Commit
•
4dcbd05
1
Parent(s):
4a1e53e
Training in progress, step 500
Browse files- .gitattributes +1 -0
- .gitignore +1 -0
- config.json +285 -0
- create_model.py +30 -0
- merges.txt +0 -0
- preprocessor_config.json +9 -0
- pytorch_model.bin +3 -0
- run.sh +32 -0
- run_xtreme_s.py +948 -0
- runs/May03_17-16-03_sanchit--v100/1651598448.3713684/events.out.tfevents.1651598448.sanchit--v100.42221.1 +3 -0
- runs/May03_17-16-03_sanchit--v100/events.out.tfevents.1651598448.sanchit--v100.42221.0 +3 -0
- special_tokens_map.json +1 -0
- sweep.yaml +69 -0
- tokenizer.json +0 -0
- tokenizer_config.json +1 -0
- training_args.bin +3 -0
- vocab.json +0 -0
- wandb/debug-internal.log +1 -0
- wandb/debug.log +1 -0
- wandb/latest-run +1 -0
- wandb/run-20220503_172048-zotxt8wa/files/config.yaml +0 -0
- wandb/run-20220503_172048-zotxt8wa/files/output.log +0 -0
- wandb/run-20220503_172048-zotxt8wa/files/requirements.txt +287 -0
- wandb/run-20220503_172048-zotxt8wa/files/wandb-metadata.json +57 -0
- wandb/run-20220503_172048-zotxt8wa/files/wandb-summary.json +0 -0
- wandb/run-20220503_172048-zotxt8wa/logs/debug-internal.log +0 -0
- wandb/run-20220503_172048-zotxt8wa/logs/debug.log +28 -0
- wandb/run-20220503_172048-zotxt8wa/run-zotxt8wa.wandb +3 -0
- wandb/sweep-39ci3gkf/config-zotxt8wa.yaml +44 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
wandb/run-20220503_172048-zotxt8wa/run-zotxt8wa.wandb filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
checkpoint-*/
|
config.json
ADDED
@@ -0,0 +1,285 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "./",
|
3 |
+
"architectures": [
|
4 |
+
"SpeechEncoderDecoderModel"
|
5 |
+
],
|
6 |
+
"decoder": {
|
7 |
+
"_name_or_path": "facebook/bart-large",
|
8 |
+
"activation_dropout": 0.1,
|
9 |
+
"activation_function": "gelu",
|
10 |
+
"add_bias_logits": false,
|
11 |
+
"add_cross_attention": true,
|
12 |
+
"add_final_layer_norm": false,
|
13 |
+
"architectures": [
|
14 |
+
"BartModel"
|
15 |
+
],
|
16 |
+
"attention_dropout": 0.1,
|
17 |
+
"bad_words_ids": null,
|
18 |
+
"bos_token_id": 0,
|
19 |
+
"chunk_size_feed_forward": 0,
|
20 |
+
"classif_dropout": 0.1,
|
21 |
+
"classifier_dropout": 0.0,
|
22 |
+
"cross_attention_hidden_size": null,
|
23 |
+
"d_model": 1024,
|
24 |
+
"decoder_attention_heads": 16,
|
25 |
+
"decoder_ffn_dim": 4096,
|
26 |
+
"decoder_layerdrop": 0.0,
|
27 |
+
"decoder_layers": 12,
|
28 |
+
"decoder_start_token_id": 2,
|
29 |
+
"diversity_penalty": 0.0,
|
30 |
+
"do_sample": false,
|
31 |
+
"dropout": 0.1,
|
32 |
+
"early_stopping": true,
|
33 |
+
"encoder_attention_heads": 16,
|
34 |
+
"encoder_ffn_dim": 4096,
|
35 |
+
"encoder_layerdrop": 0.0,
|
36 |
+
"encoder_layers": 12,
|
37 |
+
"encoder_no_repeat_ngram_size": 0,
|
38 |
+
"eos_token_id": 2,
|
39 |
+
"exponential_decay_length_penalty": null,
|
40 |
+
"finetuning_task": null,
|
41 |
+
"forced_bos_token_id": 0,
|
42 |
+
"forced_eos_token_id": 2,
|
43 |
+
"gradient_checkpointing": false,
|
44 |
+
"id2label": {
|
45 |
+
"0": "LABEL_0",
|
46 |
+
"1": "LABEL_1",
|
47 |
+
"2": "LABEL_2"
|
48 |
+
},
|
49 |
+
"init_std": 0.02,
|
50 |
+
"is_decoder": true,
|
51 |
+
"is_encoder_decoder": false,
|
52 |
+
"label2id": {
|
53 |
+
"LABEL_0": 0,
|
54 |
+
"LABEL_1": 1,
|
55 |
+
"LABEL_2": 2
|
56 |
+
},
|
57 |
+
"length_penalty": 1.0,
|
58 |
+
"max_length": 20,
|
59 |
+
"max_position_embeddings": 1024,
|
60 |
+
"min_length": 0,
|
61 |
+
"model_type": "bart",
|
62 |
+
"no_repeat_ngram_size": 3,
|
63 |
+
"normalize_before": false,
|
64 |
+
"num_beam_groups": 1,
|
65 |
+
"num_beams": 4,
|
66 |
+
"num_hidden_layers": 12,
|
67 |
+
"num_return_sequences": 1,
|
68 |
+
"output_attentions": false,
|
69 |
+
"output_hidden_states": false,
|
70 |
+
"output_scores": false,
|
71 |
+
"pad_token_id": 1,
|
72 |
+
"prefix": null,
|
73 |
+
"problem_type": null,
|
74 |
+
"pruned_heads": {},
|
75 |
+
"remove_invalid_values": false,
|
76 |
+
"repetition_penalty": 1.0,
|
77 |
+
"return_dict": true,
|
78 |
+
"return_dict_in_generate": false,
|
79 |
+
"scale_embedding": false,
|
80 |
+
"sep_token_id": null,
|
81 |
+
"task_specific_params": {
|
82 |
+
"summarization": {
|
83 |
+
"length_penalty": 1.0,
|
84 |
+
"max_length": 128,
|
85 |
+
"min_length": 12,
|
86 |
+
"num_beams": 4
|
87 |
+
},
|
88 |
+
"summarization_cnn": {
|
89 |
+
"length_penalty": 2.0,
|
90 |
+
"max_length": 142,
|
91 |
+
"min_length": 56,
|
92 |
+
"num_beams": 4
|
93 |
+
},
|
94 |
+
"summarization_xsum": {
|
95 |
+
"length_penalty": 1.0,
|
96 |
+
"max_length": 62,
|
97 |
+
"min_length": 11,
|
98 |
+
"num_beams": 6
|
99 |
+
}
|
100 |
+
},
|
101 |
+
"temperature": 1.0,
|
102 |
+
"tie_encoder_decoder": false,
|
103 |
+
"tie_word_embeddings": true,
|
104 |
+
"tokenizer_class": null,
|
105 |
+
"top_k": 50,
|
106 |
+
"top_p": 1.0,
|
107 |
+
"torch_dtype": null,
|
108 |
+
"torchscript": false,
|
109 |
+
"transformers_version": "4.19.0.dev0",
|
110 |
+
"typical_p": 1.0,
|
111 |
+
"use_bfloat16": false,
|
112 |
+
"use_cache": true,
|
113 |
+
"vocab_size": 50265
|
114 |
+
},
|
115 |
+
"decoder_start_token_id": 0,
|
116 |
+
"encoder": {
|
117 |
+
"_name_or_path": "facebook/wav2vec2-xls-r-300m",
|
118 |
+
"activation_dropout": 0.0,
|
119 |
+
"adapter_kernel_size": 3,
|
120 |
+
"adapter_stride": 2,
|
121 |
+
"add_adapter": true,
|
122 |
+
"add_cross_attention": false,
|
123 |
+
"apply_spec_augment": true,
|
124 |
+
"architectures": [
|
125 |
+
"Wav2Vec2ForPreTraining"
|
126 |
+
],
|
127 |
+
"attention_dropout": 0.1,
|
128 |
+
"bad_words_ids": null,
|
129 |
+
"bos_token_id": 1,
|
130 |
+
"chunk_size_feed_forward": 0,
|
131 |
+
"classifier_proj_size": 256,
|
132 |
+
"codevector_dim": 768,
|
133 |
+
"contrastive_logits_temperature": 0.1,
|
134 |
+
"conv_bias": true,
|
135 |
+
"conv_dim": [
|
136 |
+
512,
|
137 |
+
512,
|
138 |
+
512,
|
139 |
+
512,
|
140 |
+
512,
|
141 |
+
512,
|
142 |
+
512
|
143 |
+
],
|
144 |
+
"conv_kernel": [
|
145 |
+
10,
|
146 |
+
3,
|
147 |
+
3,
|
148 |
+
3,
|
149 |
+
3,
|
150 |
+
2,
|
151 |
+
2
|
152 |
+
],
|
153 |
+
"conv_stride": [
|
154 |
+
5,
|
155 |
+
2,
|
156 |
+
2,
|
157 |
+
2,
|
158 |
+
2,
|
159 |
+
2,
|
160 |
+
2
|
161 |
+
],
|
162 |
+
"cross_attention_hidden_size": null,
|
163 |
+
"ctc_loss_reduction": "sum",
|
164 |
+
"ctc_zero_infinity": false,
|
165 |
+
"decoder_start_token_id": null,
|
166 |
+
"diversity_loss_weight": 0.1,
|
167 |
+
"diversity_penalty": 0.0,
|
168 |
+
"do_sample": false,
|
169 |
+
"do_stable_layer_norm": true,
|
170 |
+
"early_stopping": false,
|
171 |
+
"encoder_no_repeat_ngram_size": 0,
|
172 |
+
"eos_token_id": 2,
|
173 |
+
"exponential_decay_length_penalty": null,
|
174 |
+
"feat_extract_activation": "gelu",
|
175 |
+
"feat_extract_dropout": 0.0,
|
176 |
+
"feat_extract_norm": "layer",
|
177 |
+
"feat_proj_dropout": 0.0,
|
178 |
+
"feat_quantizer_dropout": 0.0,
|
179 |
+
"final_dropout": 0.0,
|
180 |
+
"finetuning_task": null,
|
181 |
+
"forced_bos_token_id": null,
|
182 |
+
"forced_eos_token_id": null,
|
183 |
+
"gradient_checkpointing": false,
|
184 |
+
"hidden_act": "gelu",
|
185 |
+
"hidden_dropout": 0.1742341660721257,
|
186 |
+
"hidden_size": 1024,
|
187 |
+
"id2label": {
|
188 |
+
"0": "LABEL_0",
|
189 |
+
"1": "LABEL_1"
|
190 |
+
},
|
191 |
+
"initializer_range": 0.02,
|
192 |
+
"intermediate_size": 4096,
|
193 |
+
"is_decoder": false,
|
194 |
+
"is_encoder_decoder": false,
|
195 |
+
"label2id": {
|
196 |
+
"LABEL_0": 0,
|
197 |
+
"LABEL_1": 1
|
198 |
+
},
|
199 |
+
"layer_norm_eps": 1e-05,
|
200 |
+
"layerdrop": 0.0,
|
201 |
+
"length_penalty": 1.0,
|
202 |
+
"mask_feature_length": 10,
|
203 |
+
"mask_feature_min_masks": 0,
|
204 |
+
"mask_feature_prob": 0.0,
|
205 |
+
"mask_time_length": 10,
|
206 |
+
"mask_time_min_masks": 2,
|
207 |
+
"mask_time_prob": 0.1,
|
208 |
+
"max_length": 20,
|
209 |
+
"min_length": 0,
|
210 |
+
"model_type": "wav2vec2",
|
211 |
+
"no_repeat_ngram_size": 0,
|
212 |
+
"num_adapter_layers": 3,
|
213 |
+
"num_attention_heads": 16,
|
214 |
+
"num_beam_groups": 1,
|
215 |
+
"num_beams": 1,
|
216 |
+
"num_codevector_groups": 2,
|
217 |
+
"num_codevectors_per_group": 320,
|
218 |
+
"num_conv_pos_embedding_groups": 16,
|
219 |
+
"num_conv_pos_embeddings": 128,
|
220 |
+
"num_feat_extract_layers": 7,
|
221 |
+
"num_hidden_layers": 24,
|
222 |
+
"num_negatives": 100,
|
223 |
+
"num_return_sequences": 1,
|
224 |
+
"output_attentions": false,
|
225 |
+
"output_hidden_size": 1024,
|
226 |
+
"output_hidden_states": false,
|
227 |
+
"output_scores": false,
|
228 |
+
"pad_token_id": 0,
|
229 |
+
"prefix": null,
|
230 |
+
"problem_type": null,
|
231 |
+
"proj_codevector_dim": 768,
|
232 |
+
"pruned_heads": {},
|
233 |
+
"remove_invalid_values": false,
|
234 |
+
"repetition_penalty": 1.0,
|
235 |
+
"return_dict": true,
|
236 |
+
"return_dict_in_generate": false,
|
237 |
+
"sep_token_id": null,
|
238 |
+
"task_specific_params": null,
|
239 |
+
"tdnn_dilation": [
|
240 |
+
1,
|
241 |
+
2,
|
242 |
+
3,
|
243 |
+
1,
|
244 |
+
1
|
245 |
+
],
|
246 |
+
"tdnn_dim": [
|
247 |
+
512,
|
248 |
+
512,
|
249 |
+
512,
|
250 |
+
512,
|
251 |
+
1500
|
252 |
+
],
|
253 |
+
"tdnn_kernel": [
|
254 |
+
5,
|
255 |
+
3,
|
256 |
+
3,
|
257 |
+
1,
|
258 |
+
1
|
259 |
+
],
|
260 |
+
"temperature": 1.0,
|
261 |
+
"tie_encoder_decoder": false,
|
262 |
+
"tie_word_embeddings": true,
|
263 |
+
"tokenizer_class": null,
|
264 |
+
"top_k": 50,
|
265 |
+
"top_p": 1.0,
|
266 |
+
"torch_dtype": "float32",
|
267 |
+
"torchscript": false,
|
268 |
+
"transformers_version": "4.19.0.dev0",
|
269 |
+
"typical_p": 1.0,
|
270 |
+
"use_bfloat16": false,
|
271 |
+
"use_weighted_layer_sum": false,
|
272 |
+
"vocab_size": 32,
|
273 |
+
"xvector_output_dim": 512
|
274 |
+
},
|
275 |
+
"eos_token_id": 2,
|
276 |
+
"is_encoder_decoder": true,
|
277 |
+
"max_length": 40,
|
278 |
+
"model_type": "speech-encoder-decoder",
|
279 |
+
"pad_token_id": 1,
|
280 |
+
"processor_class": "Wav2Vec2Processor",
|
281 |
+
"tie_word_embeddings": false,
|
282 |
+
"torch_dtype": "float32",
|
283 |
+
"transformers_version": null,
|
284 |
+
"use_cache": false
