Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,185 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
---
|
5 |
+
|
6 |
+
<div align="center">
|
7 |
+
<img src="https://github.com/SapienzaNLP/relik/blob/main/relik.png?raw=true" height="150">
|
8 |
+
<img src="https://github.com/SapienzaNLP/relik/blob/main/Sapienza_Babelscape.png?raw=true" height="50">
|
9 |
+
</div>
|
10 |
+
|
11 |
+
<div align="center">
|
12 |
+
<h1>Retrieve, Read and LinK: Fast and Accurate Entity Linking and Relation Extraction on an Academic Budget</h1>
|
13 |
+
</div>
|
14 |
+
|
15 |
+
<div style="display:flex; justify-content: center; align-items: center; flex-direction: row;">
|
16 |
+
<a href="https://2024.aclweb.org/"><img src="http://img.shields.io/badge/ACL-2024-4b44ce.svg"></a>
|
17 |
+
<a href="https://aclanthology.org/"><img src="http://img.shields.io/badge/paper-ACL--anthology-B31B1B.svg"></a>
|
18 |
+
<a href="https://arxiv.org/abs/placeholder"><img src="https://img.shields.io/badge/arXiv-placeholder-b31b1b.svg"></a>
|
19 |
+
</div>
|
20 |
+
<div style="display:flex; justify-content: center; align-items: center; flex-direction: row;">
|
21 |
+
<a href="https://huggingface.co/collections/sapienzanlp/relik-retrieve-read-and-link-665d9e4a5c3ecba98c1bef19"><img src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Collection-FCD21D"></a>
|
22 |
+
<a href="https://github.com/SapienzaNLP/relik"><img src="https://img.shields.io/badge/GitHub-Repo-121013?logo=github&logoColor=white"></a>
|
23 |
+
<a href="https://github.com/SapienzaNLP/relik/releases"><img src="https://img.shields.io/github/v/release/SapienzaNLP/relik"></a>
|
24 |
+
</div>
|
25 |
+
|
26 |
+
|
27 |
+
A blazing fast and lightweight Information Extraction model for **Entity Linking** and **Relation Extraction**.
|
28 |
+
|
29 |
+
**This repository contains the weights for the ReLiK Reader component.**
|
30 |
+
|
31 |
+
## π οΈ Installation
|
32 |
+
|
33 |
+
Installation from PyPI
|
34 |
+
|
35 |
+
```bash
|
36 |
+
pip install relik
|
37 |
+
```
|
38 |
+
|
39 |
+
<details>
|
40 |
+
<summary>Other installation options</summary>
|
41 |
+
|
42 |
+
#### Install with optional dependencies
|
43 |
+
|
44 |
+
Install with all the optional dependencies.
|
45 |
+
|
46 |
+
```bash
|
47 |
+
pip install relik[all]
|
48 |
+
```
|
49 |
+
|
50 |
+
Install with optional dependencies for training and evaluation.
|
51 |
+
|
52 |
+
```bash
|
53 |
+
pip install relik[train]
|
54 |
+
```
|
55 |
+
|
56 |
+
Install with optional dependencies for [FAISS](https://github.com/facebookresearch/faiss)
|
57 |
+
|
58 |
+
FAISS PyPI package is only available for CPU. For GPU, install it from source or use the conda package.
|
59 |
+
|
60 |
+
For CPU:
|
61 |
+
|
62 |
+
```bash
|
63 |
+
pip install relik[faiss]
|
64 |
+
```
|
65 |
+
|
66 |
+
For GPU:
|
67 |
+
|
68 |
+
```bash
|
69 |
+
conda create -n relik python=3.10
|
70 |
+
conda activate relik
|
71 |
+
|
72 |
+
# install pytorch
|
73 |
+
conda install -y pytorch=2.1.0 pytorch-cuda=12.1 -c pytorch -c nvidia
|
74 |
+
|
75 |
+
# GPU
|
76 |
+
conda install -y -c pytorch -c nvidia faiss-gpu=1.8.0
|
77 |
+
# or GPU with NVIDIA RAFT
|
78 |
+
conda install -y -c pytorch -c nvidia -c rapidsai -c conda-forge faiss-gpu-raft=1.8.0
|
79 |
+
|
80 |
+
pip install relik
|
81 |
+
```
|
82 |
+
|
83 |
+
Install with optional dependencies for serving the models with
|
84 |
+
[FastAPI](https://fastapi.tiangolo.com/) and [Ray](https://docs.ray.io/en/latest/serve/quickstart.html).
|
85 |
+
|
86 |
+
```bash
|
87 |
+
pip install relik[serve]
|
88 |
+
```
|
89 |
+
|
90 |
+
#### Installation from source
|
91 |
+
|
92 |
+
```bash
|
93 |
+
git clone https://github.com/SapienzaNLP/relik.git
|
94 |
+
cd relik
|
95 |
+
pip install -e .[all]
|
96 |
+
```
|
97 |
+
|
98 |
+
</details>
|
99 |
+
|
100 |
+
## π Quick Start
|
101 |
+
|
102 |
+
[//]: # (Write a short description of the model and how to use it with the `from_pretrained` method.)
