Commit
•
071893d
1
Parent(s):
8b752c1
up
Browse files- create_model.py +30 -0
- run.sh +33 -0
- run_xtreme_s.py +885 -0
create_model.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import SpeechEncoderDecoderModel, AutoFeatureExtractor, AutoTokenizer
|
2 |
+
import torch
|
3 |
+
|
4 |
+
|
5 |
+
encoder_id = "facebook/wav2vec2-xls-r-300m"
|
6 |
+
decoder_id = "facebook/bart-large"
|
7 |
+
|
8 |
+
model = SpeechEncoderDecoderModel.from_encoder_decoder_pretrained(encoder_id, decoder_id, encoder_add_adapter=True)
|
9 |
+
model.config.encoder.feat_proj_dropout = 0.0
|
10 |
+
model.config.encoder.final_dropout = 0.0
|
11 |
+
model.config.encoder.mask_time_prob = 0.1
|
12 |
+
model.config.decoder_start_token_id = model.decoder.config.bos_token_id
|
13 |
+
model.config.pad_token_id = model.decoder.config.pad_token_id
|
14 |
+
model.config.eos_token_id = model.decoder.config.eos_token_id
|
15 |
+
model.config.max_length = 40
|
16 |
+
model.config.num_beams = 1
|
17 |
+
model.config.encoder.layerdrop = 0.0
|
18 |
+
model.config.use_cache = False
|
19 |
+
model.config.processor_class = "Wav2Vec2Processor"
|
20 |
+
|
21 |
+
# check if generation works
|
22 |
+
out = model.generate(torch.ones((1, 2000)))
|
23 |
+
|
24 |
+
model.save_pretrained("./")
|
25 |
+
|
26 |
+
feature_etxractor = AutoFeatureExtractor.from_pretrained(encoder_id)
|
27 |
+
feature_etxractor.save_pretrained("./")
|
28 |
+
tokenizer = AutoTokenizer.from_pretrained(decoder_id)
|
29 |
+
tokenizer.save_pretrained("./")
|
30 |
+
|
run.sh
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env bash
|
2 |
+
CUDA_VISIBLE_DEVICES=1 python run_xtreme_s.py \
|
3 |
+
--model_name_or_path="./" \
|
4 |
+
--task="covost2" \
|
5 |
+
--language="fr.en" \
|
6 |
+
--eval_split_name="test" \
|
7 |
+
--output_dir="./" \
|
8 |
+
--overwrite_output_dir \
|
9 |
+
--num_train_epochs="3" \
|
10 |
+
--per_device_train_batch_size="4" \
|
11 |
+
--per_device_eval_batch_size="2" \
|
12 |
+
--gradient_accumulation_steps="2" \
|
13 |
+
--generation_max_length="40" \
|
14 |
+
--generation_num_beams="1" \
|
15 |
+
--learning_rate="3e-4" \
|
16 |
+
--warmup_steps="500" \
|
17 |
+
--evaluation_strategy="steps" \
|
18 |
+
--max_duration_in_seconds="20" \
|
19 |
+
--save_steps="500" \
|
20 |
+
--eval_steps="500" \
|
21 |
+
--logging_steps="1" \
|
22 |
+
--freeze_feature_encoder \
|
23 |
+
--gradient_checkpointing \
|
24 |
+
--fp16 \
|
25 |
+
--max_train_samples="10" \
|
26 |
+
--group_by_length \
|
27 |
+
--do_train \
|
28 |
+
--do_eval \
|
29 |
+
--metric_for_best_model="bleu" \
|
30 |
+
--greater_is_better=True \
|
31 |
+
--load_best_model_at_end \
|
32 |
+
--push_to_hub \
|
33 |
+
--use_auth_token
|
run_xtreme_s.py
ADDED
@@ -0,0 +1,885 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding=utf-8
|
3 |
+
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
|
16 |
+
""" Fine-tuning a 🤗 Transformers pretrained speech model on the XTREME-S benchmark tasks"""
|
17 |
+
|
18 |
+
import json
|
19 |
+
import logging
|
20 |
+
import os
|
21 |
+
import re
|
22 |
+
import sys
|
23 |
+
from collections import OrderedDict, defaultdict
|
24 |
+
from dataclasses import dataclass, field
|
25 |
+
from typing import Dict, List, Optional, Union
|
26 |
+
|
27 |
+
import datasets
|
28 |
+
import numpy as np
|
29 |
+
import torch
|
30 |
+
from datasets import DatasetDict, load_dataset, load_metric
|
31 |
+
|
32 |
+
import transformers
|
33 |
+
from transformers import (
|
34 |
+
AutoConfig,
|
35 |
+
AutoFeatureExtractor,
|
36 |
+
AutoModelForAudioClassification,
|
37 |
+
AutoModelForCTC,
|
38 |
+
AutoModelForSpeechSeq2Seq,
|
39 |
+
AutoProcessor,
|
40 |
+
AutoTokenizer,
|
41 |
+
HfArgumentParser,
|
