santit96 commited on
Commit
7b02436
·
1 Parent(s): 3131fef

Push Lunar Lander Model

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 254.97 +/- 14.56
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f75dc0ad040>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f75dc0ad0d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f75dc0ad160>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f75dc0ad1f0>", "_build": "<function ActorCriticPolicy._build at 0x7f75dc0ad280>", "forward": "<function ActorCriticPolicy.forward at 0x7f75dc0ad310>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f75dc0ad3a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f75dc0ad430>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f75dc0ad4c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f75dc0ad550>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f75dc0ad5e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f75dc0a7570>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673282914017846648, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM0Fvj2oaLg+FugOvu8Cf74Gzua8bgbJvQAAAAAAAAAAIJs4vnumHj++lC0+EnRPvjxVSb26L489AAAAAAAAAADGSiQ+4OMeP4ZOAr0LvF6+2MGWvB6evz0AAAAAAAAAAHPTzT2uIoK8XFOIOoYVkzw4L929EE9uPQAAgD8AAIA/2rBQPttY4byZFhs8j1asusCPSL5n7IO7AACAPwAAgD+ac+W8p2weP05pRT2X/VC+8xnmuzrdWT0AAAAAAAAAALMoFb1IV6u669XPNgLhZjIB2zU6ZYHztQAAgD8AAIA/mqjYvMMZZLpAtZS7ej9SOEBWYrvw0BI4AACAPwAAgD/zp5M9FPjbuliUZ7r9bZM800riO/BPf70AAIA/AACAPwBhjzzP63q8PEugPeWgJ77BwVG9BDcMvwAAgD8AAIA/QMmZPeHEj7rMAY65BNKHtHX0zrnQg6Q4AACAPwAAgD9aErs+osZuP0YTCb110rG+5aUqPsURZ70AAAAAAAAAAAAHaz1SIMy5FpJ2uvyg9rT0mou5QTGQOQAAgD8AAIA/zTs6PUi/prp9inC64hpltcpHkDqGPIo5AACAPwAAgD8mBsE9e26Pujflk7acrYyx848Xuk4arzUAAIA/AACAP3MNe76O1Dg/uk5tPqCUTr7RfIu962MtPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI4Gky4208ZUCUhpRSlIwBbJRN6AOMAXSUR0ClS4rZi/fwdX2UKGgGaAloD0MIC+2cZsEJcECUhpRSlGgVTaUBaBZHQKVM0oAGSp11fZQoaAZoCWgPQwhw7NlzGc5iQJSGlFKUaBVN6ANoFkdApU0SgZjx1HV9lChoBmgJaA9DCPLTuDc/qWdAlIaUUpRoFU3oA2gWR0ClTSCRwIdEdX2UKGgGaAloD0MIDi4dcx4SZECUhpRSlGgVTegDaBZHQKVN/1mJ3xF1fZQoaAZoCWgPQwi13JkJhnJkQJSGlFKUaBVN6ANoFkdApVFSVnmJWXV9lChoBmgJaA9DCEt0llkEGGBAlIaUUpRoFU3oA2gWR0ClVl2rXDm9dX2UKGgGaAloD0MIRPtYwW//Z0CUhpRSlGgVTegDaBZHQKVYYDbJwKl1fZQoaAZoCWgPQwg5Q3HH24xxQJSGlFKUaBVNgwFoFkdApVjf5nDiwXV9lChoBmgJaA9DCFmnyveMc29AlIaUUpRoFU23AWgWR0ClWPh9Tgl4dX2UKGgGaAloD0MIYcJoVjaDYECUhpRSlGgVTegDaBZHQKVZ36hxo7F1fZQoaAZoCWgPQwi7nBIQkwZmQJSGlFKUaBVN6ANoFkdApV4Mxyn1nXV9lChoBmgJaA9DCPKU1XQ9PnFAlIaUUpRoFU08A2gWR0ClYMxE4NqhdX2UKGgGaAloD0MILXk8LX9HcUCUhpRSlGgVTdQDaBZHQKViOa+evp11fZQoaAZoCWgPQwj0iNFzCwpnQJSGlFKUaBVN6ANoFkdApWO0QXhwVHV9lChoBmgJaA9DCJ5g/3VuamRAlIaUUpRoFU3oA2gWR0ClbpN2s7uEdX2UKGgGaAloD0MI8yA9RY7fbkCUhpRSlGgVTaEDaBZHQKVvSRaouPF1fZQoaAZoCWgPQwiwy/CfbhNxQJSGlFKUaBVN1gFoFkdApXBXCO3lS3V9lChoBmgJaA9DCJOpglFJp2FAlIaUUpRoFU3oA2gWR0ClcJyup0fYdX2UKGgGaAloD0MIwQDChxLqb0CUhpRSlGgVTTwCaBZHQKVw9Eehf0F1fZQoaAZoCWgPQwi9/bloyAxvQJSGlFKUaBVNggNoFkdApXIUj7hvSHV9lChoBmgJaA9DCOXTY1uGZmJAlIaUUpRoFU3oA2gWR0Clc34x+KCQdX2UKGgGaAloD0MIAI49ey4eb0CUhpRSlGgVTVkCaBZHQKVzhdAPd2x1fZQoaAZoCWgPQwjRPlbw26hmQJSGlFKUaBVN6ANoFkdApXOszImw7nV9lChoBmgJaA9DCB8RUyIJk2NAlIaUUpRoFU3oA2gWR0Cld8pkGzKLdX2UKGgGaAloD0MIOj/FcaAOcUCUhpRSlGgVTWABaBZHQKV4SZG8VYZ1fZQoaAZoCWgPQwgeqb7zC1FtQJSGlFKUaBVN1QFoFkdApXm+kN4JNXV9lChoBmgJaA9DCC3NrRDWXnFAlIaUUpRoFU1MAWgWR0ClfQm7z06HdX2UKGgGaAloD0MI0gDeAon/Z0CUhpRSlGgVTegDaBZHQKV+oJIlMRJ1fZQoaAZoCWgPQwhd/G1PENptQJSGlFKUaBVNoQFoFkdApX//B55Z83V9lChoBmgJaA9DCJCg+DHmEGJAlIaUUpRoFU3oA2gWR0ClgBlefI0ZdX2UKGgGaAloD0MIE4B/StUpcUCUhpRSlGgVTboBaBZHQKWAftCzC1t1fZQoaAZoCWgPQwhCYOXQIo1tQJSGlFKUaBVN9QJoFkdApYPa6FuejHV9lChoBmgJaA9DCOW0p+RcPXFAlIaUUpRoFU2uAmgWR0Clg/kd3jdYdX2UKGgGaAloD0MIvFmD99WyZUCUhpRSlGgVTegDaBZHQKWEFKFIuoR1fZQoaAZoCWgPQwiox7YMuE9hQJSGlFKUaBVN6ANoFkdApYac0BOpKnV9lChoBmgJaA9DCDGXVG03IGVAlIaUUpRoFU3oA2gWR0Clh+SvcJt0dX2UKGgGaAloD0MIPFCnPLqdQECUhpRSlGgVTTABaBZHQKWI9iLl3hZ1fZQoaAZoCWgPQwiwcmiR7TthQJSGlFKUaBVN6ANoFkdApZYSCpWFOHV9lChoBmgJaA9DCKMG0zD85mBAlIaUUpRoFU3oA2gWR0ClluzTvy9VdX2UKGgGaAloD0MI+BvtuOGacECUhpRSlGgVTdMCaBZHQKWXOcinpB51fZQoaAZoCWgPQwjb2y3JAb1iQJSGlFKUaBVN6ANoFkdApZhF/e+EiHV9lChoBmgJaA9DCIgtPZpqhm1AlIaUUpRoFU08AmgWR0ClmfRL9MsZdX2UKGgGaAloD0MIjubIyi8jb0CUhpRSlGgVTWwBaBZHQKWay4H5aeR1fZQoaAZoCWgPQwjX3xKAP+tyQJSGlFKUaBVNWAFoFkdApZuLD63y7XV9lChoBmgJaA9DCNPAj2rYZm9AlIaUUpRoFU0SAmgWR0ClnLlW4mTldX2UKGgGaAloD0MI/G1PkFiPYUCUhpRSlGgVTegDaBZHQKWecAuqWC51fZQoaAZoCWgPQwj/sRAdQjJxQJSGlFKUaBVNzAFoFkdApZ+lb3XZoXV9lChoBmgJaA9DCJOMnIU99mdAlIaUUpRoFU3oA2gWR0CloEW8h9srdX2UKGgGaAloD0MIhXmPM81pbkCUhpRSlGgVTYADaBZHQKWjQAU+LWJ1fZQoaAZoCWgPQwjayHVTympiQJSGlFKUaBVN6ANoFkdApaOJrk8zRHV9lChoBmgJaA9DCMsuGFxzQmJAlIaUUpRoFU3oA2gWR0ClpRlnh86WdX2UKGgGaAloD0MIK8O4G0Q5bkCUhpRSlGgVTYEBaBZHQKWlHZRsMy91fZQoaAZoCWgPQwirBfaYyFRvQJSGlFKUaBVNWwNoFkdApaZKp71Iy3V9lChoBmgJaA9DCD+O5sjKfG1AlIaUUpRoFU2qAWgWR0Clpx4EGJN1dX2UKGgGaAloD0MIi21S0dhgbkCUhpRSlGgVTYIDaBZHQKWnRxusLfF1fZQoaAZoCWgPQwg5YcJoVmhtQJSGlFKUaBVNOgJoFkdApaenJkoWpXV9lChoBmgJaA9DCKMdN/xucG5AlIaUUpRoFU3ZAmgWR0Clq8qy4Wk8dX2UKGgGaAloD0MI0/pbAnCVbUCUhpRSlGgVTREDaBZHQKWssNYr8SB1fZQoaAZoCWgPQwifHAWIwi5wQJSGlFKUaBVN7AJoFkdApbH/dj5KvnV9lChoBmgJaA9DCD2YFB9fd3FAlIaUUpRoFU2jAWgWR0ClsgX7UG3XdX2UKGgGaAloD0MIyHvVygTga0CUhpRSlGgVTYsBaBZHQKW/yBhhH9Z1fZQoaAZoCWgPQwggXWxaKeduQJSGlFKUaBVNAgNoFkdApcA9tbcGknV9lChoBmgJaA9DCEFhUKaRXHJAlIaUUpRoFU2tAWgWR0ClwS5kCmuUdX2UKGgGaAloD0MIkpbK21GmcECUhpRSlGgVTeIBaBZHQKXBQ3vQWvd1fZQoaAZoCWgPQwj4qL9eodZxQJSGlFKUaBVNVgJoFkdApcHnYraufXV9lChoBmgJaA9DCJXXSugu7mxAlIaUUpRoFU3aAmgWR0ClwgXPiT+vdX2UKGgGaAloD0MITySYauYycECUhpRSlGgVTeUBaBZHQKXCC54GD+R1fZQoaAZoCWgPQwjNAYI5+khkQJSGlFKUaBVN6ANoFkdApcIaGHpKSXV9lChoBmgJaA9DCH0G1JvR5nJAlIaUUpRoFU02AmgWR0Clwjt34bjtdX2UKGgGaAloD0MItklFY