|
103 |
+
|
104 |
+
ReLiK is a lightweight and fast model for **Entity Linking** and **Relation Extraction**.
|
105 |
+
It is composed of two main components: a retriever and a reader.
|
106 |
+
The retriever is responsible for retrieving relevant documents from a large collection,
|
107 |
+
while the reader is responsible for extracting entities and relations from the retrieved documents.
|
108 |
+
ReLiK can be used with the `from_pretrained` method to load a pre-trained pipeline.
|
109 |
+
|
110 |
+
Here is an example of how to use ReLiK for **Relation Extraction**:
|
111 |
+
|
112 |
+
```python
|
113 |
+
from relik import Relik
|
114 |
+
from relik.inference.data.objects import RelikOutput
|
115 |
+
|
116 |
+
relik = Relik.from_pretrained("sapienzanlp/relik-relation-extraction-nyt-large")
|
117 |
+
relik_out: RelikOutput = relik("Michael Jordan was one of the best players in the NBA.")
|
118 |
+
```
|
119 |
+
|
120 |
+
|
121 |
+
RelikOutput(
|
122 |
+
text='Michael Jordan was one of the best players in the NBA.',
|
123 |
+
tokens=Michael Jordan was one of the best players in the NBA.,
|
124 |
+
id=0,
|
125 |
+
spans=[
|
126 |
+
Span(start=0, end=14, label='--NME--', text='Michael Jordan'),
|
127 |
+
Span(start=50, end=53, label='--NME--', text='NBA')
|
128 |
+
],
|
129 |
+
triplets=[
|
130 |
+
Triplets(
|
131 |
+
subject=Span(start=0, end=14, label='--NME--', text='Michael Jordan'),
|
132 |
+
label='company',
|
133 |
+
object=Span(start=50, end=53, label='--NME--', text='NBA'),
|
134 |
+
confidence=1.0
|
135 |
+
)
|
136 |
+
],
|
137 |
+
candidates=Candidates(
|
138 |
+
span=[],
|
139 |
+
triplet=[
|
140 |
+
[
|
141 |
+
[
|
142 |
+
{"text": "company", "id": 4, "metadata": {"definition": "company of this person"}},
|
143 |
+
{"text": "nationality", "id": 10, "metadata": {"definition": "nationality of this person or entity"}},
|
144 |
+
{"text": "child", "id": 17, "metadata": {"definition": "child of this person"}},
|
145 |
+
{"text": "founded by", "id": 0, "metadata": {"definition": "founder or co-founder of this organization, religion or place"}},
|
146 |
+
{"text": "residence", "id": 18, "metadata": {"definition": "place where this person has lived"}},
|
147 |
+
...
|
148 |
+
]
|
149 |
+
]
|
150 |
+
]
|
151 |
+
),
|
152 |
+
)
|
153 |
+
|
154 |
+
|
155 |
+
## π Performance
|
156 |
+
|
157 |
+
The following table shows the results (Micro F1) of ReLiK Large on the NYT dataset:
|
158 |
+
|
159 |
+
| Model | NYT | NYT (Pretr) | AIT (m:s) |
|
160 |
+
|------------------------------------------|------|-------|------------|
|
161 |
+
| REBEL | 93.1 | 93.4 | 01:45 |
|
162 |
+
| UiE | 93.5 | -- | -- |
|
163 |
+
| USM | 94.0 | 94.1 | -- |
|
164 |
+
| β‘οΈ [ReLiK<sub>Large<sub>](https://huggingface.co/sapienzanlp/relik-relation-extraction-nyt-large) | **95.0** | **94.9** | 00:30 |
|
165 |
+
|
166 |
+
|
167 |
+
## π€ Models
|
168 |
+
|
169 |
+
Models can be found on [π€ Hugging Face](https://huggingface.co/collections/sapienzanlp/relik-retrieve-read-and-link-665d9e4a5c3ecba98c1bef19).
|
170 |
+
|
171 |
+
## π½ Cite this work
|
172 |
+
|
173 |
+
If you use any part of this work, please consider citing the paper as follows:
|
174 |
+
|
175 |
+
```bibtex
|
176 |
+
@inproceedings{orlando-etal-2024-relik,
|
177 |
+
title = "Retrieve, Read and LinK: Fast and Accurate Entity Linking and Relation Extraction on an Academic Budget",
|
178 |
+
author = "Orlando, Riccardo and Huguet Cabot, Pere-Llu{\'\i}s and Barba, Edoardo and Navigli, Roberto",
|
179 |
+
booktitle = "Findings of the Association for Computational Linguistics: ACL 2024",
|
180 |
+
month = aug,
|
181 |
+
year = "2024",
|
182 |
+
address = "Bangkok, Thailand",
|
183 |
+
publisher = "Association for Computational Linguistics",
|
184 |
+
}
|
185 |
+
```
|