42 |
+
Seq2SeqTrainer,
|
43 |
+
Seq2SeqTrainingArguments,
|
44 |
+
Trainer,
|
45 |
+
set_seed,
|
46 |
+
)
|
47 |
+
from transformers.trainer_utils import get_last_checkpoint, is_main_process
|
48 |
+
from transformers.utils import check_min_version
|
49 |
+
from transformers.utils.versions import require_version
|
50 |
+
|
51 |
+
|
52 |
+
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
53 |
+
check_min_version("4.18.0.dev0")
|
54 |
+
|
55 |
+
require_version("datasets>=1.18.0", "To fix: pip install -r examples/pytorch/speech-recognition/requirements.txt")
|
56 |
+
|
57 |
+
|
58 |
+
logger = logging.getLogger(__name__)
|
59 |
+
|
60 |
+
|
61 |
+
def list_field(default=None, metadata=None):
|
62 |
+
return field(default_factory=lambda: default, metadata=metadata)
|
63 |
+
|
64 |
+
|
65 |
+
TASK_TO_TARGET_COLUMN_NAME = {
|
66 |
+
"fleurs-asr": "transcription",
|
67 |
+
"fleurs-lang_id": "lang_id",
|
68 |
+
"mls": "transcription",
|
69 |
+
"voxpopuli": "transcription",
|
70 |
+
"covost2": "translation",
|
71 |
+
"minds14": "intent_class",
|
72 |
+
"babel": "transcription",
|
73 |
+
}
|
74 |
+
|
75 |
+
|
76 |
+
@dataclass
|
77 |
+
class ModelArguments:
|
78 |
+
"""
|
79 |
+
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
|
80 |
+
"""
|
81 |
+
|
82 |
+
model_name_or_path: str = field(
|
83 |
+
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
|
84 |
+
)
|
85 |
+
tokenizer_name_or_path: Optional[str] = field(
|
86 |
+
default=None,
|
87 |
+
metadata={"help": "Path to pretrained tokenizer or tokenizer identifier from huggingface.co/models"},
|
88 |
+
)
|
89 |
+
cache_dir: Optional[str] = field(
|
90 |
+
default=None,
|
91 |
+
metadata={
|
92 |
+
"help": "Where do you want to store the pretrained models and datasets downloaded from " "huggingface.co"
|
93 |
+
},
|
94 |
+
)
|
95 |
+
freeze_feature_encoder: bool = field(
|
96 |
+
default=True, metadata={"help": "Whether to freeze the feature encoder layers of the model."}
|
97 |
+
)
|
98 |
+
attention_dropout: float = field(
|
99 |
+
default=0.0, metadata={"help": "The dropout ratio for the attention probabilities."}
|
100 |
+
)
|
101 |
+
activation_dropout: float = field(
|
102 |
+
default=0.0, metadata={"help": "The dropout ratio for activations inside the fully connected layer."}
|
103 |
+
)
|
104 |
+
feat_proj_dropout: float = field(default=0.0, metadata={"help": "The dropout ratio for the projected features."})
|
105 |
+
hidden_dropout: float = field(
|
106 |
+
default=0.0,
|
107 |
+
metadata={
|
108 |
+
"help": "The dropout probability for all fully connected layers in the embeddings, encoder, and pooler."
|
109 |
+
},
|
110 |
+
)
|
111 |
+
final_dropout: float = field(
|
112 |
+
default=0.0,
|
113 |
+
metadata={"help": "The dropout probability for the final projection layer."},
|
114 |
+
)
|
115 |
+
mask_time_prob: float = field(
|
116 |
+
default=0.05,
|
117 |
+
metadata={
|
118 |
+
"help": "Probability of each feature vector along the time axis to be chosen as the start of the vector"
|
119 |
+
"span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature"
|
120 |
+
"vectors will be masked along the time axis."
|
121 |
+
},
|
122 |
+
)
|
123 |
+
mask_time_length: int = field(
|
124 |
+
default=10,
|
125 |
+
metadata={"help": "Length of vector span to mask along the time axis."},
|
126 |
+
)
|
127 |
+
mask_feature_prob: float = field(
|
128 |
+
default=0.0,
|
129 |
+
metadata={
|
130 |
+
"help": "Probability of each feature vector along the feature axis to be chosen as the start of the vector"
|
131 |
+
"span to be masked. Approximately ``mask_feature_prob * sequence_length // mask_feature_length`` feature bins will be masked along the time axis."