23pcUCUhpRSlGgVTXQCaBZHQKXCSZ5Rjz91fZQoaAZoCWgPQwheMLjmjtZuQJSGlFKUaBVN5QJoFkdApcKHVI7NjnV9lChoBmgJaA9DCI7qdCBr5W9AlIaUUpRoFU1NA2gWR0Clwx2s7uD0dX2UKGgGaAloD0MI/YaJBimBbkCUhpRSlGgVTZwBaBZHQKXDf/WlMyt1fZQoaAZoCWgPQwgJih9jbvRtQJSGlFKUaBVNuAFoFkdApcR6P4mCy3V9lChoBmgJaA9DCOfgmdAky25AlIaUUpRoFU0tAWgWR0ClxKU4rBj4dX2UKGgGaAloD0MIw5ygTY7mcECUhpRSlGgVTTABaBZHQKXGzGyX2M91fZQoaAZoCWgPQwjtYwW/TSxxQJSGlFKUaBVNcQFoFkdApceQYP5HmXV9lChoBmgJaA9DCBgK2A7G6W9AlIaUUpRoFU0iAWgWR0Clx5a7ulXSdX2UKGgGaAloD0MIMsnIWRgZckCUhpRSlGgVTS0BaBZHQKXHqHoHLRt1fZQoaAZoCWgPQwhKtyVyQfZvQJSGlFKUaBVNXQFoFkdApcf2/QBxP3V9lChoBmgJaA9DCFkYIqcvrGxAlIaUUpRoFU3HAWgWR0ClyAQU5+6RdX2UKGgGaAloD0MIByeiX9sLcECUhpRSlGgVTZ0BaBZHQKXINrwe/6B1fZQoaAZoCWgPQwhJ9gg1g0pxQJSGlFKUaBVNUAFoFkdApcifag261HV9lChoBmgJaA9DCCx+U1ipD3JAlIaUUpRoFU1gAWgWR0ClyTxsEaESdX2UKGgGaAloD0MI2LrUCD2EcECUhpRSlGgVTUEBaBZHQKXJbR7Z39t1fZQoaAZoCWgPQwhxqrUwi8VtQJSGlFKUaBVNrQFoFkdApcoCpkwvg3V9lChoBmgJaA9DCMJrlzbceXFAlIaUUpRoFU2+AWgWR0ClymSUTtb+dX2UKGgGaAloD0MINIKN618gcUCUhpRSlGgVTd4BaBZHQKXNGvysjml1fZQoaAZoCWgPQwjwpIXLKjwpQJSGlFKUaBVL+WgWR0ClzS9NnGsFdX2UKGgGaAloD0MIjbRU3s7zcECUhpRSlGgVTbQBaBZHQKXNugFotcx1fZQoaAZoCWgPQwgwLeqTXIFwQJSGlFKUaBVN7gFoFkdApc7nnB+F13V9lChoBmgJaA9DCAJLrmJx/XFAlIaUUpRoFU1nAWgWR0ClzzFdszl+dX2UKGgGaAloD0MIh8Woa+3qbkCUhpRSlGgVTZwCaBZHQKXPXMAWBSV1fZQoaAZoCWgPQwi4BrZKsIBxQJSGlFKUaBVNlwFoFkdApdC69XcQAnV9lChoBmgJaA9DCIwPs5cttnFAlIaUUpRoFU38AWgWR0Cl0fjrZ8KHdX2UKGgGaAloD0MIJJwWvGi2cECUhpRSlGgVTWABaBZHQKXSfxDLKV91fZQoaAZoCWgPQwj9+EuLuvZwQJSGlFKUaBVNrAFoFkdApdLLx7RfGHV9lChoBmgJaA9DCHk8LT/w6WxAlIaUUpRoFU2yAWgWR0Cl0y3D3ueCdX2UKGgGaAloD0MIRwGiYEaXb0CUhpRSlGgVTd8BaBZHQKXTP4N7SiN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:be8beb420bc21cf122aae424e8c4da64e09cfcac63db712e1d3db0b49db07637
3
+ size 147218