|
285 |
+
}
|
create_model.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import SpeechEncoderDecoderModel, AutoFeatureExtractor, AutoTokenizer
|
2 |
+
import torch
|
3 |
+
|
4 |
+
|
5 |
+
encoder_id = "facebook/wav2vec2-xls-r-300m"
|
6 |
+
decoder_id = "facebook/bart-large"
|
7 |
+
|
8 |
+
model = SpeechEncoderDecoderModel.from_encoder_decoder_pretrained(encoder_id, decoder_id, encoder_add_adapter=True)
|
9 |
+
model.config.encoder.feat_proj_dropout = 0.0
|
10 |
+
model.config.encoder.final_dropout = 0.0
|
11 |
+
model.config.encoder.mask_time_prob = 0.1
|
12 |
+
model.config.decoder_start_token_id = model.decoder.config.bos_token_id
|
13 |
+
model.config.pad_token_id = model.decoder.config.pad_token_id
|
14 |
+
model.config.eos_token_id = model.decoder.config.eos_token_id
|
15 |
+
model.config.max_length = 40
|
16 |
+
model.config.num_beams = 1
|
17 |
+
model.config.encoder.layerdrop = 0.0
|
18 |
+
model.config.use_cache = False
|
19 |
+
model.config.processor_class = "Wav2Vec2Processor"
|
20 |
+
|
21 |
+
# check if generation works
|
22 |
+
out = model.generate(torch.ones((1, 2000)))
|
23 |
+
|
24 |
+
model.save_pretrained("./")
|
25 |
+
|
26 |
+
feature_etxractor = AutoFeatureExtractor.from_pretrained(encoder_id)
|
27 |
+
feature_etxractor.save_pretrained("./")
|
28 |
+
tokenizer = AutoTokenizer.from_pretrained(decoder_id)
|
29 |
+
tokenizer.save_pretrained("./")
|
30 |
+
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
preprocessor_config.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_normalize": true,
|
3 |
+
"feature_extractor_type": "Wav2Vec2FeatureExtractor",
|
4 |
+
"feature_size": 1,
|
5 |
+
"padding_side": "right",
|
6 |
+
"padding_value": 0,
|
7 |
+
"return_attention_mask": true,
|
8 |
+
"sampling_rate": 16000
|
9 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cbc5b965029fbdc0a38c7eb9d58f8563cfee217953f92fde569dbc673dcfa6c0
|
3 |
+
size 2353867057
|
run.sh
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env bash
|
2 |
+
CUDA_VISIBLE_DEVICES=0 python run_xtreme_s.py \
|
3 |
+
--model_name_or_path="./" \
|
4 |
+
--task="covost2" \
|
5 |
+
--language="fr.en" \
|
6 |
+
--eval_split_name="test" \
|
7 |
+
--output_dir="./" \
|
8 |
+
--overwrite_output_dir \
|
9 |
+
--num_train_epochs="3" \
|
10 |
+
--per_device_train_batch_size="4" \
|
11 |
+
--per_device_eval_batch_size="2" \
|
12 |
+
--gradient_accumulation_steps="2" \
|
13 |
+
--generation_max_length="40" \
|
14 |
+
--generation_num_beams="1" \
|
15 |
+
--learning_rate="3e-4" \
|
16 |
+
--warmup_steps="500" \
|
17 |
+
--evaluation_strategy="steps" \
|
18 |
+
--max_duration_in_seconds="20" \
|
19 |
+
--save_steps="500" \
|
20 |
+
--eval_steps="500" \
|
21 |
+
--logging_steps="1" \
|
22 |
+
--freeze_feature_encoder \
|
23 |
+
--gradient_checkpointing \
|
24 |
+
--fp16 \
|
25 |
+
--group_by_length \
|
26 |
+
--do_train \
|
27 |
+
--do_eval \
|
28 |
+
--metric_for_best_model="bleu" \
|
29 |
+
--greater_is_better=True \
|
30 |
+
--load_best_model_at_end \
|
31 |
+
--push_to_hub \
|
32 |
+
--use_auth_token
|
run_xtreme_s.py
ADDED
@@ -0,0 +1,948 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding=utf-8
|
3 |
+
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
|
16 |
+
""" Fine-tuning a 🤗 Transformers pretrained speech model on the XTREME-S benchmark tasks"""
|
17 |
+
|
18 |
+
import json
|
19 |
+
import logging
|
20 |
+
import os
|
21 |
+
import re
|
22 |
+
import sys
|
23 |
+
from collections import OrderedDict, defaultdict
|
24 |
+
from dataclasses import dataclass, field
|
25 |
+
from typing import Dict, List, Optional, Union
|
26 |
+
|
27 |
+
import datasets
|
28 |
+
import numpy as np
|
29 |
+
import torch
|
30 |
+
from datasets import DatasetDict, load_dataset, load_metric
|
31 |
+
|
32 |
+
import transformers
|
33 |
+
from transformers import (
|
34 |
+
AutoConfig,
|
35 |
+
AutoFeatureExtractor,
|
36 |
+
AutoModelForAudioClassification,
|
37 |
+
AutoModelForCTC,
|
38 |
+
AutoModelForSpeechSeq2Seq,
|
39 |
+
AutoProcessor,
|
40 |
+
AutoTokenizer,
|
41 |
+
HfArgumentParser,
|
42 |
+
Seq2SeqTrainer,
|
43 |
+
Seq2SeqTrainingArguments,
|
44 |
+
SpeechEncoderDecoderModel,
|
45 |
+
Trainer,
|
46 |
+
set_seed,
|
47 |
+
)
|
48 |
+
from transformers.trainer_utils import get_last_checkpoint, is_main_process
|
49 |
+
from transformers.utils import check_min_version
|
50 |
+
from transformers.utils.versions import require_version
|
51 |
+
|
52 |
+
|
53 |
+
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
54 |
+
check_min_version("4.18.0.dev0")
|
55 |
+
|
56 |
+
require_version("datasets>=1.18.0", "To fix: pip install -r examples/pytorch/speech-recognition/requirements.txt")
|
57 |
+
|
58 |
+
|
59 |
+
logger = logging.getLogger(__name__)
|
60 |
+
|
61 |
+
|
62 |
+
def list_field(default=None, metadata=None):
|
63 |
+
return field(default_factory=lambda: default, metadata=metadata)
|
64 |
+
|
65 |
+
|
66 |
+
TASK_TO_TARGET_COLUMN_NAME = {
|
67 |
+
"fleurs-asr": "transcription",
|
68 |
+
"fleurs-lang_id": "lang_id",
|
69 |
+
"mls": "transcription",
|
70 |
+
"voxpopuli": "transcription",
|
71 |
+
"covost2": "translation",
|
72 |
+
"minds14": "intent_class",
|
73 |
+
"babel": "transcription",
|
74 |
+
}
|
75 |
+
|
76 |
+
|
77 |
+
@dataclass
|
78 |
+
class ModelArguments:
|
79 |
+
"""
|
80 |
+
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
|
81 |
+
"""
|
82 |
+
|
83 |
+
model_name_or_path: str = field(
|
84 |
+
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
|
85 |
+
)
|
86 |
+
tokenizer_name_or_path: Optional[str] = field(
|
87 |
+
default=None,
|
88 |
+
metadata={"help": "Path to pretrained tokenizer or tokenizer identifier from huggingface.co/models"},
|
89 |
+
)
|
90 |
+
cache_dir: Optional[str] = field(
|
91 |
+
default=None,
|
92 |
+
metadata={
|
93 |
+
"help": "Where do you want to store the pretrained models and datasets downloaded from " "huggingface.co"
|
94 |
+
},
|
95 |
+
)
|
96 |
+
freeze_feature_encoder: bool = field(
|
97 |
+
default=True, metadata={"help": "Whether to freeze the feature encoder layers of the model."}
|
98 |
+
)
|
99 |
+
attention_dropout: float = field(
|
100 |
+
default=0.0, metadata={"help": "The dropout ratio for the attention probabilities."}
|
101 |
+
)
|
102 |
+
activation_dropout: float = field(
|
103 |
+
default=0.0, metadata={"help": "The dropout ratio for activations inside the fully connected layer."}
|
104 |
+
)
|
105 |
+
feat_proj_dropout: float = field(default=0.0, metadata={"help": "The dropout ratio for the projected features."})
|
106 |
+
hidden_dropout: float = field(
|
107 |
+
default=0.0,
|
108 |
+
metadata={
|
109 |
+
"help": "The dropout probability for all fully connected layers in the embeddings, encoder, and pooler."
|
110 |
+
},
|
111 |
+
)
|
112 |
+
final_dropout: float = field(
|
113 |
+
default=0.0,
|
114 |
+
metadata={"help": "The dropout probability for the final projection layer."},
|
115 |
+
)
|
116 |
+
mask_time_prob: float = field(
|
117 |
+
default=0.05,
|
118 |
+
metadata={
|
119 |
+
"help": "Probability of each feature vector along the time axis to be chosen as the start of the vector"
|
120 |
+
"span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature"
|
121 |
+
"vectors will be masked along the time axis."
|
122 |
+
},
|
123 |
+
)
|
124 |
+
mask_time_length: int = field(
|
125 |
+
default=10,
|
126 |
+
metadata={"help": "Length of vector span to mask along the time axis."},
|
127 |
+
)
|
128 |
+
mask_feature_prob: float = field(
|
129 |
+
default=0.0,
|
130 |
+
metadata={
|
131 |
+
"help": "Probability of each feature vector along the feature axis to be chosen as the start of the vector"
|
132 |
+
"span to be masked. Approximately ``mask_feature_prob * sequence_length // mask_feature_length`` feature bins will be masked along the time axis."
|
133 |
+
},
|
134 |
+
)
|
135 |
+
mask_feature_length: int = field(
|
136 |
+
default=10,
|
137 |
+
metadata={"help": "Length of vector span to mask along the feature axis."},
|
138 |
+
)
|
139 |
+
layerdrop: float = field(default=0.0, metadata={"help": "The LayerDrop probability."})
|
140 |
+
ctc_zero_infinity: bool = field(
|
141 |
+
default=False,
|
142 |
+
metadata={"help": "Whether to zero infinite losses and the associated gradients of `torch.nn.CTCLoss`."},
|
143 |
+
)
|
144 |
+
ctc_loss_reduction: Optional[str] = field(
|
145 |
+
default="mean", metadata={"help": "The way the ctc loss should be reduced. Should be one of 'mean' or 'sum'."}
|
146 |
+
)
|
147 |
+
|
148 |
+
|
149 |
+
@dataclass
|
150 |
+
class DataTrainingArguments:
|
151 |
+
"""
|
152 |
+
Arguments pertaining to what data we are going to input our model for training and eval.
|
153 |
+
|
154 |
+
Using `HfArgumentParser` we can turn this class
|
155 |
+
into argparse arguments to be able to specify them on
|
156 |
+
the command line.
|
157 |
+
"""
|
158 |
+
|
159 |
+
dataset_name: str = field(
|
160 |
+
default="google/xtreme_s",
|
161 |
+
metadata={"help": "The name of the dataset to use (via the datasets library). Defaults to 'google/xtreme_s'"},
|
162 |
+
)
|
163 |
+
task: str = field(
|
164 |
+
default=None,
|
165 |
+
metadata={
|
166 |
+
"help": "The task name of the benchmark to use (via the datasets library). Should be on of: "
|
167 |
+
"'fleurs-asr', 'mls', 'voxpopuli', 'covost2', 'minds14', 'fleurs-lang_id', 'babel'."
|
168 |
+
},
|
169 |
+
)
|
170 |
+
language: str = field(
|
171 |
+
default="all",
|
172 |
+
metadata={"help": "The language id as defined in the datasets config name or `all` for all languages."},
|
173 |
+
)
|
174 |
+
language_group: str = field(
|
175 |
+
default=None,
|
176 |
+
metadata={
|
177 |
+
"help": "The language group to select a subset of languages to train on. "
|
178 |
+
"This option is only used the 'fleurs-asr' task. Should be one of: "
|
179 |
+
"'western_european_we', 'eastern_european_ee', 'central_asia_middle_north_african_cmn', "
|
180 |
+
"'sub_saharan_african_ssa', 'south_asian_sa', 'south_east_asian_sea', 'chinese_japanase_korean_cjk'."