|
132 |
+
},
|
133 |
+
)
|
134 |
+
mask_feature_length: int = field(
|
135 |
+
default=10,
|
136 |
+
metadata={"help": "Length of vector span to mask along the feature axis."},
|
137 |
+
)
|
138 |
+
layerdrop: float = field(default=0.0, metadata={"help": "The LayerDrop probability."})
|
139 |
+
ctc_loss_reduction: Optional[str] = field(
|
140 |
+
default="mean", metadata={"help": "The way the ctc loss should be reduced. Should be one of 'mean' or 'sum'."}
|
141 |
+
)
|
142 |
+
|
143 |
+
|
144 |
+
@dataclass
|
145 |
+
class DataTrainingArguments:
|
146 |
+
"""
|
147 |
+
Arguments pertaining to what data we are going to input our model for training and eval.
|
148 |
+
|
149 |
+
Using `HfArgumentParser` we can turn this class
|
150 |
+
into argparse arguments to be able to specify them on
|
151 |
+
the command line.
|
152 |
+
"""
|
153 |
+
|
154 |
+
dataset_name: str = field(
|
155 |
+
default="google/xtreme_s",
|
156 |
+
metadata={"help": "The name of the dataset to use (via the datasets library). Defaults to 'google/xtreme_s'"},
|
157 |
+
)
|
158 |
+
task: str = field(
|
159 |
+
default=None,
|
160 |
+
metadata={
|
161 |
+
"help": "The task name of the benchmark to use (via the datasets library). Should be on of: "
|
162 |
+
"'fleurs-asr', 'mls', 'voxpopuli', 'covost2', 'minds14', 'fleurs-lang_id', 'babel'."
|
163 |
+
},
|
164 |
+
)
|
165 |
+
language: str = field(
|
166 |
+
default="all",
|
167 |
+
metadata={"help": "The language id as defined in the datasets config name or `all` for all languages."},
|
168 |
+
)
|
169 |
+
train_split_name: str = field(
|
170 |
+
default="train",
|
171 |
+
metadata={
|
172 |
+
"help": "The name of the training dataset split to use (via the datasets library). Defaults to 'train'"
|
173 |
+
},
|
174 |
+
)
|
175 |
+
eval_split_name: str = field(
|
176 |
+
default="validation",
|
177 |
+
metadata={
|
178 |
+
"help": "The name of the evaluation dataset split to use (via the datasets library). "
|
179 |
+
"Defaults to 'validation'"
|
180 |
+
},
|
181 |
+
)
|
182 |
+
predict_split_name: str = field(
|
183 |
+
default="test",
|
184 |
+
metadata={
|
185 |
+
"help": "The name of the prediction dataset split to use (via the datasets library). " "Defaults to 'test'"
|
186 |
+
},
|
187 |
+
)
|
188 |
+
audio_column_name: str = field(
|
189 |
+
default="audio",
|
190 |
+
metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"},
|
191 |
+
)
|
192 |
+
target_column_name: str = field(
|
193 |
+
default=None,
|
194 |
+
metadata={
|
195 |
+
"help": "The name of the dataset column containing the target data "
|
196 |
+
"(transcription/translation/label). If None, the name will be inferred from the task. Defaults to None."
|
197 |
+
},
|
198 |
+
)
|
199 |
+
overwrite_cache: bool = field(
|
200 |
+
default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
|
201 |
+
)
|
202 |
+
preprocessing_num_workers: Optional[int] = field(
|
203 |
+
default=None,
|
204 |
+
metadata={"help": "The number of processes to use for the preprocessing."},
|
205 |
+
)
|
206 |
+
max_train_samples: Optional[int] = field(
|
207 |
+
default=None,
|
208 |
+
metadata={
|
209 |
+
"help": "For debugging purposes or quicker training, truncate the number of training examples to this "
|
210 |
+
"value if set."
|
211 |
+
},
|
212 |
+
)
|
213 |
+
max_eval_samples: Optional[int] = field(
|
214 |
+
default=None,
|
215 |
+
metadata={
|
216 |
+
"help": "For debugging purposes or quicker training, truncate the number of validation examples to this "
|
217 |
+
"value if set."
|
218 |
+
},
|
219 |
+
)
|
220 |
+
max_predict_samples: Optional[int] = field(
|
221 |
+
default=None,
|
222 |
+
metadata={
|
223 |
+
"help": "For debugging purposes or quicker training, truncate the number of prediction examples to this "
|
224 |
+
"value if set."
