 | 3512 | 0.0578 | 0.9232 | 0.9492 | 0.9360 | 0.9853 |
|
84 |
+
| 0.024 | 3.0 | 5268 | 0.0624 | 0.9361 | 0.9519 | 0.9439 | 0.9863 |
|
85 |
|
86 |
|
87 |
### Framework versions
|
88 |
|
89 |
+
- Transformers 4.32.1
|
90 |
- Pytorch 2.0.1+cu118
|
91 |
+
- Datasets 2.14.4
|
92 |
- Tokenizers 0.13.3
|