|
181 |
+
},
|
182 |
+
)
|
183 |
+
train_split_name: str = field(
|
184 |
+
default="train",
|
185 |
+
metadata={
|
186 |
+
"help": "The name of the training dataset split to use (via the datasets library). Defaults to 'train'"
|
187 |
+
},
|
188 |
+
)
|
189 |
+
eval_split_name: str = field(
|
190 |
+
default="validation",
|
191 |
+
metadata={
|
192 |
+
"help": "The name of the evaluation dataset split to use (via the datasets library). "
|
193 |
+
"Defaults to 'validation'"
|
194 |
+
},
|
195 |
+
)
|
196 |
+
predict_split_name: str = field(
|
197 |
+
default="test",
|
198 |
+
metadata={
|
199 |
+
"help": "The name of the prediction dataset split to use (via the datasets library). " "Defaults to 'test'"
|
200 |
+
},
|
201 |
+
)
|
202 |
+
audio_column_name: str = field(
|
203 |
+
default="audio",
|
204 |
+
metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"},
|
205 |
+
)
|
206 |
+
target_column_name: str = field(
|
207 |
+
default=None,
|
208 |
+
metadata={
|
209 |
+
"help": "The name of the dataset column containing the target data "
|
210 |
+
"(transcription/translation/label). If None, the name will be inferred from the task. Defaults to None."
|
211 |
+
},
|
212 |
+
)
|
213 |
+
overwrite_cache: bool = field(
|
214 |
+
default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
|
215 |
+
)
|
216 |
+
preprocessing_num_workers: Optional[int] = field(
|
217 |
+
default=None,
|
218 |
+
metadata={"help": "The number of processes to use for the preprocessing."},
|
219 |
+
)
|
220 |
+
max_train_samples: Optional[int] = field(
|
221 |
+
default=None,
|
222 |
+
metadata={
|
223 |
+
"help": "For debugging purposes or quicker training, truncate the number of training examples to this "
|
224 |
+
"value if set."
|
225 |
+
},
|
226 |
+
)
|
227 |
+
max_eval_samples: Optional[int] = field(
|
228 |
+
default=None,
|
229 |
+
metadata={
|
230 |
+
"help": "For debugging purposes or quicker training, truncate the number of validation examples to this "
|
231 |
+
"value if set."
|
232 |
+
},
|
233 |
+
)
|
234 |
+
max_predict_samples: Optional[int] = field(
|
235 |
+
default=None,
|
236 |
+
metadata={
|
237 |
+
"help": "For debugging purposes or quicker training, truncate the number of prediction examples to this "
|
238 |
+
"value if set."
|
239 |
+
},
|
240 |
+
)
|
241 |
+
chars_to_ignore: Optional[List[str]] = list_field(
|
242 |
+
default=', ? . ! - ; : " “ % ‘ ” �'.split(" "),
|
243 |
+
metadata={"help": "A list of characters to remove from the transcripts."},
|
244 |
+
)
|
245 |
+
max_duration_in_seconds: float = field(
|
246 |
+
default=30.0,
|
247 |
+
metadata={
|
248 |
+
"help": "Filter audio files that are longer than `max_duration_in_seconds` seconds to 'max_duration_in_seconds`"
|
249 |
+
},
|
250 |
+
)
|
251 |
+
min_duration_in_seconds: float = field(
|
252 |
+
default=0.0, metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"}
|
253 |
+
)
|
254 |
+
preprocessing_only: bool = field(
|
255 |
+
default=False,
|
256 |
+
metadata={
|
257 |
+
"help": "Whether to only do data preprocessing and skip training. "
|
258 |
+
"This is especially useful when data preprocessing errors out in distributed training due to timeout. "
|
259 |
+
"In this case, one should run the preprocessing in a non-distributed setup with `preprocessing_only=True` "
|
260 |
+
"so that the cached datasets can consequently be loaded in distributed training"
|
261 |
+
},
|
262 |
+
)
|
263 |
+
use_auth_token: bool = field(
|
264 |
+
default=False,
|
265 |
+
metadata={
|
266 |
+
"help": "If :obj:`True`, will use the token generated when running"
|
267 |
+
":obj:`transformers-cli login` as HTTP bearer authorization for remote files."
|
268 |
+
},
|
269 |
+
)
|
270 |
+
unk_token: str = field(
|
271 |
+
default="[UNK]",
|
272 |
+
metadata={"help": "The unk token for the tokenizer"},
|
273 |
+
)
|
274 |
+
pad_token: str = field(
|
275 |
+
default="[PAD]",
|
276 |
+
metadata={"help": "The padding token for the tokenizer"},
|
277 |
+
)
|
278 |
+
word_delimiter_token: str = field(
|
279 |
+
default="|",
|
280 |
+
metadata={"help": "The word delimiter token for the tokenizer"},
|
281 |
+
)
|
282 |
+
phoneme_language: Optional[str] = field(
|
283 |
+
default=None,
|
284 |
+
metadata={
|
285 |
+
"help": "The target language that should be used be"
|
286 |
+
" passed to the tokenizer for tokenization. Note that"
|
287 |
+
" this is only relevant if the model classifies the"
|
288 |
+
" input audio to a sequence of phoneme sequences."
|
289 |
+
},
|
290 |
+
)
|
291 |
+
per_lang_metrics: bool = field(
|
292 |
+
default=True,
|
293 |
+
metadata={
|
294 |
+
"help": "If `True`, compute the test metrics separately for each language, and average the results. "
|
295 |
+
"If `False` compute the average test metrics in a single pass for all languages at once."
|
296 |
+
},
|
297 |
+
)
|
298 |
+
|
299 |
+
|
300 |
+
@dataclass
|
301 |
+
class SpeechDataCollatorWithPadding:
|
302 |
+
|
303 |
+
processor: AutoProcessor
|
304 |
+
decoder_start_token_id: Optional[int] = None
|
305 |
+
padding: Union[bool, str] = "longest"
|
306 |
+
pad_labels: Optional[int] = True
|
307 |
+
pad_to_multiple_of: Optional[int] = None
|
308 |
+
pad_to_multiple_of_labels: Optional[int] = None
|
309 |
+
|
310 |
+
def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
|
311 |
+
# split inputs and labels since they have to be of different lenghts and need
|
312 |
+
# different padding methods
|
313 |
+
input_features = [{"input_values": feature["input_values"]} for feature in features]
|
314 |
+
|
315 |
+
batch = self.processor.pad(
|
316 |
+
input_features,
|
317 |
+
padding=self.padding,
|
318 |
+
pad_to_multiple_of=self.pad_to_multiple_of,
|
319 |
+
return_tensors="pt",
|
320 |
+
)
|
321 |
+
|
322 |
+
if self.pad_labels:
|
323 |
+
label_features = [{"input_ids": feature["labels"]} for feature in features]
|
324 |
+
with self.processor.as_target_processor():
|
325 |
+
labels_batch = self.processor.pad(
|
326 |
+
label_features,
|
327 |
+
padding=self.padding,
|
328 |
+
pad_to_multiple_of=self.pad_to_multiple_of_labels,
|
329 |
+
return_tensors="pt",
|
330 |
+
)
|
331 |
+
|
332 |
+
# replace padding with -100 to ignore loss correctly
|
333 |
+
labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)
|
334 |
+
|
335 |
+
# if bos token is appended in previous tokenization step,
|
336 |
+
# cut bos token here as it's append later anyways
|
337 |
+
if (
|
338 |
+
self.decoder_start_token_id is not None
|
339 |
+
and (labels[:, 0] == self.decoder_start_token_id).all().cpu().item()
|
340 |
+
):
|
341 |
+
labels = labels[:, 1:]
|
342 |
+
|
343 |
+
batch["labels"] = labels
|
344 |
+
else:
|
345 |
+
batch["labels"] = torch.tensor([feature["labels"] for feature in features])
|
346 |
+
|
347 |
+
return batch
|
348 |
+
|
349 |
+
|
350 |
+
def create_vocabulary_from_data(
|
351 |
+
datasets: DatasetDict,
|
352 |
+
word_delimiter_token: Optional[str] = None,
|
353 |
+
unk_token: Optional[str] = None,
|
354 |
+
pad_token: Optional[str] = None,
|
355 |
+
):
|
356 |
+
# Given training and test labels create vocabulary
|
357 |
+
def extract_all_chars(batch):
|
358 |
+
all_text = " ".join(batch["target_text"])
|
359 |
+
vocab = list(set(all_text))
|
360 |
+
return {"vocab": [vocab], "all_text": [all_text]}
|
361 |
+
|
362 |
+
vocabs = datasets.map(
|
363 |
+
extract_all_chars,
|
364 |
+
batched=True,
|
365 |
+
batch_size=-1,
|
366 |
+
keep_in_memory=True,
|
367 |
+
remove_columns=datasets["train"].column_names,
|
368 |
+
)
|
369 |
+
|
370 |
+
# take union of all unique characters in each dataset
|
371 |
+
vocab_set = (
|
372 |
+
(set(vocabs["train"]["vocab"][0]) if "train" in vocabs else set())
|
373 |
+
| (set(vocabs["eval"]["vocab"][0]) if "eval" in vocabs else set())
|
374 |
+
| (set(vocabs["predict"]["vocab"][0]) if "predict" in vocabs else set())
|
375 |
+
)
|
376 |
+
|
377 |
+
vocab_dict = {v: k for k, v in enumerate(sorted(list(vocab_set)))}
|
378 |
+
|
379 |
+
# replace white space with delimiter token
|
380 |
+
if word_delimiter_token is not None:
|
381 |
+
vocab_dict[word_delimiter_token] = vocab_dict[" "]
|
382 |
+
del vocab_dict[" "]
|
383 |
+
|
384 |
+
# add unk and pad token
|
385 |
+
if unk_token is not None:
|
386 |
+
vocab_dict[unk_token] = len(vocab_dict)
|
387 |
+
|
388 |
+
if pad_token is not None:
|
389 |
+
vocab_dict[pad_token] = len(vocab_dict)
|
390 |
+
|
391 |
+
return vocab_dict
|
392 |
+
|
393 |
+
|
394 |
+
def main():
|
395 |
+
# See all possible arguments in src/transformers/training_args.py
|
396 |
+
# or by passing the --help flag to this script.
|
397 |
+
# We now keep distinct sets of args, for a cleaner separation of concerns.
|
398 |
+
|
399 |
+
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments))
|
400 |
+
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
401 |
+
# If we pass only one argument to the script and it's the path to a json file,
|
402 |
+
# let's parse it to get our arguments.
|
403 |
+
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
|
404 |
+
else:
|
405 |
+
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
406 |
+
|
407 |
+
# Detecting last checkpoint.
|
408 |
+
last_checkpoint = None
|
409 |
+
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
|
410 |
+
last_checkpoint = get_last_checkpoint(training_args.output_dir)
|
411 |
+
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
|
412 |
+
raise ValueError(
|
413 |
+
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
|
414 |
+
"Use --overwrite_output_dir to overcome."
|
415 |
+
)
|
416 |
+
elif last_checkpoint is not None:
|
417 |
+
logger.info(
|
418 |
+
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
|
419 |
+
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
|
420 |
+
)
|
421 |
+
|
422 |
+
# Setup logging
|
423 |
+
logging.basicConfig(
|
424 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
425 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
426 |
+
handlers=[logging.StreamHandler(sys.stdout)],
|
427 |
+
)
|
428 |
+
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
|
429 |
+
|
430 |
+
# Log on each process the small summary:
|
431 |
+
logger.warning(
|
432 |
+
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
|
433 |
+
f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
|
434 |
+
)
|
435 |
+
# Set the verbosity to info of the Transformers logger (on main process only):
|
436 |
+
if is_main_process(training_args.local_rank):
|
437 |
+
transformers.utils.logging.set_verbosity_info()
|
438 |
+
logger.info("Training/evaluation parameters %s", training_args)
|
439 |
+
|
440 |
+
# Set seed before initializing model.
|
441 |
+
set_seed(training_args.seed)
|
442 |
+
|
443 |
+
# 1. First, let's load the dataset
|
444 |
+
raw_datasets = DatasetDict()
|
445 |
+
task_name = data_args.task
|
446 |
+
lang_id = data_args.language
|
447 |
+
|
448 |
+
if task_name is None:
|
449 |
+
raise ValueError(
|
450 |
+
"Set --task should be set to '<xtreme_s_task>' " "(e.g. 'fleurs-asr', 'mls', 'covost2', 'minds14') "
|
451 |
+
)
|
452 |
+
if lang_id is None:
|
453 |
+
raise ValueError(
|
454 |
+
"Set --language should be set to the language id of the sub dataset "
|
455 |
+
"config to be used (e.g. 'pl', 'en.tr', 'fr-FR') or 'all'"
|
456 |
+
" for multi-lingual fine-tuning."