|
225 |
+
},
|
226 |
+
)
|
227 |
+
chars_to_ignore: Optional[List[str]] = list_field(
|
228 |
+
default=', ? . ! - ; : " “ % ‘ ” �'.split(" "),
|
229 |
+
metadata={"help": "A list of characters to remove from the transcripts."},
|
230 |
+
)
|
231 |
+
max_duration_in_seconds: float = field(
|
232 |
+
default=30.0,
|
233 |
+
metadata={
|
234 |
+
"help": "Filter audio files that are longer than `max_duration_in_seconds` seconds to 'max_duration_in_seconds`"
|
235 |
+
},
|
236 |
+
)
|
237 |
+
min_duration_in_seconds: float = field(
|
238 |
+
default=0.0, metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"}
|
239 |
+
)
|
240 |
+
preprocessing_only: bool = field(
|
241 |
+
default=False,
|
242 |
+
metadata={
|
243 |
+
"help": "Whether to only do data preprocessing and skip training. "
|
244 |
+
"This is especially useful when data preprocessing errors out in distributed training due to timeout. "
|
245 |
+
"In this case, one should run the preprocessing in a non-distributed setup with `preprocessing_only=True` "
|
246 |
+
"so that the cached datasets can consequently be loaded in distributed training"
|
247 |
+
},
|
248 |
+
)
|
249 |
+
use_auth_token: bool = field(
|
250 |
+
default=False,
|
251 |
+
metadata={
|
252 |
+
"help": "If :obj:`True`, will use the token generated when running"
|
253 |
+
":obj:`transformers-cli login` as HTTP bearer authorization for remote files."
|
254 |
+
},
|
255 |
+
)
|
256 |
+
unk_token: str = field(
|
257 |
+
default="[UNK]",
|
258 |
+
metadata={"help": "The unk token for the tokenizer"},
|
259 |
+
)
|
260 |
+
pad_token: str = field(
|
261 |
+
default="[PAD]",
|
262 |
+
metadata={"help": "The padding token for the tokenizer"},
|
263 |
+
)
|
264 |
+
word_delimiter_token: str = field(
|
265 |
+
default="|",
|
266 |
+
metadata={"help": "The word delimiter token for the tokenizer"},
|
267 |
+
)
|
268 |
+
phoneme_language: Optional[str] = field(
|
269 |
+
default=None,
|
270 |
+
metadata={
|
271 |
+
"help": "The target language that should be used be"
|
272 |
+
" passed to the tokenizer for tokenization. Note that"
|
273 |
+
" this is only relevant if the model classifies the"
|
274 |
+
" input audio to a sequence of phoneme sequences."
|
275 |
+
},
|
276 |
+
)
|
277 |
+
per_lang_metrics: bool = field(
|
278 |
+
default=True,
|
279 |
+
metadata={
|
280 |
+
"help": "If `True`, compute the test metrics separately for each language, and average the results. "
|
281 |
+
"If `False` compute the average test metrics in a single pass for all languages at once."
|
282 |
+
},
|
283 |
+
)
|
284 |
+
|
285 |
+
|
286 |
+
@dataclass
|
287 |
+
class SpeechDataCollatorWithPadding:
|
288 |
+
|
289 |
+
processor: AutoProcessor
|
290 |
+
decoder_start_token_id: Optional[int] = None
|
291 |
+
padding: Union[bool, str] = "longest"
|
292 |
+
pad_labels: Optional[int] = True
|
293 |
+
pad_to_multiple_of: Optional[int] = None
|
294 |
+
pad_to_multiple_of_labels: Optional[int] = None
|
295 |
+
|
296 |
+
def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
|
297 |
+
# split inputs and labels since they have to be of different lenghts and need
|
298 |
+
# different padding methods
|
299 |
+
input_features = [{"input_values": feature["input_values"]} for feature in features]
|
300 |
+
|
301 |
+
batch = self.processor.pad(
|
302 |
+
input_features,
|
303 |
+
padding=self.padding,
|
304 |
+
pad_to_multiple_of=self.pad_to_multiple_of,
|
305 |
+
return_tensors="pt",
|
306 |
+
)
|
307 |
+
|
308 |
+
if self.pad_labels:
|
309 |
+
label_features = [{"input_ids": feature["labels"]} for feature in features]
|
310 |
+
with self.processor.as_target_processor():
|
311 |
+
labels_batch = self.processor.pad(
|
312 |
+
label_features,
|
313 |
+
padding=self.padding,
|
314 |
+
pad_to_multiple_of=self.pad_to_multiple_of_labels,
|
315 |
+
return_tensors="pt",
|
316 |
+
)
|
317 |
+
|
318 |
+
# replace padding with -100 to ignore loss correctly
|
319 |
+
labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)
|
320 |
+
|
321 |
+
# if bos token is appended in previous tokenization step,
|
322 |
+
# cut bos token here as it's append later anyways
|
323 |
+
if (
|
