sarahflan commited on
Commit
f41f077
1 Parent(s): 90a0a4b

Training complete

Browse files
Files changed (1) hide show
  1. README.md +14 -14
README.md CHANGED
@@ -25,16 +25,16 @@ model-index:
25
  metrics:
26
  - name: Precision
27
  type: precision
28
- value: 0.9335652750165673
29
  - name: Recall
30
  type: recall
31
- value: 0.9483338943116796
32
  - name: F1
33
  type: f1
34
- value: 0.9408916346635499
35
  - name: Accuracy
36
  type: accuracy
37
- value: 0.9859745687878966
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -44,11 +44,11 @@ should probably proofread and complete it, then remove this comment. -->
44
 
45
  This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
46
  It achieves the following results on the evaluation set:
47
- - Loss: 0.0619
48
- - Precision: 0.9336
49
- - Recall: 0.9483
50
- - F1: 0.9409
51
- - Accuracy: 0.9860
52
 
53
  ## Model description
54
 
@@ -79,14 +79,14 @@ The following hyperparameters were used during training:
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
- | 0.0794 | 1.0 | 1756 | 0.0729 | 0.9090 | 0.9342 | 0.9214 | 0.9805 |
83
- | 0.0407 | 2.0 | 3512 | 0.0590 | 0.9302 | 0.9493 | 0.9397 | 0.9862 |
84
- | 0.0244 | 3.0 | 5268 | 0.0619 | 0.9336 | 0.9483 | 0.9409 | 0.9860 |
85
 
86
 
87
  ### Framework versions
88
 
89
- - Transformers 4.31.0
90
  - Pytorch 2.0.1+cu118
91
- - Datasets 2.13.1
92
  - Tokenizers 0.13.3
 
25
  metrics:
26
  - name: Precision
27
  type: precision
28
+ value: 0.9361138695796094
29
  - name: Recall
30
  type: recall
31
+ value: 0.9518680578929654
32
  - name: F1
33
  type: f1
34
+ value: 0.9439252336448599
35
  - name: Accuracy
36
  type: accuracy
37
+ value: 0.986342497203744
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
44
 
45
  This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
46
  It achieves the following results on the evaluation set:
47
+ - Loss: 0.0624
48
+ - Precision: 0.9361
49
+ - Recall: 0.9519
50
+ - F1: 0.9439
51
+ - Accuracy: 0.9863
52
 
53
  ## Model description
54
 
 
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
+ | 0.0775 | 1.0 | 1756 | 0.0831 | 0.9068 | 0.9352 | 0.9208 | 0.9791 |
83
+ | 0.0411 | 2.0 | 3512 | 0.0578 | 0.9232 | 0.9492 | 0.9360 | 0.9853 |
84
+ | 0.024 | 3.0 | 5268 | 0.0624 | 0.9361 | 0.9519 | 0.9439 | 0.9863 |
85
 
86
 
87
  ### Framework versions
88
 
89
+ - Transformers 4.32.1
90
  - Pytorch 2.0.1+cu118
91
+ - Datasets 2.14.4
92
  - Tokenizers 0.13.3