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f75dc0ad040>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f75dc0ad0d0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f75dc0ad160>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f75dc0ad1f0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f75dc0ad280>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f75dc0ad310>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f75dc0ad3a0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f75dc0ad430>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f75dc0ad4c0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f75dc0ad550>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f75dc0ad5e0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f75dc0a7570>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1673282914017846648,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM0Fvj2oaLg+FugOvu8Cf74Gzua8bgbJvQAAAAAAAAAAIJs4vnumHj++lC0+EnRPvjxVSb26L489AAAAAAAAAADGSiQ+4OMeP4ZOAr0LvF6+2MGWvB6evz0AAAAAAAAAAHPTzT2uIoK8XFOIOoYVkzw4L929EE9uPQAAgD8AAIA/2rBQPttY4byZFhs8j1asusCPSL5n7IO7AACAPwAAgD+ac+W8p2weP05pRT2X/VC+8xnmuzrdWT0AAAAAAAAAALMoFb1IV6u669XPNgLhZjIB2zU6ZYHztQAAgD8AAIA/mqjYvMMZZLpAtZS7ej9SOEBWYrvw0BI4AACAPwAAgD/zp5M9FPjbuliUZ7r9bZM800riO/BPf70AAIA/AACAPwBhjzzP63q8PEugPeWgJ77BwVG9BDcMvwAAgD8AAIA/QMmZPeHEj7rMAY65BNKHtHX0zrnQg6Q4AACAPwAAgD9aErs+osZuP0YTCb110rG+5aUqPsURZ70AAAAAAAAAAAAHaz1SIMy5FpJ2uvyg9rT0mou5QTGQOQAAgD8AAIA/zTs6PUi/prp9inC64hpltcpHkDqGPIo5AACAPwAAgD8mBsE9e26Pujflk7acrYyx848Xuk4arzUAAIA/AACAP3MNe76O1Dg/uk5tPqCUTr7RfIu962MtPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI4Gky4208ZUCUhpRSlIwBbJRN6AOMAXSUR0ClS4rZi/fwdX2UKGgGaAloD0MIC+2cZsEJcECUhpRSlGgVTaUBaBZHQKVM0oAGSp11fZQoaAZoCWgPQwhw7NlzGc5iQJSGlFKUaBVN6ANoFkdApU0SgZjx1HV9lChoBmgJaA9DCPLTuDc/qWdAlIaUUpRoFU3oA2gWR0ClTSCRwIdEdX2UKGgGaAloD0MIDi4dcx4SZECUhpRSlGgVTegDaBZHQKVN/1mJ3xF1fZQoaAZoCWgPQwi13JkJhnJkQJSGlFKUaBVN6ANoFkdApVFSVnmJWXV9lChoBmgJaA9DCEt0llkEGGBAlIaUUpRoFU3oA2gWR0ClVl2rXDm9dX2UKGgGaAloD0MIRPtYwW//Z0CUhpRSlGgVTegDaBZHQKVYYDbJwKl1fZQoaAZoCWgPQwg5Q3HH24xxQJSGlFKUaBVNgwFoFkdApVjf5nDiwXV9lChoBmgJaA9DCFmnyveMc29AlIaUUpRoFU23AWgWR0ClWPh9Tgl4dX2UKGgGaAloD0MIYcJoVjaDYECUhpRSlGgVTegDaBZHQKVZ36hxo7F1fZQoaAZoCWgPQwi7nBIQkwZmQJSGlFKUaBVN6ANoFkdApV4Mxyn1nXV9lChoBmgJaA9DCPKU1XQ9PnFAlIaUUpRoFU08A2gWR0ClYMxE4NqhdX2UKGgGaAloD0MILXk8LX9HcUCUhpRSlGgVTdQDaBZHQKViOa+evp11fZQoaAZoCWgPQwj0iNFzCwpnQJSGlFKUaBVN6ANoFkdApWO0QXhwVHV9lChoBmgJaA9DCJ5g/3VuamRAlIaUUpRoFU3oA2gWR0ClbpN2s7uEdX2UKGgGaAloD0MI8yA9RY7fbkCUhpRSlGgVTaEDaBZHQKVvSRaouPF1fZQoaAZoCWgPQwiwy/CfbhNxQJSGlFKUaBVN1gFoFkdApXBXCO3lS3V9lChoBmgJaA9DCJOpglFJp2FAlIaUUpRoFU3oA2gWR0ClcJyup0fYdX2UKGgGaAloD0MIwQDChxLqb0CUhpRSlGgVTTwCaBZHQKVw9Eehf0F1fZQoaAZoCWgPQwi9/bloyAxvQJSGlFKUaBVNggNoFkdApXIUj7hvSHV9lChoBmgJaA9DCOXTY1uGZmJAlIaUUpRoFU3oA2gWR0Clc34x+KCQdX2UKGgGaAloD0MIAI49ey4eb0CUhpRSlGgVTVkCaBZHQKVzhdAPd2x1fZQoaAZoCWgPQwjRPlbw26hmQJSGlFKUaBVN6ANoFkdApXOszImw7nV9lChoBmgJaA9DCB8RUyIJk2NAlIaUUpRoFU3oA2gWR0Cld8pkGzKLdX2UKGgGaAloD0MIOj/FcaAOcUCUhpRSlGgVTWABaBZHQKV4SZG8VYZ1fZQoaAZoCWgPQwgeqb7zC1FtQJSGlFKUaBVN1QFoFkdApXm+kN4JNXV9lChoBmgJaA9DCC3NrRDWXnFAlIaUUpRoFU1MAWgWR0ClfQm7z06HdX2UKGgGaAloD0MI0gDeAon/Z0CUhpRSlGgVTegDaBZHQKV+oJIlMRJ1fZQoaAZoCWgPQwhd/G1PENptQJSGlFKUaBVNoQFoFkdApX//B55Z83V9lChoBmgJaA9DCJCg+DHmEGJAlIaUUpRoFU3oA2gWR0ClgBlefI0ZdX2UKGgGaAloD0MIE4B/StUpcUCUhpRSlGgVTboBaBZHQKWAftCzC1t1fZQoaAZoCWgPQwhCYOXQIo1tQJSGlFKUaBVN9QJoFkdApYPa6FuejHV9lChoBmgJaA9DCOW0p+RcPXFAlIaUUpRoFU2uAmgWR0Clg/kd3jdYdX2UKGgGaAloD0MIvFmD99WyZUCUhpRSlGgVTegDaBZHQKWEFKFIuoR1fZQoaAZoCWgPQwiox7YMuE9hQJSGlFKUaBVN6ANoFkdApYac0BOpKnV9lChoBmgJaA9DCDGXVG03IGVAlIaUUpRoFU3oA2gWR0Clh+SvcJt0dX2UKGgGaAloD0MIPFCnPLqdQECUhpRSlGgVTTABaBZHQKWI9iLl3hZ1fZQoaAZoCWgPQwiwcmiR7TthQJSGlFKUaBVN6ANoFkdApZYSCpWFOHV9lChoBmgJaA9DCKMG0zD85mBAlIaUUpRoFU3oA2gWR0ClluzTvy9VdX2UKGgGaAloD0MI+BvtuOGacECUhpRSlGgVTdMCaBZHQKWXOcinpB51fZQoaAZoCWgPQwjb2y3JAb1iQJSGlFKUaBVN6ANoFkdApZhF/e+EiHV9lChoBmgJaA9DCIgtPZpqhm1AlIaUUpRoFU08AmgWR0ClmfRL9MsZdX2UKGgGaAloD0MIjubIyi8jb0CUhpRSlGgVTWwBaBZHQKWay4H5aeR1fZQoaAZoCWgPQwjX3xKAP+tyQJSGlFKUaBVNWAFoFkdApZuLD63y7XV9lChoBmgJaA9DCNPAj2rYZm9AlIaUUpRoFU0SAmgWR0ClnLlW4mTldX2UKGgGaAloD0MI/G1PkFiPYUCUhpRSlGgVTegDaBZHQKWecAuqWC51fZQoaAZoCWgPQwj/sRAdQjJxQJSGlFKUaBVNzAFoFkdApZ+lb3XZoXV9lChoBmgJaA9DCJOMnIU99mdAlIaUUpRoFU3oA2gWR0CloEW8h9srdX2UKGgGaAloD0MIhXmPM81pbkCUhpRSlGgVTYADaBZHQKWjQAU+LWJ1fZQoaAZoCWgPQwjayHVTympiQJSGlFKUaBVN6ANoFkdApaOJrk8zRHV9lChoBmgJaA9DCMsuGFxzQmJAlIaUUpRoFU3oA2gWR0ClpRlnh86WdX2UKGgGaAloD0MIK8O4G0Q5bkCUhpRSlGgVTYEBaBZHQKWlHZRsMy91fZQoaAZoCWgPQwirBfaYyFRvQJSGlFKUaBVNWwNoFkdApaZKp71Iy3V9lChoBmgJaA9DCD+O5sjKfG1AlIaUUpRoFU2qAWgWR0Clpx4EGJN1dX2UKGgGaAloD0MIi21S0dhgbkCUhpRSlGgVTYIDaBZHQKWnRxusLfF1fZQoaAZoCWgPQwg5YcJoVmhtQJSGlFKUaBVNOgJoFkdApaenJkoWpXV9lChoBmgJaA9DCKMdN/xucG5AlIaUUpRoFU3ZAmgWR0Clq8qy4Wk8dX2UKGgGaAloD0MI0/pbAnCVbUCUhpRSlGgVTREDaBZHQKWssNYr8SB1fZQoaAZoCWgPQwifHAWIwi5wQJSGlFKUaBVN7AJoFkdApbH/dj5KvnV9lChoBmgJaA9DCD2YFB9fd3FAlIaUUpRoFU2jAWgWR0ClsgX7UG3XdX2UKGgGaAloD0MIyHvVygTga0CUhpRSlGgVTYsBaBZHQKW/yBhhH9Z1fZQoaAZoCWgPQwggXWxaKeduQJSGlFKUaBVNAgNoFkdApcA9tbcGknV9lChoBmgJaA9DCEFhUKaRXHJAlIaUUpRoFU2tAWgWR0ClwS5kCmuUdX2UKGgGaAloD0MIkpbK21GmcECUhpRSlGgVTeIBaBZHQKXBQ3vQWvd1fZQoaAZoCWgPQwj4qL9eodZxQJSGlFKUaBVNVgJoFkdApcHnYraufXV9lChoBmgJaA9DCJXXSugu7mxAlIaUUpRoFU3aAmgWR0ClwgXPiT+vdX2UKGgGaAloD0MITySYauYycECUhpRSlGgVTeUBaBZHQKXCC54GD+R1fZQoaAZoCWgPQwjNAYI5+khkQJSGlFKUaBVN6ANoFkdApcIaGHpKSXV9lChoBmgJaA9DCH0G1JvR5nJAlIaUUpRoFU02AmgWR0Clwjt34bjtdX2UKGgGaAloD0MItklFY23pcUCUhpRSlGgVTXQCaBZHQKXCSZ5Rjz91fZQoaAZoCWgPQwheMLjmjtZuQJSGlFKUaBVN5QJoFkdApcKHVI7NjnV9lChoBmgJaA9DCI7qdCBr5W9AlIaUUpRoFU1NA2gWR0Clwx2s7uD0dX2UKGgGaAloD0MI/YaJBimBbkCUhpRSlGgVTZwBaBZHQKXDf/WlMyt1fZQoaAZoCWgPQwgJih9jbvRtQJSGlFKUaBVNuAFoFkdApcR6P4mCy3V9lChoBmgJaA9DCOfgmdAky25AlIaUUpRoFU0tAWgWR0ClxKU4rBj4dX2UKGgGaAloD0MIw5ygTY7mcECUhpRSlGgVTTABaBZHQKXGzGyX2M91fZQoaAZoCWgPQwjtYwW/TSxxQJSGlFKUaBVNcQFoFkdApceQYP5HmXV9lChoBmgJaA9DCBgK2A7G6W9AlIaUUpRoFU0iAWgWR0Clx5a7ulXSdX2UKGgGaAloD0MIMsnIWRgZckCUhpRSlGgVTS0BaBZHQKXHqHoHLRt1fZQoaAZoCWgPQwhKtyVyQfZvQJSGlFKUaBVNXQFoFkdApcf2/QBxP3V9lChoBmgJaA9DCFkYIqcvrGxAlIaUUpRoFU3HAWgWR0ClyAQU5+6RdX2UKGgGaAloD0MIByeiX9sLcECUhpRSlGgVTZ0BaBZHQKXINrwe/6B1fZQoaAZoCWgPQwhJ9gg1g0pxQJSGlFKUaBVNUAFoFkdApcifag261HV9lChoBmgJaA9DCCx+U1ipD3JAlIaUUpRoFU1gAWgWR0ClyTxsEaESdX2UKGgGaAloD0MI2LrUCD2EcECUhpRSlGgVTUEBaBZHQKXJbR7Z39t1fZQoaAZoCWgPQwhxqrUwi8VtQJSGlFKUaBVNrQFoFkdApcoCpkwvg3V9lChoBmgJaA9DCMJrlzbceXFAlIaUUpRoFU2+AWgWR0ClymSUTtb+dX2UKGgGaAloD0MINIKN618gcUCUhpRSlGgVTd4BaBZHQKXNGvysjml1fZQoaAZoCWgPQwjwpIXLKjwpQJSGlFKUaBVL+WgWR0ClzS9NnGsFdX2UKGgGaAloD0MIjbRU3s7zcECUhpRSlGgVTbQBaBZHQKXNugFotcx1fZQoaAZoCWgPQwgwLeqTXIFwQJSGlFKUaBVN7gFoFkdApc7nnB+F13V9lChoBmgJaA9DCAJLrmJx/XFAlIaUUpRoFU1nAWgWR0ClzzFdszl+dX2UKGgGaAloD0MIh8Woa+3qbkCUhpRSlGgVTZwCaBZHQKXPXMAWBSV1fZQoaAZoCWgPQwi4BrZKsIBxQJSGlFKUaBVNlwFoFkdApdC69XcQAnV9lChoBmgJaA9DCIwPs5cttnFAlIaUUpRoFU38AWgWR0Cl0fjrZ8KHdX2UKGgGaAloD0MIJJwWvGi2cECUhpRSlGgVTWABaBZHQKXSfxDLKV91fZQoaAZoCWgPQwj9+EuLuvZwQJSGlFKUaBVNrAFoFkdApdLLx7RfGHV9lChoBmgJaA9DCHk8LT/w6WxAlIaUUpRoFU2yAWgWR0Cl0y3D3ueCdX2UKGgGaAloD0MIRwGiYEaXb0CUhpRSlGgVTd8BaBZHQKXTP4N7SiN1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 248,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b101bffdb3cf1d53215c29aabf2589325aa013a536cd20d437582f9f379f9ead
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:10f1e1d837a931aac5d03cdbc4e083104bb8367568b7b43a4b667b8b4b76f9ad
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (206 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 254.96657379278477, "std_reward": 14.560236510273622, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-09T17:10:00.778268"}