324 |
+
self.decoder_start_token_id is not None
|
325 |
+
and (labels[:, 0] == self.decoder_start_token_id).all().cpu().item()
|
326 |
+
):
|
327 |
+
labels = labels[:, 1:]
|
328 |
+
|
329 |
+
batch["labels"] = labels
|
330 |
+
else:
|
331 |
+
batch["labels"] = torch.tensor([feature["labels"] for feature in features])
|
332 |
+
|
333 |
+
return batch
|
334 |
+
|
335 |
+
|
336 |
+
def create_vocabulary_from_data(
|
337 |
+
datasets: DatasetDict,
|
338 |
+
word_delimiter_token: Optional[str] = None,
|
339 |
+
unk_token: Optional[str] = None,
|
340 |
+
pad_token: Optional[str] = None,
|
341 |
+
):
|
342 |
+
# Given training and test labels create vocabulary
|
343 |
+
def extract_all_chars(batch):
|
344 |
+
all_text = " ".join(batch["target_text"])
|
345 |
+
vocab = list(set(all_text))
|
346 |
+
return {"vocab": [vocab], "all_text": [all_text]}
|
347 |
+
|
348 |
+
vocabs = datasets.map(
|
349 |
+
extract_all_chars,
|
350 |
+
batched=True,
|
351 |
+
batch_size=-1,
|
352 |
+
keep_in_memory=True,
|
353 |
+
remove_columns=datasets["train"].column_names,
|
354 |
+
)
|
355 |
+
|
356 |
+
# take union of all unique characters in each dataset
|
357 |
+
vocab_set = (
|
358 |
+
(set(vocabs["train"]["vocab"][0]) if "train" in vocabs else set())
|
359 |
+
| (set(vocabs["eval"]["vocab"][0]) if "eval" in vocabs else set())
|
360 |
+
| (set(vocabs["predict"]["vocab"][0]) if "predict" in vocabs else set())
|
361 |
+
)
|
362 |
+
|
363 |
+
vocab_dict = {v: k for k, v in enumerate(sorted(list(vocab_set)))}
|
364 |
+
|
365 |
+
# replace white space with delimiter token
|
366 |
+
if word_delimiter_token is not None:
|
367 |
+
vocab_dict[word_delimiter_token] = vocab_dict[" "]
|
368 |
+
del vocab_dict[" "]
|
369 |
+
|
370 |
+
# add unk and pad token
|
371 |
+
if unk_token is not None:
|
372 |
+
vocab_dict[unk_token] = len(vocab_dict)
|
373 |
+
|
374 |
+
if pad_token is not None:
|
375 |
+
vocab_dict[pad_token] = len(vocab_dict)
|
376 |
+
|
377 |
+
return vocab_dict
|
378 |
+
|
379 |
+
|
380 |
+
def main():
|
381 |
+
# See all possible arguments in src/transformers/training_args.py
|
382 |
+
# or by passing the --help flag to this script.
|
383 |
+
# We now keep distinct sets of args, for a cleaner separation of concerns.
|
384 |
+
|
385 |
+
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments))
|
386 |
+
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
387 |
+
# If we pass only one argument to the script and it's the path to a json file,
|
388 |
+
# let's parse it to get our arguments.
|
389 |
+
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
|
390 |
+
else:
|
391 |
+
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
392 |
+
|
393 |
+
# Detecting last checkpoint.
|
394 |
+
last_checkpoint = None
|
395 |
+
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
|
396 |
+
last_checkpoint = get_last_checkpoint(training_args.output_dir)
|
397 |
+
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
|
398 |
+
raise ValueError(
|
399 |
+
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
|
400 |
+
"Use --overwrite_output_dir to overcome."
|
401 |
+
)
|
402 |
+
elif last_checkpoint is not None:
|
403 |
+
logger.info(
|
404 |
+
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
|
405 |
+
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
|
406 |
+
)
|
407 |
+
|
408 |
+
# Setup logging
|
409 |
+
logging.basicConfig(
|
410 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
411 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
412 |
+
handlers=[logging.StreamHandler(sys.stdout)],
|
413 |
+
)
|
414 |
+
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
|
415 |
+
|
416 |
+
# Log on each process the small summary:
|
417 |
+
logger.warning(
|
418 |
+
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
|
419 |
+
f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
|
420 |
+
)
|
421 |
+
# Set the verbosity to info of the Transformers logger (on main process only):
|
422 |
+
if is_main_process(training_args.local_rank):
|
423 |
+
transformers.utils.logging.set_verbosity_info()
|
424 |
+
logger.info("Training/evaluation parameters %s", training_args)