|
457 |
+
)
|
458 |
+
if data_args.language_group is not None:
|
459 |
+
if data_args.task != "fleurs-asr":
|
460 |
+
raise ValueError("--language_group should only be used with --task=fleurs-asr")
|
461 |
+
if data_args.language != "all":
|
462 |
+
raise ValueError("--language_group should only be used with --language=all")
|
463 |
+
|
464 |
+
if data_args.target_column_name is None:
|
465 |
+
target_column_name = TASK_TO_TARGET_COLUMN_NAME[task_name]
|
466 |
+
else:
|
467 |
+
target_column_name = data_args.target_column_name
|
468 |
+
|
469 |
+
# here we differentiate between tasks with text as the target and classification tasks
|
470 |
+
is_text_target = target_column_name in ("transcription", "translation")
|
471 |
+
|
472 |
+
config_name = ".".join([task_name.split("-")[0], lang_id])
|
473 |
+
|
474 |
+
if training_args.do_train:
|
475 |
+
raw_datasets["train"] = load_dataset(
|
476 |
+
data_args.dataset_name,
|
477 |
+
config_name,
|
478 |
+
split=data_args.train_split_name,
|
479 |
+
use_auth_token=data_args.use_auth_token,
|
480 |
+
cache_dir=model_args.cache_dir,
|
481 |
+
)
|
482 |
+
|
483 |
+
if data_args.audio_column_name not in raw_datasets["train"].column_names:
|
484 |
+
raise ValueError(
|
485 |
+
f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'. "
|
486 |
+
"Make sure to set `--audio_column_name` to the correct audio column - one of "
|
487 |
+
f"{', '.join(raw_datasets['train'].column_names)}."
|
488 |
+
)
|
489 |
+
|
490 |
+
if target_column_name not in raw_datasets["train"].column_names:
|
491 |
+
raise ValueError(
|
492 |
+
f"--target_column_name {target_column_name} not found in dataset '{data_args.dataset_name}'. "
|
493 |
+
"Make sure to set `--target_column_name` to the correct text column - one of "
|
494 |
+
f"{', '.join(raw_datasets['train'].column_names)}."
|
495 |
+
)
|
496 |
+
|
497 |
+
if data_args.max_train_samples is not None:
|
498 |
+
raw_datasets["train"] = raw_datasets["train"].select(range(data_args.max_train_samples))
|
499 |
+
|
500 |
+
if training_args.do_eval:
|
501 |
+
raw_datasets["eval"] = load_dataset(
|
502 |
+
data_args.dataset_name,
|
503 |
+
config_name,
|
504 |
+
split=data_args.eval_split_name,
|
505 |
+
use_auth_token=data_args.use_auth_token,
|
506 |
+
cache_dir=model_args.cache_dir,
|
507 |
+
)
|
508 |
+
|
509 |
+
if data_args.max_eval_samples is not None:
|
510 |
+
raw_datasets["eval"] = raw_datasets["eval"].select(range(data_args.max_eval_samples))
|
511 |
+
|
512 |
+
if training_args.do_predict:
|
513 |
+
raw_datasets["predict"] = load_dataset(
|
514 |
+
data_args.dataset_name,
|
515 |
+
config_name,
|
516 |
+
split=data_args.predict_split_name,
|
517 |
+
use_auth_token=data_args.use_auth_token,
|
518 |
+
cache_dir=model_args.cache_dir,
|
519 |
+
)
|
520 |
+
|
521 |
+
if data_args.max_predict_samples is not None:
|
522 |
+
raw_datasets["predict"] = raw_datasets["predict"].select(range(data_args.max_predict_samples))
|
523 |
+
|
524 |
+
lang_list = next(iter(raw_datasets.values())).features["lang_id"].names
|
525 |
+
if not is_text_target:
|
526 |
+
label_list = next(iter(raw_datasets.values())).features[target_column_name].names
|
527 |
+
num_labels = len(label_list)
|
528 |
+
|
529 |
+
num_workers = data_args.preprocessing_num_workers
|
530 |
+
|
531 |
+
lang_group = data_args.language_group
|
532 |
+
if lang_group is not None:
|
533 |
+
with training_args.main_process_first(desc="language group filter"):
|
534 |
+
lang_group_id = next(iter(raw_datasets.values())).features["lang_group_id"].str2int(lang_group)
|
535 |
+
raw_datasets = raw_datasets.filter(
|
536 |
+
lambda lang_group: lang_group == lang_group_id,
|
537 |
+
num_proc=num_workers,
|
538 |
+
input_columns=["lang_group_id"],
|
539 |
+
)
|
540 |
+
|
541 |
+
# 2. We remove some special characters from the datasets
|
542 |
+
# that make training complicated and do not help in transcribing the speech
|
543 |
+
# E.g. characters, such as `,` and `.` do not really have an acoustic characteristic
|
544 |
+
# that could be easily picked up by the model
|
545 |
+
chars_to_ignore_regex = (
|
546 |
+
f'[{"".join(data_args.chars_to_ignore)}]' if data_args.chars_to_ignore is not None else None
|
547 |
+
)
|
548 |
+
|
549 |
+
def remove_special_characters(batch):
|
550 |
+
if chars_to_ignore_regex is not None:
|
551 |
+
batch["target_text"] = re.sub(chars_to_ignore_regex, "", batch[target_column_name]).lower()
|
552 |
+
else:
|
553 |
+
batch["target_text"] = batch[target_column_name].lower()
|
554 |
+
return batch
|
555 |
+
|
556 |
+
if is_text_target:
|
557 |
+
with training_args.main_process_first(desc="dataset map special characters removal"):
|
558 |
+
raw_datasets = raw_datasets.map(
|
559 |
+
remove_special_characters,
|
560 |
+
remove_columns=[target_column_name],
|
561 |
+
desc="remove special characters from datasets",
|
562 |
+
)
|
563 |
+
|
564 |
+
# save special tokens for tokenizer
|
565 |
+
word_delimiter_token = data_args.word_delimiter_token
|
566 |
+
unk_token = data_args.unk_token
|
567 |
+
pad_token = data_args.pad_token
|
568 |
+
|
569 |
+
|
570 |
+
encoder_id = "facebook/wav2vec2-xls-r-300m"
|
571 |
+
decoder_id = "facebook/bart-large"
|
572 |
+
|
573 |
+
model = SpeechEncoderDecoderModel.from_encoder_decoder_pretrained(encoder_id, decoder_id, encoder_add_adapter=True)
|
574 |
+
model.config.encoder.feat_proj_dropout = 0.0
|
575 |
+
model.config.encoder.final_dropout = 0.0
|
576 |
+
model.config.encoder.mask_time_prob = 0.1
|
577 |
+
model.config.decoder_start_token_id = model.decoder.config.bos_token_id
|
578 |
+
model.config.pad_token_id = model.decoder.config.pad_token_id
|
579 |
+
model.config.eos_token_id = model.decoder.config.eos_token_id
|
580 |
+
model.config.max_length = 40
|
581 |
+
model.config.num_beams = 1
|
582 |
+
model.config.encoder.layerdrop = 0.0
|
583 |
+
model.config.use_cache = False
|
584 |
+
model.config.processor_class = "Wav2Vec2Processor"
|
585 |
+
|
586 |
+
model.save_pretrained(model_args.model_name_or_path)
|
587 |
+
|
588 |
+
feature_etxractor = AutoFeatureExtractor.from_pretrained(encoder_id)
|
589 |
+
feature_etxractor.save_pretrained(model_args.model_name_or_path)
|
590 |
+
tokenizer = AutoTokenizer.from_pretrained(decoder_id)
|
591 |
+
tokenizer.save_pretrained(model_args.model_name_or_path)
|
592 |
+
|
593 |
+
# 3. Next, let's load the config as we might need it to create
|
594 |
+
# the tokenizer
|
595 |
+
config = AutoConfig.from_pretrained(
|
596 |
+
model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token
|
597 |
+
)
|
598 |
+
|
599 |
+
if is_text_target:
|
600 |
+
# 4. (Optional, for ASR and translation) If no tokenizer file is defined,
|
601 |
+
# we create the vocabulary of the model by extracting all unique characters from
|
602 |
+
# the training and evaluation datasets
|
603 |
+
# We need to make sure that only first rank saves vocabulary
|
604 |
+
# make sure all processes wait until vocab is created
|
605 |
+
tokenizer_name_or_path = model_args.tokenizer_name_or_path
|
606 |
+
tokenizer_kwargs = {}
|
607 |
+
if tokenizer_name_or_path is None:
|
608 |
+
# save vocab in training output dir
|
609 |
+
tokenizer_name_or_path = training_args.output_dir
|
610 |
+
|
611 |
+
vocab_file = os.path.join(tokenizer_name_or_path, "vocab.json")
|
612 |
+
|
613 |
+
with training_args.main_process_first():
|
614 |
+
if training_args.overwrite_output_dir and os.path.isfile(vocab_file):
|
615 |
+
os.remove(vocab_file)
|
616 |
+
|
617 |
+
with training_args.main_process_first(desc="dataset map vocabulary creation"):
|
618 |
+
if not os.path.isfile(vocab_file):
|
619 |
+
os.makedirs(tokenizer_name_or_path, exist_ok=True)
|
620 |
+
vocab_dict = create_vocabulary_from_data(
|
621 |
+
raw_datasets,
|
622 |
+
word_delimiter_token=word_delimiter_token,
|
623 |
+
unk_token=unk_token,
|
624 |
+
pad_token=pad_token,
|
625 |
+
)
|
626 |
+
|
627 |
+
# save vocab dict to be loaded into tokenizer
|
628 |
+
with open(vocab_file, "w") as file:
|
629 |
+
json.dump(vocab_dict, file)
|
630 |
+
|
631 |
+
# if tokenizer has just been created
|
632 |
+
# it is defined by `tokenizer_class` if present in config else by `model_type`
|
633 |
+
if not config.is_encoder_decoder:
|
634 |
+
tokenizer_kwargs = {
|
635 |
+
"config": config if config.tokenizer_class is not None else None,
|
636 |
+
"tokenizer_type": config.model_type if config.tokenizer_class is None else None,
|
637 |
+
"unk_token": unk_token,
|
638 |
+
"pad_token": pad_token,
|
639 |
+
"word_delimiter_token": word_delimiter_token,
|
640 |
+
}
|
641 |
+
else:
|
642 |
+
tokenizer_kwargs = {}
|
643 |
+
|
644 |
+
# 5. Now we can instantiate the feature extractor, tokenizer and model
|
645 |
+
# Note for distributed training, the .from_pretrained methods guarantee that only
|
646 |
+
# one local process can concurrently download model & vocab.
|
647 |
+
|
648 |
+
# load feature_extractor and tokenizer
|
649 |
+
if is_text_target:
|
650 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
651 |
+
tokenizer_name_or_path,
|
652 |
+
use_auth_token=data_args.use_auth_token,
|
653 |
+
**tokenizer_kwargs,
|
654 |
+
)
|
655 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(
|
656 |
+
model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token
|
657 |
+
)
|
658 |
+
|
659 |
+
# adapt config
|
660 |
+
# (speech translation requires pre-configured seq2seq models)
|
661 |
+
if task_name != "covost2":
|
662 |
+
config.update(
|
663 |
+
{
|
664 |
+
"feat_proj_dropout": model_args.feat_proj_dropout,
|
665 |
+
"attention_dropout": model_args.attention_dropout,
|
666 |
+
"hidden_dropout": model_args.hidden_dropout,
|
667 |
+
"final_dropout": model_args.final_dropout,
|
668 |
+
"mask_time_prob": model_args.mask_time_prob,
|
669 |
+
"mask_time_length": model_args.mask_time_length,
|
670 |
+
"mask_feature_prob": model_args.mask_feature_prob,
|
671 |
+
"mask_feature_length": model_args.mask_feature_length,
|
672 |
+
"gradient_checkpointing": training_args.gradient_checkpointing,
|
673 |
+
"layerdrop": model_args.layerdrop,
|
674 |
+
"ctc_zero_infinity": model_args.ctc_zero_infinity,
|
675 |
+
"ctc_loss_reduction": model_args.ctc_loss_reduction,
|
676 |
+
"activation_dropout": model_args.activation_dropout,
|
677 |
+
}
|
678 |
+
)
|
679 |
+
if training_args.do_train:
|
680 |
+
if is_text_target:
|
681 |
+
config.pad_token_id = tokenizer.pad_token_id
|
682 |
+
config.vocab_size = len(tokenizer)
|
683 |
+
else:
|
684 |
+
label_to_id = {v: i for i, v in enumerate(label_list)}
|
685 |
+
config.label2id = label_to_id
|
686 |
+
config.id2label = {id: label for label, id in label_to_id.items()}
|
687 |
+
config.num_labels = num_labels
|
688 |
+
else:
|
689 |
+
config.encoder.update({"hidden_dropout": model_args.hidden_dropout})
|
690 |
+
|
691 |
+
# create model
|
692 |
+
if target_column_name == "transcription":
|
693 |
+
model = AutoModelForCTC.from_pretrained(
|
694 |
+
model_args.model_name_or_path,
|
695 |
+
cache_dir=model_args.cache_dir,
|
696 |
+
config=config,
|
697 |
+
use_auth_token=data_args.use_auth_token,
|
698 |
+
)
|
699 |
+
elif config.is_encoder_decoder:
|
700 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
701 |
+
model_args.model_name_or_path,
|
702 |
+
cache_dir=model_args.cache_dir,
|
703 |
+
config=config,
|
704 |
+
use_auth_token=data_args.use_auth_token,
|
705 |
+
)
|
706 |
+
if model.config.decoder_start_token_id is None:
|
707 |
+
raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined")
|
708 |
+
else:
|
709 |
+
model = AutoModelForAudioClassification.from_pretrained(
|
710 |
+
model_args.model_name_or_path,
|
711 |
+
cache_dir=model_args.cache_dir,
|
712 |
+
config=config,
|
713 |
+
use_auth_token=data_args.use_auth_token,
|
714 |
+
)
|
715 |
+
|
716 |
+
# freeze encoder
|
717 |
+
if model_args.freeze_feature_encoder:
|
718 |
+
model.freeze_feature_encoder()
|
719 |
+
|
720 |
+
# 6. Now we preprocess the datasets including loading the audio, resampling and normalization
|
721 |
+
# Thankfully, `datasets` takes care of automatically loading and resampling the audio,
|
722 |
+
# so that we just need to set the correct target sampling rate and normalize the input
|
723 |
+
# via the `feature_extractor`
|
724 |
+
|
725 |
+
# make sure that dataset decodes audio with correct sampling rate
|
726 |
+
dataset_sampling_rate = next(iter(raw_datasets.values())).features[data_args.audio_column_name].sampling_rate
|
727 |
+
if dataset_sampling_rate != feature_extractor.sampling_rate:
|
728 |
+
raw_datasets = raw_datasets.cast_column(
|
729 |
+
data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate)
|
730 |
+
)
|
731 |
+
|
732 |
+
# derive max & min input length for sample rate & max duration
|
733 |
+
max_input_length = data_args.max_duration_in_seconds * feature_extractor.sampling_rate
|
734 |
+
min_input_length = data_args.min_duration_in_seconds * feature_extractor.sampling_rate
