saquib34 commited on
Commit
bbf7cd6
·
1 Parent(s): 902804c
Files changed (2) hide show
  1. model.joblib +3 -0
  2. readme.md +116 -0
model.joblib ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2daffe72988a7e7fd48e3ab93d767d8991d0a17d9adda5a1252cde573194bb7c
3
+ size 7007
readme.md ADDED
@@ -0,0 +1,116 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # IMDB Sentiment Analysis Project
2
+
3
+ ## Overview
4
+
5
+ This project implements a sentiment analysis system for IMDB movie reviews using various machine learning and deep learning techniques. It includes a React frontend for user interaction and a Flask backend for processing and analyzing the reviews.
6
+
7
+ ## Features
8
+
9
+ - Sentiment analysis of IMDB movie reviews
10
+ - Multiple machine learning models:
11
+ - Naive Bayes (Gaussian NB)
12
+ - Random Forest
13
+ - Logistic Regression
14
+ - LSTM
15
+ - Transformer
16
+ - Interactive web interface for real-time analysis
17
+ - Visualization of model accuracies and dataset distribution
18
+ - User feedback system for continuous improvement
19
+
20
+ ## Technologies Used
21
+
22
+ - Frontend: React, Recharts, Lucide React
23
+ - Backend: Flask, NLTK, SpaCy, scikit-learn, TensorFlow/Keras
24
+ - Data Processing: Pandas, NumPy
25
+ - Machine Learning: scikit-learn, TensorFlow, Keras
26
+ - Natural Language Processing: NLTK, SpaCy
27
+
28
+ ## Setup Instructions
29
+
30
+ ### Prerequisites
31
+
32
+ - Node.js and npm
33
+ - Python 3.7+
34
+ - Git
35
+
36
+ ### Frontend Setup
37
+
38
+ 1. Clone the repository:
39
+ ```
40
+ git clone https://github.com/saquib34/zensibleInterview.git
41
+ ```
42
+ 2. Navigate to the project directory:
43
+ ```
44
+ cd zensibleInterview
45
+ ```
46
+ 3. Install dependencies:
47
+ ```
48
+ npm install
49
+ ```
50
+ 4. Start the development server:
51
+ ```
52
+ npm start
53
+ ```
54
+
55
+ ### Backend Setup
56
+
57
+ 1. Ensure you're in the project directory
58
+ 2. Install required Python packages:
59
+ ```
60
+ pip install -r requirements.txt
61
+ ```
62
+ 3. Start the Flask server:
63
+ ```
64
+ python app.py
65
+ ```
66
+
67
+ ## Usage
68
+
69
+ 1. Open your web browser and navigate to `http://localhost:3000` (or the port specified by your React setup)
70
+ 2. Enter an IMDB movie review in the text input
71
+ 3. Click "Analyze" to see the sentiment analysis results
72
+ 4. (Optional) Provide feedback on the analysis accuracy
73
+
74
+ ## Project Structure
75
+
76
+ - `/src`: React frontend source code
77
+ - `/public`: Public assets for the frontend
78
+ - `/backend`: Flask backend code
79
+ - `/models`: Trained machine learning models
80
+ - `/data`: Dataset and data processing scripts
81
+ - `requirements.txt`: Python dependencies
82
+ - `package.json`: Node.js dependencies
83
+
84
+ ## Dataset
85
+
86
+ This project uses the IMDB Dataset of 50K Movie Reviews, available on Kaggle:
87
+ [IMDB Dataset](https://www.kaggle.com/datasets/lakshmi25npathi/imdb-dataset-of-50k-movie-reviews)
88
+
89
+ ## Models and Performance
90
+
91
+ | Model | Accuracy |
92
+ |---------------------|----------|
93
+ | Gaussian NB | 0.7379 |
94
+ | Random Forest | 0.7997 |
95
+ | Logistic Regression | 0.82 |
96
+ | LSTM | 0.7424 |
97
+ | Transformer | 0.5 |
98
+
99
+ ## Contributing
100
+
101
+ Contributions to this project are welcome. Please fork the repository and submit a pull request with your changes.
102
+
103
+ ## License
104
+
105
+ [MIT License](LICENSE)
106
+
107
+ ## Contact
108
+
109
+ Developer: Saquib
110
+ GitHub: [saquib34](https://github.com/saquib34)
111
+
112
+ ## Acknowledgments
113
+
114
+ - IMDB for providing the dataset
115
+ - Kaggle for hosting the dataset
116
+ - All open-source libraries and tools used in this project