|
425 |
+
|
426 |
+
# Set seed before initializing model.
|
427 |
+
set_seed(training_args.seed)
|
428 |
+
|
429 |
+
# 1. First, let's load the dataset
|
430 |
+
raw_datasets = DatasetDict()
|
431 |
+
task_name = data_args.task
|
432 |
+
lang_id = data_args.language
|
433 |
+
|
434 |
+
if task_name is None:
|
435 |
+
raise ValueError(
|
436 |
+
"Set --task should be set to '<xtreme_s_task>' " "(e.g. 'fleurs-asr', 'mls', 'covost2', 'minds14') "
|
437 |
+
)
|
438 |
+
if lang_id is None:
|
439 |
+
raise ValueError(
|
440 |
+
"Set --language should be set to the language id of the sub dataset "
|
441 |
+
"config to be used (e.g. 'pl', 'en.tr', 'fr-FR') or 'all'"
|
442 |
+
" for multi-lingual fine-tuning."
|
443 |
+
)
|
444 |
+
|
445 |
+
if data_args.target_column_name is None:
|
446 |
+
target_column_name = TASK_TO_TARGET_COLUMN_NAME[task_name]
|
447 |
+
else:
|
448 |
+
target_column_name = data_args.target_column_name
|
449 |
+
|
450 |
+
# here we differentiate between tasks with text as the target and classification tasks
|
451 |
+
is_text_target = target_column_name in ("transcription", "translation")
|
452 |
+
|
453 |
+
config_name = ".".join([task_name.split("-")[0], lang_id])
|
454 |
+
|
455 |
+
if training_args.do_train:
|
456 |
+
raw_datasets["train"] = load_dataset(
|
457 |
+
data_args.dataset_name,
|
458 |
+
config_name,
|
459 |
+
split=data_args.train_split_name,
|
460 |
+
use_auth_token=data_args.use_auth_token,
|
461 |
+
cache_dir=model_args.cache_dir,
|
462 |
+
)
|
463 |
+
|
464 |
+
if data_args.audio_column_name not in raw_datasets["train"].column_names:
|
465 |
+
raise ValueError(
|
466 |
+
f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'. "
|
467 |
+
"Make sure to set `--audio_column_name` to the correct audio column - one of "
|
468 |
+
f"{', '.join(raw_datasets['train'].column_names)}."
|
469 |
+
)
|
470 |
+
|
471 |
+
if target_column_name not in raw_datasets["train"].column_names:
|
472 |
+
raise ValueError(
|
473 |
+
f"--target_column_name {target_column_name} not found in dataset '{data_args.dataset_name}'. "
|
474 |
+
"Make sure to set `--target_column_name` to the correct text column - one of "
|
475 |
+
f"{', '.join(raw_datasets['train'].column_names)}."
|
476 |
+
)
|
477 |
+
|
478 |
+
if data_args.max_train_samples is not None:
|
479 |
+
raw_datasets["train"] = raw_datasets["train"].select(range(data_args.max_train_samples))
|
480 |
+
|
481 |
+
if training_args.do_eval:
|
482 |
+
raw_datasets["eval"] = load_dataset(
|
483 |
+
data_args.dataset_name,
|
484 |
+
config_name,
|
485 |
+
split=data_args.eval_split_name,
|
486 |
+
use_auth_token=data_args.use_auth_token,
|
487 |
+
cache_dir=model_args.cache_dir,
|
488 |
+
)
|
489 |
+
|
490 |
+
if data_args.max_eval_samples is not None:
|
491 |
+
raw_datasets["eval"] = raw_datasets["eval"].select(range(data_args.max_eval_samples))
|
492 |
+
|
493 |
+
if training_args.do_predict:
|
494 |
+
raw_datasets["predict"] = load_dataset(
|
495 |
+
data_args.dataset_name,
|
496 |
+
config_name,
|
497 |
+
split=data_args.predict_split_name,
|
498 |
+
use_auth_token=data_args.use_auth_token,
|
499 |
+
cache_dir=model_args.cache_dir,
|
500 |
+
)
|
501 |
+
|
502 |
+
if data_args.max_predict_samples is not None:
|
503 |
+
raw_datasets["predict"] = raw_datasets["predict"].select(range(data_args.max_predict_samples))
|
504 |
+
|
505 |
+
if not is_text_target:
|
506 |
+
label_list = next(iter(raw_datasets.values())).features[target_column_name].names
|
507 |
+
lang_list = next(iter(raw_datasets.values())).features["lang_id"].names
|
508 |
+
num_labels = len(label_list)