|
735 |
+
audio_column_name = data_args.audio_column_name
|
736 |
+
|
737 |
+
# `phoneme_language` is only relevant if the model is fine-tuned on phoneme classification
|
738 |
+
phoneme_language = data_args.phoneme_language
|
739 |
+
|
740 |
+
# Preprocessing the datasets.
|
741 |
+
# We need to read the audio files as arrays and tokenize the targets.
|
742 |
+
def prepare_dataset(batch):
|
743 |
+
# load audio
|
744 |
+
sample = batch[audio_column_name]
|
745 |
+
|
746 |
+
inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"])
|
747 |
+
batch["input_values"] = inputs.input_values[0]
|
748 |
+
batch["length"] = len(batch["input_values"])
|
749 |
+
|
750 |
+
# encode targets
|
751 |
+
additional_kwargs = {}
|
752 |
+
if phoneme_language is not None:
|
753 |
+
additional_kwargs["phonemizer_lang"] = phoneme_language
|
754 |
+
|
755 |
+
if is_text_target:
|
756 |
+
batch["labels"] = tokenizer(batch["target_text"], **additional_kwargs).input_ids
|
757 |
+
else:
|
758 |
+
batch["labels"] = batch[target_column_name]
|
759 |
+
|
760 |
+
batch["lang"] = batch["lang_id"]
|
761 |
+
|
762 |
+
return batch
|
763 |
+
|
764 |
+
with training_args.main_process_first(desc="dataset map preprocessing"):
|
765 |
+
vectorized_datasets = raw_datasets.map(
|
766 |
+
prepare_dataset,
|
767 |
+
remove_columns=next(iter(raw_datasets.values())).column_names,
|
768 |
+
num_proc=num_workers,
|
769 |
+
desc="preprocess datasets",
|
770 |
+
)
|
771 |
+
|
772 |
+
if training_args.do_train:
|
773 |
+
|
774 |
+
def is_audio_in_length_range(length):
|
775 |
+
return length > min_input_length and length < max_input_length
|
776 |
+
|
777 |
+
# filter data that is shorter than min_input_length
|
778 |
+
vectorized_datasets["train"] = vectorized_datasets["train"].filter(
|
779 |
+
is_audio_in_length_range,
|
780 |
+
num_proc=num_workers,
|
781 |
+
input_columns=["length"],
|
782 |
+
)
|
783 |
+
|
784 |
+
# 7. Next, we can prepare for the training step.
|
785 |
+
# Let's use the appropriate XTREME-S evaluation metric,
|
786 |
+
# instantiate a data collator and the trainer
|
787 |
+
|
788 |
+
# Define evaluation metrics during training, *i.e.* word error rate, character error rate
|
789 |
+
eval_metric = load_metric("xtreme_s", task_name)
|
790 |
+
|
791 |
+
# for large datasets it is advised to run the preprocessing on a
|
792 |
+
# single machine first with ``args.preprocessing_only`` since there will mostly likely
|
793 |
+
# be a timeout when running the script in distributed mode.
|
794 |
+
# In a second step ``args.preprocessing_only`` can then be set to `False` to load the
|
795 |
+
# cached dataset
|
796 |
+
if data_args.preprocessing_only:
|
797 |
+
logger.info(f"Data preprocessing finished. Files cached at {vectorized_datasets.cache_files}")
|
798 |
+
return
|
799 |
+
|
800 |
+
def asr_logits_argmax(logits, labels):
|
801 |
+
return logits.argmax(dim=-1)
|
802 |
+
|
803 |
+
def compute_asr_metric(pred):
|
804 |
+
pred.label_ids[pred.label_ids == -100] = tokenizer.pad_token_id
|
805 |
+
|
806 |
+
pred_str = tokenizer.batch_decode(pred.predictions)
|
807 |
+
# we do not want to group tokens when computing the metrics
|
808 |
+
label_str = tokenizer.batch_decode(pred.label_ids, group_tokens=False)
|
809 |
+
|
810 |
+
metric = eval_metric.compute(predictions=pred_str, references=label_str)
|
811 |
+
return metric
|
812 |
+
|
813 |
+
def compute_classification_metric(pred):
|
814 |
+
pred_ids = np.argmax(pred.predictions, axis=1)
|
815 |
+
metric = eval_metric.compute(predictions=pred_ids, references=pred.label_ids)
|
816 |
+
return metric
|
817 |
+
|
818 |
+
# Now save everything to be able to create a single processor later
|
819 |
+
if is_main_process(training_args.local_rank):
|
820 |
+
# save feature extractor, tokenizer and config
|
821 |
+
feature_extractor.save_pretrained(training_args.output_dir)
|
822 |
+
if is_text_target:
|
823 |
+
tokenizer.save_pretrained(training_args.output_dir)
|
824 |
+
config.save_pretrained(training_args.output_dir)
|
825 |
+
# wait until configs are saved in the main process before loading the processor
|
826 |
+
if training_args.local_rank != -1:
|
827 |
+
torch.distributed.barrier()
|
828 |
+
|
829 |
+
if is_text_target:
|
830 |
+
processor = AutoProcessor.from_pretrained(training_args.output_dir)
|
831 |
+
else:
|
832 |
+
processor = AutoFeatureExtractor.from_pretrained(training_args.output_dir)
|
833 |
+
|
834 |
+
# Instantiate custom data collator
|
835 |
+
data_collator = SpeechDataCollatorWithPadding(processor=processor, pad_labels=is_text_target)
|
836 |
+
|
837 |
+
# Initialize Trainer
|
838 |
+
if target_column_name == "translation":
|
839 |
+
trainer = Seq2SeqTrainer(
|
840 |
+
model=model,
|
841 |
+
data_collator=data_collator,
|
842 |
+
args=training_args,
|
843 |
+
preprocess_logits_for_metrics=asr_logits_argmax if training_args.predict_with_generate else None,
|
844 |
+
compute_metrics=compute_asr_metric if training_args.predict_with_generate else None,
|
845 |
+
train_dataset=vectorized_datasets["train"] if training_args.do_train else None,
|
846 |
+
eval_dataset=vectorized_datasets["eval"] if training_args.do_eval else None,
|
847 |
+
tokenizer=feature_extractor,
|
848 |
+
)
|
849 |
+
else:
|
850 |
+
trainer = Trainer(
|
851 |
+
model=model,
|
852 |
+
data_collator=data_collator,
|
853 |
+
args=training_args,
|
854 |
+
preprocess_logits_for_metrics=asr_logits_argmax if is_text_target else None,
|
855 |
+
compute_metrics=compute_asr_metric if is_text_target else compute_classification_metric,
|
856 |
+
train_dataset=vectorized_datasets["train"] if training_args.do_train else None,
|
857 |
+
eval_dataset=vectorized_datasets["eval"] if training_args.do_eval else None,
|
858 |
+
tokenizer=feature_extractor,
|
859 |
+
)
|
860 |
+
|
861 |
+
# 8. Finally, we can start training
|
862 |
+
|
863 |
+
# Training
|
864 |
+
if training_args.do_train:
|
865 |
+
|
866 |
+
# use last checkpoint if exist
|
867 |
+
if last_checkpoint is not None:
|
868 |
+
checkpoint = last_checkpoint
|
869 |
+
elif os.path.isdir(model_args.model_name_or_path):
|
870 |
+
checkpoint = model_args.model_name_or_path
|
871 |
+
else:
|
872 |
+
checkpoint = None
|
873 |
+
|
874 |
+
train_result = trainer.train(resume_from_checkpoint=checkpoint)
|
875 |
+
trainer.save_model()
|
876 |
+
|
877 |
+
metrics = train_result.metrics
|
878 |
+
max_train_samples = (
|
879 |
+
data_args.max_train_samples
|
880 |
+
if data_args.max_train_samples is not None
|
881 |
+
else len(vectorized_datasets["train"])
|
882 |
+
)
|
883 |
+
metrics["train_samples"] = min(max_train_samples, len(vectorized_datasets["train"]))
|
884 |
+
|
885 |
+
trainer.log_metrics("train", metrics)
|
886 |
+
trainer.save_metrics("train", metrics)
|
887 |
+
trainer.save_state()
|
888 |
+
|
889 |
+
# Evaluation on the test set
|
890 |
+
results = {}
|
891 |
+
if training_args.do_predict:
|
892 |
+
logger.info(f"*** Evaluating on the `{data_args.predict_split_name}` set ***")
|
893 |
+
if data_args.per_lang_metrics:
|
894 |
+
# separate the `test` dataset into language-specific subsets and compute metrics for each of them
|
895 |
+
metrics = {}
|
896 |
+
average_metrics = defaultdict(list)
|
897 |
+
for lang_id in range(len(lang_list)):
|
898 |
+
lang_name = lang_list[lang_id]
|
899 |
+
with training_args.main_process_first(desc="per-language dataset filter"):
|
900 |
+
lang_dataset = vectorized_datasets["predict"].filter(
|
901 |
+
lambda lang: lang == lang_id,
|
902 |
+
num_proc=num_workers,
|
903 |
+
input_columns=["lang"],
|
904 |
+
)
|
905 |
+
lang_metrics = trainer.evaluate(lang_dataset)
|
906 |
+
redundant_metrics = ["eval_runtime", "eval_samples_per_second", "eval_steps_per_second", "eval_epoch"]
|
907 |
+
for metric_name, value in lang_metrics.items():
|
908 |
+
average_metrics[metric_name].append(value)
|
909 |
+
if metric_name not in redundant_metrics:
|
910 |
+
metrics[f"{metric_name}_{lang_name}"] = value
|
911 |
+
for metric_name, value in average_metrics.items():
|
912 |
+
metrics[metric_name] = np.mean(value)
|
913 |
+
else:
|
914 |
+
metrics = trainer.evaluate(vectorized_datasets["predict"])
|
915 |
+
max_predict_samples = (
|
916 |
+
data_args.max_predict_samples
|
917 |
+
if data_args.max_predict_samples is not None
|
918 |
+
else len(vectorized_datasets["predict"])
|
919 |
+
)
|
920 |
+
metrics["predict_samples"] = min(max_predict_samples, len(vectorized_datasets["predict"]))
|
921 |
+
|
922 |
+
# make sure that the `predict` metrics end up in the log history for the model card
|
923 |
+
trainer.log(OrderedDict(sorted(metrics.items())))
|
924 |
+
|
925 |
+
trainer.log_metrics("predict", metrics)
|
926 |
+
trainer.save_metrics("predict", metrics)
|
927 |
+
|
928 |
+
# Write model card and (optionally) push to hub
|
929 |
+
kwargs = {
|
930 |
+
"finetuned_from": model_args.model_name_or_path,
|
931 |
+
"tasks": task_name,
|
932 |
+
"tags": [task_name, data_args.dataset_name],
|
933 |
+
"dataset_args": f"Config: {config_name}, Training split: {data_args.train_split_name}, Eval split: {data_args.eval_split_name}, Predict split: {data_args.predict_split_name}",
|
934 |
+
"dataset": f"{data_args.dataset_name.upper()} - {config_name.upper()}",
|
935 |
+
"language": data_args.language,
|
936 |
+
}
|
937 |
+
|
938 |
+
if training_args.push_to_hub:
|
939 |
+
trainer.push_to_hub(**kwargs)
|
940 |
+
else:
|
941 |
+
trainer.create_model_card(**kwargs)
|
942 |
+
|
943 |
+
return results
|
944 |
+
|
945 |
+
|
946 |
+
if __name__ == "__main__":
|
947 |
+
main()
|
948 |
+
|
runs/May03_17-16-03_sanchit--v100/1651598448.3713684/events.out.tfevents.1651598448.sanchit--v100.42221.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ea167348a68dc064903b7a4500be8967f52e37932e357739fc5e86418ffd5fde
|
3 |
+
size 5184
|
runs/May03_17-16-03_sanchit--v100/events.out.tfevents.1651598448.sanchit--v100.42221.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dff672b4cd76795691566537e009fdc3f176349f08439c6863a345fed62d8a29
|
3 |
+
size 88290
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "sep_token": "</s>", "pad_token": "<pad>", "cls_token": "<s>", "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": false}}
|
sweep.yaml
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
command:
|
2 |
+
- python3
|
3 |
+
- ${program}
|
4 |
+
- --overwrite_output_dir
|
5 |
+
- --freeze_feature_encoder
|
6 |
+
- --gradient_checkpointing
|
7 |
+
- --predict_with_generate
|
8 |
+
- --fp16
|
9 |
+
- --group_by_length
|
10 |
+
- --do_train
|
11 |
+
- --do_eval
|
12 |
+
- --load_best_model_at_end
|
13 |
+
- --push_to_hub
|
14 |
+
- --use_auth_token
|
15 |
+
- ${args}
|
16 |
+
method: random
|
17 |
+
metric:
|
18 |
+
goal: maximize
|
19 |
+
name: eval/bleu
|
20 |
+
parameters:
|
21 |
+
model_name_or_path:
|
22 |
+
value: ./
|
23 |
+
task:
|
24 |
+
value: covost2
|
25 |
+
language:
|
26 |
+
value: fr.en
|
27 |
+
eval_split_name:
|
28 |
+
value: test
|
29 |
+
output_dir:
|
30 |
+
value: ./output_dir
|
31 |
+
num_train_epochs:
|
32 |
+
value: 3
|
33 |
+
per_device_train_batch_size:
|
34 |
+
value: 4
|
35 |
+
per_device_eval_batch_size:
|
36 |
+
value: 4
|
37 |
+
gradient_accumulation_steps:
|
38 |
+
value: 8
|
39 |
+
generation_max_length:
|
40 |
+
value: 40
|
41 |
+
generation_num_beams:
|
42 |
+
value: 1
|
43 |
+
learning_rate:
|
44 |
+
distribution: log_uniform
|
45 |
+
max: -6.9
|
46 |
+
min: -9.2
|
47 |
+
hidden_dropout:
|
48 |
+
distribution: log_uniform
|
49 |
+
max: -1.6
|
50 |
+
min: -3.4
|
51 |
+
warmup_steps:
|
52 |
+
value: 500
|
53 |
+
evaluation_strategy:
|
54 |
+
value: steps
|
55 |
+
max_duration_in_seconds:
|
56 |
+
value: 20
|
57 |
+
save_steps:
|
58 |
+
value: 500
|
59 |
+
eval_steps:
|
60 |
+
value: 500
|
61 |
+
logging_steps:
|
62 |
+
value: 1
|
63 |
+
metric_for_best_model:
|
64 |
+
value: bleu
|
65 |
+
greater_is_better:
|
66 |
+
value: True
|
67 |
+
program: run_xtreme_s.py
|
68 |
+
project: xtreme_s_xlsr_2_bart_covost2_fr_en
|
69 |
+
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"errors": "replace", "bos_token": "<s>", "eos_token": "</s>", "sep_token": "</s>", "cls_token": "<s>", "unk_token": "<unk>", "pad_token": "<pad>", "mask_token": "<mask>", "add_prefix_space": false, "trim_offsets": true, "model_max_length": 1024, "special_tokens_map_file": null, "name_or_path": "./", "tokenizer_class": "BartTokenizer"}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c92db708d094fc9c984268e3892bb61b788af2f22d46c8a70029d68f2645d771
|
3 |
+
size 3247
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
wandb/debug-internal.log
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
run-20220503_172048-zotxt8wa/logs/debug-internal.log
|
wandb/debug.log
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
run-20220503_172048-zotxt8wa/logs/debug.log
|
wandb/latest-run
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
run-20220503_172048-zotxt8wa
|
wandb/run-20220503_172048-zotxt8wa/files/config.yaml
ADDED
The diff for this file is too large to render.
