santiviquez
commited on
Commit
•
daddfeb
1
Parent(s):
26fb891
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- summarization
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- samsum
|
7 |
+
metrics:
|
8 |
+
- rouge
|
9 |
+
model-index:
|
10 |
+
- name: ssr-base-finetuned-samsum-en
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Sequence-to-sequence Language Modeling
|
14 |
+
type: text2text-generation
|
15 |
+
dataset:
|
16 |
+
name: samsum
|
17 |
+
type: samsum
|
18 |
+
args: samsum
|
19 |
+
metrics:
|
20 |
+
- name: Rouge1
|
21 |
+
type: rouge
|
22 |
+
value: 46.7505
|
23 |
+
---
|
24 |
+
|
25 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
26 |
+
should probably proofread and complete it, then remove this comment. -->
|
27 |
+
|
28 |
+
# ssr-base-finetuned-samsum-en
|
29 |
+
|
30 |
+
This model is a fine-tuned version of [microsoft/ssr-base](https://huggingface.co/microsoft/ssr-base) on the samsum dataset.
|
31 |
+
It achieves the following results on the evaluation set:
|
32 |
+
- Loss: 1.6231
|
33 |
+
- Rouge1: 46.7505
|
34 |
+
- Rouge2: 22.3968
|
35 |
+
- Rougel: 37.1784
|
36 |
+
- Rougelsum: 42.891
|
37 |
+
|
38 |
+
## Model description
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Intended uses & limitations
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Training and evaluation data
|
47 |
+
|
48 |
+
More information needed
|
49 |
+
|
50 |
+
## Training procedure
|
51 |
+
|
52 |
+
### Training hyperparameters
|
53 |
+
|
54 |
+
The following hyperparameters were used during training:
|
55 |
+
- learning_rate: 5.6e-05
|
56 |
+
- train_batch_size: 10
|
57 |
+
- eval_batch_size: 10
|
58 |
+
- seed: 42
|
59 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
+
- lr_scheduler_type: linear
|
61 |
+
- num_epochs: 10
|
62 |
+
|
63 |
+
### Training results
|
64 |
+
|
65 |
+
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|
66 |
+
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|
|
67 |
+
| 1.9682 | 1.0 | 300 | 1.6432 | 44.2182 | 20.8486 | 35.0914 | 40.9852 |
|
68 |
+
| 1.6475 | 2.0 | 600 | 1.5946 | 45.3919 | 21.6955 | 36.2411 | 41.8532 |
|
69 |
+
| 1.5121 | 3.0 | 900 | 1.5737 | 46.1769 | 22.4178 | 36.9762 | 42.6614 |
|
70 |
+
| 1.4112 | 4.0 | 1200 | 1.5774 | 46.6047 | 22.8227 | 37.2457 | 43.1935 |
|
71 |
+
| 1.323 | 5.0 | 1500 | 1.5825 | 46.6162 | 22.485 | 37.2846 | 42.9834 |
|
72 |
+
| 1.2613 | 6.0 | 1800 | 1.5883 | 46.4253 | 22.1199 | 37.0491 | 42.5189 |
|
73 |
+
| 1.2077 | 7.0 | 2100 | 1.5965 | 46.485 | 22.3636 | 37.2677 | 42.7499 |
|
74 |
+
| 1.1697 | 8.0 | 2400 | 1.6174 | 46.8654 | 22.6291 | 37.4201 | 43.0875 |
|
75 |
+
| 1.1367 | 9.0 | 2700 | 1.6188 | 46.707 | 22.305 | 37.156 | 42.9087 |
|
76 |
+
| 1.118 | 10.0 | 3000 | 1.6231 | 46.7505 | 22.3968 | 37.1784 | 42.891 |
|
77 |
+
|
78 |
+
|
79 |
+
### Framework versions
|
80 |
+
|
81 |
+
- Transformers 4.19.2
|
82 |
+
- Pytorch 1.11.0+cu113
|
83 |
+
- Datasets 2.2.2
|
84 |
+
- Tokenizers 0.12.1
|