See raw diff
|
|
wandb/run-20220503_172048-zotxt8wa/files/output.log
ADDED
The diff for this file is too large to render.
See raw diff
|
|
wandb/run-20220503_172048-zotxt8wa/files/requirements.txt
ADDED
@@ -0,0 +1,287 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
absl-py==1.0.0
|
2 |
+
aiohttp==3.8.1
|
3 |
+
aiosignal==1.2.0
|
4 |
+
alembic==1.7.7
|
5 |
+
anyio==3.5.0
|
6 |
+
appdirs==1.4.4
|
7 |
+
apscheduler==3.9.1
|
8 |
+
argon2-cffi-bindings==21.2.0
|
9 |
+
argon2-cffi==21.3.0
|
10 |
+
arrow==1.2.2
|
11 |
+
asttokens==2.0.5
|
12 |
+
astunparse==1.6.3
|
13 |
+
async-timeout==4.0.2
|
14 |
+
attrs==21.4.0
|
15 |
+
audioread==2.1.9
|
16 |
+
autopage==0.5.0
|
17 |
+
babel==2.9.1
|
18 |
+
backcall==0.2.0
|
19 |
+
backoff==1.11.1
|
20 |
+
binaryornot==0.4.4
|
21 |
+
bitsandbytes-cuda113==0.26.0
|
22 |
+
black==22.1.0
|
23 |
+
bleach==4.1.0
|
24 |
+
boto3==1.16.34
|
25 |
+
botocore==1.19.63
|
26 |
+
brotli==1.0.9
|
27 |
+
cachetools==5.0.0
|
28 |
+
certifi==2021.10.8
|
29 |
+
cffi==1.15.0
|
30 |
+
chardet==4.0.0
|
31 |
+
charset-normalizer==2.0.11
|
32 |
+
chex==0.1.0
|
33 |
+
click==8.0.3
|
34 |
+
cliff==3.10.1
|
35 |
+
clldutils==3.10.1
|
36 |
+
cmaes==0.8.2
|
37 |
+
cmd2==2.4.0
|
38 |
+
codecarbon==1.2.0
|
39 |
+
colorlog==6.6.0
|
40 |
+
cookiecutter==1.7.3
|
41 |
+
cryptography==36.0.2
|
42 |
+
csvw==1.11.0
|
43 |
+
cycler==0.11.0
|
44 |
+
dash-bootstrap-components==1.1.0
|
45 |
+
dash-core-components==2.0.0
|
46 |
+
dash-html-components==2.0.0
|
47 |
+
dash-table==5.0.0
|
48 |
+
dash==2.3.1
|
49 |
+
datasets==2.1.1.dev0
|
50 |
+
debugpy==1.5.1
|
51 |
+
decorator==5.1.1
|
52 |
+
defusedxml==0.7.1
|
53 |
+
deprecated==1.2.13
|
54 |
+
dill==0.3.4
|
55 |
+
dlinfo==1.2.1
|
56 |
+
dm-tree==0.1.6
|
57 |
+
docker-pycreds==0.4.0
|
58 |
+
docker==4.4.4
|
59 |
+
entrypoints==0.4
|
60 |
+
execnet==1.9.0
|
61 |
+
executing==0.8.2
|
62 |
+
faiss-cpu==1.7.2
|
63 |
+
filelock==3.4.2
|
64 |
+
fire==0.4.0
|
65 |
+
flake8==4.0.1
|
66 |
+
flask-compress==1.11
|
67 |
+
flask==2.1.1
|
68 |
+
flatbuffers==1.12
|
69 |
+
flax==0.4.0
|
70 |
+
fonttools==4.29.1
|
71 |
+
frozenlist==1.3.0
|
72 |
+
fsspec==2022.1.0
|
73 |
+
fugashi==1.1.2
|
74 |
+
gast==0.5.3
|
75 |
+
gitdb==4.0.9
|
76 |
+
gitpython==3.1.18
|
77 |
+
google-auth-oauthlib==0.4.6
|
78 |
+
google-auth==2.6.0
|
79 |
+
google-pasta==0.2.0
|
80 |
+
greenlet==1.1.2
|
81 |
+
grpcio==1.43.0
|
82 |
+
h5py==3.6.0
|
83 |
+
hf-doc-builder==0.2.0
|
84 |
+
huggingface-hub==0.4.0
|
85 |
+
hypothesis==6.36.1
|
86 |
+
idna==3.3
|
87 |
+
importlib-metadata==4.10.1
|
88 |
+
iniconfig==1.1.1
|
89 |
+
ipadic==1.0.0
|
90 |
+
ipdb==0.13.9
|
91 |
+
ipykernel==6.8.0
|
92 |
+
ipython-genutils==0.2.0
|
93 |
+
ipython==8.0.1
|
94 |
+
ipywidgets==7.6.5
|
95 |
+
isodate==0.6.1
|
96 |
+
isort==5.10.1
|
97 |
+
itsdangerous==2.1.2
|
98 |
+
jax==0.2.28
|
99 |
+
jaxlib==0.1.76+cuda11.cudnn82
|
100 |
+
jedi==0.18.1
|
101 |
+
jinja2-time==0.2.0
|
102 |
+
jinja2==3.0.3
|
103 |
+
jiwer==2.3.0
|
104 |
+
jmespath==0.10.0
|
105 |
+
joblib==1.1.0
|
106 |
+
json5==0.9.6
|
107 |
+
jsonschema==4.4.0
|
108 |
+
jupyter-client==7.1.2
|
109 |
+
jupyter-console==6.4.0
|
110 |
+
jupyter-core==4.9.1
|
111 |
+
jupyter-server==1.13.5
|
112 |
+
jupyter==1.0.0
|
113 |
+
jupyterlab-pygments==0.1.2
|
114 |
+
jupyterlab-server==2.10.3
|
115 |
+
jupyterlab-widgets==1.0.2
|
116 |
+
jupyterlab==3.2.9
|
117 |
+
keras-preprocessing==1.1.2
|
118 |
+
keras==2.8.0
|
119 |
+
kiwisolver==1.3.2
|
120 |
+
kubernetes==12.0.1
|
121 |
+
libclang==13.0.0
|
122 |
+
librosa==0.8.1
|
123 |
+
llvmlite==0.38.0
|
124 |
+
mako==1.2.0
|
125 |
+
markdown==3.3.6
|
126 |
+
markupsafe==2.0.1
|
127 |
+
matplotlib-inline==0.1.3
|
128 |
+
matplotlib==3.5.1
|
129 |
+
mccabe==0.6.1
|
130 |
+
mistune==0.8.4
|
131 |
+
msgpack==1.0.3
|
132 |
+
multidict==6.0.2
|
133 |
+
multiprocess==0.70.12.2
|
134 |
+
mypy-extensions==0.4.3
|
135 |
+
nbclassic==0.3.5
|
136 |
+
nbclient==0.5.10
|
137 |
+
nbconvert==6.4.1
|
138 |
+
nbformat==5.1.3
|
139 |
+
nest-asyncio==1.5.4
|
140 |
+
nltk==3.7
|
141 |
+
notebook==6.4.8
|
142 |
+
numba==0.55.1
|
143 |
+
numpy==1.21.5
|
144 |
+
oauthlib==3.2.0
|
145 |
+
onnx==1.11.0
|
146 |
+
onnxconverter-common==1.9.0
|
147 |
+
opt-einsum==3.3.0
|
148 |
+
optax==0.1.0
|
149 |
+
optuna==2.10.0
|
150 |
+
packaging==21.3
|
151 |
+
pandas==1.4.0
|
152 |
+
pandocfilters==1.5.0
|
153 |
+
parameterized==0.8.1
|
154 |
+
parso==0.8.3
|
155 |
+
pathspec==0.9.0
|
156 |
+
pathtools==0.1.2
|
157 |
+
pbr==5.8.1
|
158 |
+
pexpect==4.8.0
|
159 |
+
phonemizer==3.0.1
|
160 |
+
pickleshare==0.7.5
|
161 |
+
pillow==9.0.0
|
162 |
+
pint==0.16.1
|
163 |
+
pip==22.0.2
|
164 |
+
pkg-resources==0.0.0
|
165 |
+
plac==1.3.5
|
166 |
+
platformdirs==2.4.1
|
167 |
+
plotly==5.6.0
|
168 |
+
pluggy==1.0.0
|
169 |
+
pooch==1.6.0
|
170 |
+
portalocker==2.0.0
|
171 |
+
poyo==0.5.0
|
172 |
+
prettytable==3.2.0
|
173 |
+
prometheus-client==0.13.1
|
174 |
+
promise==2.3
|
175 |
+
prompt-toolkit==3.0.26
|
176 |
+
protobuf==3.19.4
|
177 |
+
psutil==5.9.0
|
178 |
+
ptyprocess==0.7.0
|
179 |
+
pure-eval==0.2.2
|
180 |
+
py-cpuinfo==8.0.0
|
181 |
+
py==1.11.0
|
182 |
+
pyarrow==6.0.1
|
183 |
+
pyasn1-modules==0.2.8
|
184 |
+
pyasn1==0.4.8
|
185 |
+
pycodestyle==2.8.0
|
186 |
+
pycparser==2.21
|
187 |
+
pyctcdecode==0.3.0
|
188 |
+
pyflakes==2.4.0
|
189 |
+
pygments==2.11.2
|
190 |
+
pygtrie==2.4.2
|
191 |
+
pynvml==11.4.1
|
192 |
+
pyopenssl==22.0.0
|
193 |
+
pyparsing==3.0.7
|
194 |
+
pyperclip==1.8.2
|
195 |
+
pypng==0.0.21
|
196 |
+
pyrsistent==0.18.1
|
197 |
+
pytest-forked==1.4.0
|
198 |
+
pytest-timeout==2.1.0
|
199 |
+
pytest-xdist==2.5.0
|
200 |
+
pytest==7.1.1
|
201 |
+
python-dateutil==2.8.2
|
202 |
+
python-levenshtein==0.12.2
|
203 |
+
python-slugify==6.1.1
|
204 |
+
pytz-deprecation-shim==0.1.0.post0
|
205 |
+
pytz==2021.3
|
206 |
+
pyyaml==5.4.1
|
207 |
+
pyzmq==22.3.0
|
208 |
+
qtconsole==5.2.2
|
209 |
+
qtpy==2.0.1
|
210 |
+
ray==1.11.0
|
211 |
+
redis==4.2.2
|
212 |
+
regex==2022.1.18
|
213 |
+
requests-oauthlib==1.3.1
|
214 |
+
requests==2.27.1
|
215 |
+
resampy==0.2.2
|
216 |
+
responses==0.18.0
|
217 |
+
rfc3986==2.0.0
|
218 |
+
rouge-score==0.0.4
|
219 |
+
rsa==4.8
|
220 |
+
s3transfer==0.3.7
|
221 |
+
sacrebleu==1.5.1
|
222 |
+
sacremoses==0.0.47
|
223 |
+
scikit-learn==1.0.2
|
224 |
+
scipy==1.7.3
|
225 |
+
segments==2.2.0
|
226 |
+
send2trash==1.8.0
|
227 |
+
sentencepiece==0.1.96
|
228 |
+
sentry-sdk==1.5.6
|
229 |
+
setuptools==44.1.1
|
230 |
+
shortuuid==1.0.8
|
231 |
+
sigopt==8.3.0
|
232 |
+
six==1.16.0
|
233 |
+
smmap==5.0.0
|
234 |
+
sniffio==1.2.0
|
235 |
+
sortedcontainers==2.4.0
|
236 |
+
soundfile==0.10.3.post1
|
237 |
+
sqlalchemy==1.4.34
|
238 |
+
stack-data==0.1.4
|
239 |
+
stevedore==3.5.0
|
240 |
+
tabulate==0.8.9
|
241 |
+
tenacity==8.0.1
|
242 |
+
tensorboard-data-server==0.6.1
|
243 |
+
tensorboard-plugin-wit==1.8.1
|
244 |
+
tensorboard==2.8.0
|
245 |
+
tensorboardx==2.5
|
246 |
+
tensorflow-io-gcs-filesystem==0.24.0
|
247 |
+
tensorflow==2.8.0
|
248 |
+
termcolor==1.1.0
|
249 |
+
terminado==0.13.1
|
250 |
+
testpath==0.5.0
|
251 |
+
text-unidecode==1.3
|
252 |
+
tf-estimator-nightly==2.8.0.dev2021122109
|
253 |
+
tf2onnx==1.9.3
|
254 |
+
threadpoolctl==3.1.0
|
255 |
+
timeout-decorator==0.5.0
|
256 |
+
timm==0.5.4
|
257 |
+
tokenizers==0.11.4
|
258 |
+
toml==0.10.2
|
259 |
+
tomli==2.0.0
|
260 |
+
toolz==0.11.2
|
261 |
+
torch==1.10.2+cu113
|
262 |
+
torchaudio==0.10.2+cu113
|
263 |
+
torchvision==0.11.3
|
264 |
+
tornado==6.1
|
265 |
+
tqdm==4.62.3
|
266 |
+
traitlets==5.1.1
|
267 |
+
transformers==4.18.0.dev0
|
268 |
+
typing-extensions==3.10.0.2
|
269 |
+
tzdata==2022.1
|
270 |
+
tzlocal==4.2
|
271 |
+
unidic-lite==1.0.8
|
272 |
+
unidic==1.1.0
|
273 |
+
uritemplate==4.1.1
|
274 |
+
urllib3==1.26.8
|
275 |
+
wandb==0.12.10
|
276 |
+
wasabi==0.9.1
|
277 |
+
wcwidth==0.2.5
|
278 |
+
webencodings==0.5.1
|
279 |
+
websocket-client==1.2.3
|
280 |
+
werkzeug==2.0.2
|
281 |
+
wheel==0.37.1
|
282 |
+
widgetsnbextension==3.5.2
|
283 |
+
wrapt==1.14.0
|
284 |
+
xxhash==2.0.2
|
285 |
+
yarl==1.7.2
|
286 |
+
yaspin==2.1.0
|
287 |
+
zipp==3.7.0
|
wandb/run-20220503_172048-zotxt8wa/files/wandb-metadata.json
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"os": "Linux-5.11.0-1028-gcp-x86_64-with-glibc2.33",
|
3 |
+
"python": "3.9.5",
|
4 |
+
"heartbeatAt": "2022-05-03T17:20:52.153839",
|
5 |
+
"startedAt": "2022-05-03T17:20:48.627760",
|
6 |
+
"docker": null,
|
7 |
+
"gpu": "Tesla V100-SXM2-16GB",
|
8 |
+
"gpu_count": 2,
|
9 |
+
"cpu_count": 16,
|
10 |
+
"cuda": null,
|
11 |
+
"args": [
|
12 |
+
"--overwrite_output_dir",
|
13 |
+
"--freeze_feature_encoder",
|
14 |
+
"--gradient_checkpointing",
|
15 |
+
"--predict_with_generate",
|
16 |
+
"--fp16",
|
17 |
+
"--group_by_length",
|
18 |
+
"--do_train",
|
19 |
+
"--do_eval",
|
20 |
+
"--load_best_model_at_end",
|
21 |
+
"--push_to_hub",
|
22 |
+
"--use_auth_token",
|
23 |
+
"--eval_split_name=test",
|
24 |
+
"--eval_steps=500",
|
25 |
+
"--evaluation_strategy=steps",
|
26 |
+
"--generation_max_length=40",
|
27 |
+
"--generation_num_beams=1",
|
28 |
+
"--gradient_accumulation_steps=8",
|
29 |
+
"--greater_is_better=True",
|
30 |
+
"--hidden_dropout=0.1742341660721257",
|
31 |
+
"--language=fr.en",
|
32 |
+
"--learning_rate=0.00035649266341974674",
|
33 |
+
"--logging_steps=1",
|
34 |
+
"--max_duration_in_seconds=20",
|
35 |
+
"--metric_for_best_model=bleu",
|
36 |
+
"--model_name_or_path=./",
|
37 |
+
"--num_train_epochs=3",
|
38 |
+
"--output_dir=./",
|
39 |
+
"--per_device_eval_batch_size=4",
|
40 |
+
"--per_device_train_batch_size=4",
|
41 |
+
"--save_steps=500",
|
42 |
+
"--task=covost2",
|
43 |
+
"--warmup_steps=500"
|
44 |
+
],
|
45 |
+
"state": "running",
|
46 |
+
"program": "/home/sanchit_huggingface_co/xtreme_s_xlsr_2_bart_covost2_fr_en_2/run_xtreme_s.py",
|
47 |
+
"codePath": "run_xtreme_s.py",
|
48 |
+
"git": {
|
49 |
+
"remote": "https://huggingface.co/sanchit-gandhi/xtreme_s_xlsr_2_bart_covost2_fr_en_2",
|
50 |
+
"commit": "4a1e53efb07a7f21a4565c7cde36af76fa2f74ac"
|
51 |
+
},
|
52 |
+
"email": "sanchit@huggingface.co",
|
53 |
+
"root": "/home/sanchit_huggingface_co/xtreme_s_xlsr_2_bart_covost2_fr_en_2",
|
54 |
+
"host": "sanchit--v100",
|
55 |
+
"username": "sanchit_huggingface_co",
|
56 |
+
"executable": "/home/sanchit_huggingface_co/gcp/bin/python3"
|
57 |
+
}
|
wandb/run-20220503_172048-zotxt8wa/files/wandb-summary.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
wandb/run-20220503_172048-zotxt8wa/logs/debug-internal.log
ADDED
The diff for this file is too large to render.
See raw diff
|
|
wandb/run-20220503_172048-zotxt8wa/logs/debug.log
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2022-05-03 17:20:48,630 INFO MainThread:42221 [wandb_setup.py:_flush():75] Loading settings from /home/sanchit_huggingface_co/.config/wandb/settings
|
2 |
+
2022-05-03 17:20:48,630 INFO MainThread:42221 [wandb_setup.py:_flush():75] Loading settings from wandb/settings
|
3 |
+
2022-05-03 17:20:48,630 INFO MainThread:42221 [wandb_setup.py:_flush():75] Loading settings from environment variables: {'entity': 'sanchit-gandhi', 'project': 'xtreme_s_xlsr_2_bart_covost2_fr_en', 'sweep_id': '39ci3gkf', 'root_dir': '/home/sanchit_huggingface_co/xtreme_s_xlsr_2_bart_covost2_fr_en_2', 'run_id': 'zotxt8wa', 'sweep_param_path': '/home/sanchit_huggingface_co/xtreme_s_xlsr_2_bart_covost2_fr_en_2/wandb/sweep-39ci3gkf/config-zotxt8wa.yaml'}
|
4 |
+
2022-05-03 17:20:48,630 INFO MainThread:42221 [wandb_setup.py:_flush():75] Inferring run settings from compute environment: {'program_relpath': 'run_xtreme_s.py', 'program': '/home/sanchit_huggingface_co/xtreme_s_xlsr_2_bart_covost2_fr_en_2/run_xtreme_s.py'}
|
5 |
+
2022-05-03 17:20:48,630 INFO MainThread:42221 [wandb_init.py:_log_setup():386] Logging user logs to /home/sanchit_huggingface_co/xtreme_s_xlsr_2_bart_covost2_fr_en_2/wandb/run-20220503_172048-zotxt8wa/logs/debug.log
|
6 |
+
2022-05-03 17:20:48,630 INFO MainThread:42221 [wandb_init.py:_log_setup():387] Logging internal logs to /home/sanchit_huggingface_co/xtreme_s_xlsr_2_bart_covost2_fr_en_2/wandb/run-20220503_172048-zotxt8wa/logs/debug-internal.log
|
7 |
+
2022-05-03 17:20:48,630 INFO MainThread:42221 [wandb_init.py:init():420] calling init triggers
|
8 |
+
2022-05-03 17:20:48,630 INFO MainThread:42221 [wandb_init.py:init():425] wandb.init called with sweep_config: {'eval_split_name': 'test', 'eval_steps': 500, 'evaluation_strategy': 'steps', 'generation_max_length': 40, 'generation_num_beams': 1, 'gradient_accumulation_steps': 8, 'greater_is_better': True, 'hidden_dropout': 0.1742341660721257, 'language': 'fr.en', 'learning_rate': 0.00035649266341974674, 'logging_steps': 1, 'max_duration_in_seconds': 20, 'metric_for_best_model': 'bleu', 'model_name_or_path': './', 'num_train_epochs': 3, 'output_dir': './', 'per_device_eval_batch_size': 4, 'per_device_train_batch_size': 4, 'save_steps': 500, 'task': 'covost2', 'warmup_steps': 500}
|
9 |
+
config: {}
|
10 |
+
2022-05-03 17:20:48,630 INFO MainThread:42221 [wandb_init.py:init():471] starting backend
|
11 |
+
2022-05-03 17:20:48,630 INFO MainThread:42221 [backend.py:_multiprocessing_setup():99] multiprocessing start_methods=fork,spawn,forkserver, using: spawn
|
12 |
+
2022-05-03 17:20:48,711 INFO MainThread:42221 [backend.py:ensure_launched():219] starting backend process...
|
13 |
+
2022-05-03 17:20:48,796 INFO MainThread:42221 [backend.py:ensure_launched():224] started backend process with pid: 42489
|
14 |
+
2022-05-03 17:20:48,798 INFO MainThread:42221 [wandb_init.py:init():480] backend started and connected
|
15 |
+
2022-05-03 17:20:48,801 INFO MainThread:42221 [wandb_run.py:_config_callback():966] config_cb None None {'eval_split_name': 'test', 'eval_steps': 500, 'evaluation_strategy': 'steps', 'generation_max_length': 40, 'generation_num_beams': 1, 'gradient_accumulation_steps': 8, 'greater_is_better': True, 'hidden_dropout': 0.1742341660721257, 'language': 'fr.en', 'learning_rate': 0.00035649266341974674, 'logging_steps': 1, 'max_duration_in_seconds': 20, 'metric_for_best_model': 'bleu', 'model_name_or_path': './', 'num_train_epochs': 3, 'output_dir': './', 'per_device_eval_batch_size': 4, 'per_device_train_batch_size': 4, 'save_steps': 500, 'task': 'covost2', 'warmup_steps': 500}
|
16 |
+
2022-05-03 17:20:48,815 INFO MainThread:42221 [wandb_init.py:init():550] updated telemetry
|
17 |
+
2022-05-03 17:20:48,995 INFO MainThread:42221 [wandb_init.py:init():581] communicating current version
|
18 |
+
2022-05-03 17:20:49,748 INFO MainThread:42221 [wandb_init.py:init():586] got version response upgrade_message: "wandb version 0.12.16 is available! To upgrade, please run:\n $ pip install wandb --upgrade"
|
19 |
+
|
20 |
+
2022-05-03 17:20:49,748 INFO MainThread:42221 [wandb_init.py:init():596] communicating run to backend with 30 second timeout
|
21 |
+
2022-05-03 17:20:49,841 INFO MainThread:42221 [wandb_init.py:init():624] starting run threads in backend
|
22 |
+
2022-05-03 17:20:52,204 INFO MainThread:42221 [wandb_run.py:_console_start():1827] atexit reg
|
23 |
+
2022-05-03 17:20:52,204 INFO MainThread:42221 [wandb_run.py:_redirect():1701] redirect: SettingsConsole.REDIRECT
|
24 |
+
2022-05-03 17:20:52,205 INFO MainThread:42221 [wandb_run.py:_redirect():1706] Redirecting console.
|
25 |
+
2022-05-03 17:20:52,206 INFO MainThread:42221 [wandb_run.py:_redirect():1762] Redirects installed.
|
26 |
+
2022-05-03 17:20:52,207 INFO MainThread:42221 [wandb_init.py:init():651] run started, returning control to user process
|
27 |
+
2022-05-03 17:20:52,210 INFO MainThread:42221 [wandb_run.py:_config_callback():966] config_cb None None {'return_dict': True, 'output_hidden_states': False, 'output_attentions': False, 'torchscript': False, 'torch_dtype': 'torch.float32', 'use_bfloat16': False, 'pruned_heads': {}, 'tie_word_embeddings': False, 'is_encoder_decoder': True, 'is_decoder': False, 'cross_attention_hidden_size': None, 'add_cross_attention': False, 'tie_encoder_decoder': False, 'max_length': 40, 'min_length': 0, 'do_sample': False, 'early_stopping': False, 'num_beams': 1, 'num_beam_groups': 1, 'diversity_penalty': 0.0, 'temperature': 1.0, 'top_k': 50, 'top_p': 1.0, 'typical_p': 1.0, 'repetition_penalty': 1.0, 'length_penalty': 1.0, 'no_repeat_ngram_size': 0, 'encoder_no_repeat_ngram_size': 0, 'bad_words_ids': None, 'num_return_sequences': 1, 'chunk_size_feed_forward': 0, 'output_scores': False, 'return_dict_in_generate': False, 'forced_bos_token_id': None, 'forced_eos_token_id': None, 'remove_invalid_values': False, 'exponential_decay_length_penalty': None, 'architectures': ['SpeechEncoderDecoderModel'], 'finetuning_task': None, 'id2label': {0: 'LABEL_0', 1: 'LABEL_1'}, 'label2id': {'LABEL_0': 0, 'LABEL_1': 1}, 'tokenizer_class': None, 'prefix': None, 'bos_token_id': None, 'pad_token_id': 1, 'eos_token_id': 2, 'sep_token_id': None, 'decoder_start_token_id': 0, 'task_specific_params': None, 'problem_type': None, '_name_or_path': './', 'transformers_version': None, 'decoder': {'vocab_size': 50265, 'max_position_embeddings': 1024, 'd_model': 1024, 'encoder_ffn_dim': 4096, 'encoder_layers': 12, 'encoder_attention_heads': 16, 'decoder_ffn_dim': 4096, 'decoder_layers': 12, 'decoder_attention_heads': 16, 'dropout': 0.1, 'attention_dropout': 0.1, 'activation_dropout': 0.1, 'activation_function': 'gelu', 'init_std': 0.02, 'encoder_layerdrop': 0.0, 'decoder_layerdrop': 0.0, 'classifier_dropout': 0.0, 'use_cache': True, 'num_hidden_layers': 12, 'scale_embedding': False, 'return_dict': True, 'output_hidden_states': False, 'output_attentions': False, 'torchscript': False, 'torch_dtype': None, 'use_bfloat16': False, 'pruned_heads': {}, 'tie_word_embeddings': True, 'is_encoder_decoder': False, 'is_decoder': True, 'cross_attention_hidden_size': None, 'add_cross_attention': True, 'tie_encoder_decoder': False, 'max_length': 20, 'min_length': 0, 'do_sample': False, 'early_stopping': True, 'num_beams': 4, 'num_beam_groups': 1, 'diversity_penalty': 0.0, 'temperature': 1.0, 'top_k': 50, 'top_p': 1.0, 'typical_p': 1.0, 'repetition_penalty': 1.0, 'length_penalty': 1.0, 'no_repeat_ngram_size': 3, 'encoder_no_repeat_ngram_size': 0, 'bad_words_ids': None, 'num_return_sequences': 1, 'chunk_size_feed_forward': 0, 'output_scores': False, 'return_dict_in_generate': False, 'forced_bos_token_id': 0, 'forced_eos_token_id': 2, 'remove_invalid_values': False, 'exponential_decay_length_penalty': None, 'architectures': ['BartModel'], 'finetuning_task': None, 'id2label': {0: 'LABEL_0', 1: 'LABEL_1', 2: 'LABEL_2'}, 'label2id': {'LABEL_0': 0, 'LABEL_1': 1, 'LABEL_2': 2}, 'tokenizer_class': None, 'prefix': None, 'bos_token_id': 0, 'pad_token_id': 1, 'eos_token_id': 2, 'sep_token_id': None, 'decoder_start_token_id': 2, 'task_specific_params': {'summarization': {'length_penalty': 1.0, 'max_length': 128, 'min_length': 12, 'num_beams': 4}, 'summarization_cnn': {'length_penalty': 2.0, 'max_length': 142, 'min_length': 56, 'num_beams': 4}, 'summarization_xsum': {'length_penalty': 1.0, 'max_length': 62, 'min_length': 11, 'num_beams': 6}}, 'problem_type': None, '_name_or_path': 'facebook/bart-large', 'transformers_version': '4.19.0.dev0', 'add_bias_logits': False, 'add_final_layer_norm': False, 'classif_dropout': 0.1, 'gradient_checkpointing': False, 'normalize_before': False, 'model_type': 'bart'}, 'encoder': {'return_dict': True, 'output_hidden_states': False, 'output_attentions': False, 'torchscript': False, 'torch_dtype': 'float32', 'use_bfloat16': False, 'pruned_heads': {}, 'tie_word_embeddings': True, 'is_encoder_decoder': False, 'is_decoder': False, 'cross_attention_hidden_size': None, 'add_cross_attention': False, 'tie_encoder_decoder': False, 'max_length': 20, 'min_length': 0, 'do_sample': False, 'early_stopping': False, 'num_beams': 1, 'num_beam_groups': 1, 'diversity_penalty': 0.0, 'temperature': 1.0, 'top_k': 50, 'top_p': 1.0, 'typical_p': 1.0, 'repetition_penalty': 1.0, 'length_penalty': 1.0, 'no_repeat_ngram_size': 0, 'encoder_no_repeat_ngram_size': 0, 'bad_words_ids': None, 'num_return_sequences': 1, 'chunk_size_feed_forward': 0, 'output_scores': False, 'return_dict_in_generate': False, 'forced_bos_token_id': None, 'forced_eos_token_id': None, 'remove_invalid_values': False, 'exponential_decay_length_penalty': None, 'architectures': ['Wav2Vec2ForPreTraining'], 'finetuning_task': None, 'id2label': {0: 'LABEL_0', 1: 'LABEL_1'}, 'label2id': {'LABEL_0': 0, 'LABEL_1': 1}, 'tokenizer_class': None, 'prefix': None, 'bos_token_id': 1, 'pad_token_id': 0, 'eos_token_id': 2, 'sep_token_id': None, 'decoder_start_token_id': None, 'task_specific_params': None, 'problem_type': None, '_name_or_path': 'facebook/wav2vec2-xls-r-300m', 'transformers_version': '4.19.0.dev0', 'feat_extract_dropout': 0.0, 'gradient_checkpointing': False, 'num_feat_extract_layers': 7, 'hidden_size': 1024, 'feat_extract_norm': 'layer', 'feat_extract_activation': 'gelu', 'conv_dim': [512, 512, 512, 512, 512, 512, 512], 'conv_stride': [5, 2, 2, 2, 2, 2, 2], 'conv_kernel': [10, 3, 3, 3, 3, 2, 2], 'conv_bias': True, 'num_conv_pos_embeddings': 128, 'num_conv_pos_embedding_groups': 16, 'num_hidden_layers': 24, 'intermediate_size': 4096, 'hidden_act': 'gelu', 'num_attention_heads': 16, 'hidden_dropout': 0.1742341660721257, 'attention_dropout': 0.1, 'activation_dropout': 0.0, 'feat_proj_dropout': 0.0, 'final_dropout': 0.0, 'layerdrop': 0.0, 'layer_norm_eps': 1e-05, 'initializer_range': 0.02, 'vocab_size': 32, 'do_stable_layer_norm': True, 'use_weighted_layer_sum': False, 'apply_spec_augment': True, 'mask_time_prob': 0.1, 'mask_time_length': 10, 'mask_time_min_masks': 2, 'mask_feature_prob': 0.0, 'mask_feature_length': 10, 'mask_feature_min_masks': 0, 'num_codevectors_per_group': 320, 'num_codevector_groups': 2, 'contrastive_logits_temperature': 0.1, 'feat_quantizer_dropout': 0.0, 'num_negatives': 100, 'codevector_dim': 768, 'proj_codevector_dim': 768, 'diversity_loss_weight': 0.1, 'ctc_loss_reduction': 'sum', 'ctc_zero_infinity': False, 'add_adapter': True, 'adapter_kernel_size': 3, 'adapter_stride': 2, 'num_adapter_layers': 3, 'output_hidden_size': 1024, 'classifier_proj_size': 256, 'tdnn_dim': [512, 512, 512, 512, 1500], 'tdnn_kernel': [5, 3, 3, 1, 1], 'tdnn_dilation': [1, 2, 3, 1, 1], 'xvector_output_dim': 512, 'model_type': 'wav2vec2'}, 'model_type': 'speech-encoder-decoder', 'processor_class': 'Wav2Vec2Processor', 'use_cache': False, 'overwrite_output_dir': True, 'do_train': True, 'do_eval': True, 'do_predict': False, 'prediction_loss_only': False, 'per_gpu_train_batch_size': 'None', 'per_gpu_eval_batch_size': 'None', 'eval_accumulation_steps': 'None', 'eval_delay': 0, 'weight_decay': 0.0, 'adam_beta1': 0.9, 'adam_beta2': 0.999, 'adam_epsilon': 1e-08, 'max_grad_norm': 1.0, 'max_steps': -1, 'lr_scheduler_type': 'linear', 'warmup_ratio': 0.0, 'log_level': -1, 'log_level_replica': -1, 'log_on_each_node': True, 'logging_dir': './runs/May03_17-16-03_sanchit--v100', 'logging_strategy': 'steps', 'logging_first_step': False, 'logging_nan_inf_filter': True, 'save_strategy': 'steps', 'save_total_limit': 'None', 'save_on_each_node': False, 'no_cuda': False, 'seed': 42, 'data_seed': 'None', 'bf16': False, 'fp16': True, 'fp16_opt_level': 'O1', 'half_precision_backend': 'amp', 'bf16_full_eval': False, 'fp16_full_eval': False, 'tf32': 'None', 'local_rank': -1, 'xpu_backend': 'None', 'tpu_num_cores': 'None', 'tpu_metrics_debug': False, 'debug': '[]', 'dataloader_drop_last': False, 'dataloader_num_workers': 0, 'past_index': -1, 'run_name': './', 'disable_tqdm': False, 'remove_unused_columns': True, 'label_names': 'None', 'load_best_model_at_end': True, 'ignore_data_skip': False, 'sharded_ddp': '[]', 'deepspeed': 'None', 'label_smoothing_factor': 0.0, 'optim': 'adamw_hf', 'adafactor': False, 'group_by_length': True, 'length_column_name': 'length', 'report_to': "['tensorboard', 'wandb', 'codecarbon']", 'ddp_find_unused_parameters': 'None', 'ddp_bucket_cap_mb': 'None', 'dataloader_pin_memory': True, 'skip_memory_metrics': True, 'use_legacy_prediction_loop': False, 'push_to_hub': True, 'resume_from_checkpoint': 'None', 'hub_model_id': 'None', 'hub_strategy': 'every_save', 'hub_token': '<HUB_TOKEN>', 'hub_private_repo': False, 'gradient_checkpointing': True, 'include_inputs_for_metrics': False, 'fp16_backend': 'auto', 'push_to_hub_model_id': 'None', 'push_to_hub_organization': 'None', 'push_to_hub_token': '<PUSH_TO_HUB_TOKEN>', '_n_gpu': 1, 'mp_parameters': '', 'sortish_sampler': False, 'predict_with_generate': True, 'train_batch_size': 4, 'eval_batch_size': 4}
|
28 |
+
2022-05-03 17:20:52,212 INFO MainThread:42221 [wandb_watch.py:watch():43] Watching
|
wandb/run-20220503_172048-zotxt8wa/run-zotxt8wa.wandb
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:39ee857ff7ba287756a4142fe8d7fb3049c8e0b476904588a4d85b1d51778a2b
|
3 |
+
size 53675652
|
wandb/sweep-39ci3gkf/config-zotxt8wa.yaml
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
wandb_version: 1
|
2 |
+
|
3 |
+
eval_split_name:
|
4 |
+
value: test
|
5 |
+
eval_steps:
|
6 |
+
value: 500
|
7 |
+
evaluation_strategy:
|
8 |
+
value: steps
|
9 |
+
generation_max_length:
|
10 |
+
value: 40
|
11 |
+
generation_num_beams:
|
12 |
+
value: 1
|
13 |
+
gradient_accumulation_steps:
|
14 |
+
value: 8
|
15 |
+
greater_is_better:
|
16 |
+
value: true
|
17 |
+
hidden_dropout:
|
18 |
+
value: 0.1742341660721257
|
19 |
+
language:
|
20 |
+
value: fr.en
|
21 |
+
learning_rate:
|
22 |
+
value: 0.00035649266341974674
|
23 |
+
logging_steps:
|
24 |
+
value: 1
|
25 |
+
max_duration_in_seconds:
|
26 |
+
value: 20
|
27 |
+
metric_for_best_model:
|
28 |
+
value: bleu
|
29 |
+
model_name_or_path:
|
30 |
+
value: ./
|
31 |
+
num_train_epochs:
|
32 |
+
value: 3
|
33 |
+
output_dir:
|
34 |
+
value: ./
|
35 |
+
per_device_eval_batch_size:
|
36 |
+
value: 4
|
37 |
+
per_device_train_batch_size:
|
38 |
+
value: 4
|
39 |
+
save_steps:
|
40 |
+
value: 500
|
41 |
+
task:
|
42 |
+
value: covost2
|
43 |
+
warmup_steps:
|
44 |
+
value: 500
|