|
509 |
+
|
510 |
+
# 2. We remove some special characters from the datasets
|
511 |
+
# that make training complicated and do not help in transcribing the speech
|
512 |
+
# E.g. characters, such as `,` and `.` do not really have an acoustic characteristic
|
513 |
+
# that could be easily picked up by the model
|
514 |
+
chars_to_ignore_regex = (
|
515 |
+
f'[{"".join(data_args.chars_to_ignore)}]' if data_args.chars_to_ignore is not None else None
|
516 |
+
)
|
517 |
+
|
518 |
+
def remove_special_characters(batch):
|
519 |
+
if chars_to_ignore_regex is not None:
|
520 |
+
batch["target_text"] = re.sub(chars_to_ignore_regex, "", batch[target_column_name]).lower() + " "
|
521 |
+
else:
|
522 |
+
batch["target_text"] = batch[target_column_name].lower() + " "
|
523 |
+
return batch
|
524 |
+
|
525 |
+
if is_text_target:
|
526 |
+
with training_args.main_process_first(desc="dataset map special characters removal"):
|
527 |
+
raw_datasets = raw_datasets.map(
|
528 |
+
remove_special_characters,
|
529 |
+
remove_columns=[target_column_name],
|
530 |
+
desc="remove special characters from datasets",
|
531 |
+
)
|
532 |
+
|
533 |
+
# save special tokens for tokenizer
|
534 |
+
word_delimiter_token = data_args.word_delimiter_token
|
535 |
+
unk_token = data_args.unk_token
|
536 |
+
pad_token = data_args.pad_token
|
537 |
+
|
538 |
+
# 3. Next, let's load the config as we might need it to create
|
539 |
+
# the tokenizer
|
540 |
+
config = AutoConfig.from_pretrained(
|
541 |
+
model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token
|
542 |
+
)
|
543 |
+
|
544 |
+
if is_text_target:
|
545 |
+
# 4. (Optional, for ASR and translation) If no tokenizer file is defined,
|
546 |
+
# we create the vocabulary of the model by extracting all unique characters from
|
547 |
+
# the training and evaluation datasets
|
548 |
+
# We need to make sure that only first rank saves vocabulary
|
549 |
+
# make sure all processes wait until vocab is created
|
550 |
+
tokenizer_name_or_path = model_args.tokenizer_name_or_path
|
551 |
+
tokenizer_kwargs = {}
|
552 |
+
if tokenizer_name_or_path is None:
|
553 |
+
# save vocab in training output dir
|
554 |
+
tokenizer_name_or_path = training_args.output_dir
|
555 |
+
|
556 |
+
vocab_file = os.path.join(tokenizer_name_or_path, "vocab.json")
|
557 |
+
|
558 |
+
with training_args.main_process_first():
|
559 |
+
if training_args.overwrite_output_dir and os.path.isfile(vocab_file):
|
560 |
+
os.remove(vocab_file)
|
561 |
+
|
562 |
+
with training_args.main_process_first(desc="dataset map vocabulary creation"):
|
563 |
+
if not os.path.isfile(vocab_file):
|
564 |
+
os.makedirs(tokenizer_name_or_path, exist_ok=True)
|
565 |
+
vocab_dict = create_vocabulary_from_data(
|
566 |
+
raw_datasets,
|
567 |
+
word_delimiter_token=word_delimiter_token,
|
568 |
+
unk_token=unk_token,
|
569 |
+
pad_token=pad_token,
|
570 |
+
)
|
571 |
+
|
572 |
+
# save vocab dict to be loaded into tokenizer
|
573 |
+
with open(vocab_file, "w") as file:
|
574 |
+
json.dump(vocab_dict, file)
|
575 |
+
|
576 |
+
# if tokenizer has just been created
|
577 |
+
# it is defined by `tokenizer_class` if present in config else by `model_type`
|
578 |
+
if not config.is_encoder_decoder:
|
579 |
+
tokenizer_kwargs = {
|
580 |
+
"config": config if config.tokenizer_class is not None else None,
|
581 |
+
"tokenizer_type": config.model_type if config.tokenizer_class is None else None,
|
582 |
+
"unk_token": unk_token,
|
583 |
+
"pad_token": pad_token,
|
584 |
+
"word_delimiter_token": word_delimiter_token,
|
585 |
+
}
|
586 |
+
else:
|
587 |
+
tokenizer_kwargs = {}
|
588 |
+
|
589 |
+
# 5. Now we can instantiate the feature extractor, tokenizer and model
|
590 |
+
# Note for distributed training, the .from_pretrained methods guarantee that only
|
591 |
+
# one local process can concurrently download model & vocab.
|
592 |
+
|
593 |
+
# load feature_extractor and tokenizer
|
594 |
+
if is_text_target:
|
595 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
596 |
+
tokenizer_name_or_path,
|
597 |
+
use_auth_token=data_args.use_auth_token,
|
598 |
+
**tokenizer_kwargs,
|
599 |
+
)
|
600 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(
|
601 |
+
model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token
|
602 |
+
)
|
603 |
+
|
604 |
+
# adapt config
|
605 |
+
# (speech translation requires pre-configured seq2seq models)
|
606 |
+
if task_name != "covost2":
|
607 |
+
config.update(
|
608 |
+
{
|
609 |
+
"feat_proj_dropout": model_args.feat_proj_dropout,
|
610 |
+
"attention_dropout": model_args.attention_dropout,
|
611 |
+
"hidden_dropout": model_args.hidden_dropout,
|
612 |
+
"final_dropout": model_args.final_dropout,
|
613 |
+
"mask_time_prob": model_args.mask_time_prob,
|
614 |
+
"mask_time_length": model_args.mask_time_length,
|
615 |
+
"mask_feature_prob": model_args.mask_feature_prob,
|
616 |
+
"mask_feature_length": model_args.mask_feature_length,
|
617 |
+
"gradient_checkpointing": training_args.gradient_checkpointing,
|
618 |
+
"layerdrop": model_args.layerdrop,
|
619 |
+
"ctc_loss_reduction": model_args.ctc_loss_reduction,
|
620 |
+
"activation_dropout": model_args.activation_dropout,
|
621 |
+
}
|
622 |
+
)
|
623 |
+
if training_args.do_train:
|
624 |
+
if is_text_target:
|
625 |
+
config.pad_token_id = tokenizer.pad_token_id
|
626 |
+
config.vocab_size = len(tokenizer)
|
627 |
+
else:
|
628 |
+
label_to_id = {v: i for i, v in enumerate(label_list)}
|
629 |
+
config.label2id = label_to_id
|
630 |
+
config.id2label = {id: label for label, id in label_to_id.items()}
|
631 |
+
config.num_labels = num_labels
|
632 |
+
else:
|
633 |
+
config.encoder.update({"hidden_dropout": model_args.hidden_dropout})
|
634 |
+
|
635 |
+
# create model
|
636 |
+
if target_column_name == "transcription":
|
637 |
+
model = AutoModelForCTC.from_pretrained(
|
638 |
+
model_args.model_name_or_path,
|
639 |
+
cache_dir=model_args.cache_dir,
|
640 |
+
config=config,
|
641 |
+
use_auth_token=data_args.use_auth_token,
|
642 |
+
)
|
643 |
+
elif config.is_encoder_decoder:
|
644 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
645 |
+
model_args.model_name_or_path,
|
646 |
+
cache_dir=model_args.cache_dir,
|
647 |
+
config=config,
|
648 |
+
use_auth_token=data_args.use_auth_token,
|
649 |
+
)
|
650 |
+
if model.config.decoder_start_token_id is None:
|
651 |
+
raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined")
|
652 |
+
else:
|
653 |
+
model = AutoModelForAudioClassification.from_pretrained(
|
654 |
+
model_args.model_name_or_path,
|
655 |
+
cache_dir=model_args.cache_dir,
|
656 |
+
config=config,
|
657 |
+
use_auth_token=data_args.use_auth_token,
|
658 |
+
)
|
659 |
+
|
660 |
+
# freeze encoder
|
661 |
+
if model_args.freeze_feature_encoder:
|
662 |
+
model.freeze_feature_encoder()
|
663 |
+
|
664 |
+
# 6. Now we preprocess the datasets including loading the audio, resampling and normalization
|
665 |
+
# Thankfully, `datasets` takes care of automatically loading and resampling the audio,
|
666 |
+
# so that we just need to set the correct target sampling rate and normalize the input
|
667 |
+
# via the `feature_extractor`
|
668 |
+
|
669 |
+
# make sure that dataset decodes audio with correct sampling rate
|
670 |
+
dataset_sampling_rate = next(iter(raw_datasets.values())).features[data_args.audio_column_name].sampling_rate
|
671 |
+
if dataset_sampling_rate != feature_extractor.sampling_rate:
|
672 |
+
raw_datasets = raw_datasets.cast_column(
|
673 |
+
data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate)
|
674 |
+
)
|
675 |
+
|
676 |
+
# derive max & min input length for sample rate & max duration
|
677 |
+
max_input_length = data_args.max_duration_in_seconds * feature_extractor.sampling_rate
|
678 |
+
min_input_length = data_args.min_duration_in_seconds * feature_extractor.sampling_rate
|
679 |
+
audio_column_name = data_args.audio_column_name
|
680 |
+
num_workers = data_args.preprocessing_num_workers
|
681 |
+
|
682 |
+
# `phoneme_language` is only relevant if the model is fine-tuned on phoneme classification
|
683 |
+
phoneme_language = data_args.phoneme_language
|
684 |
+
|
685 |
+
# Preprocessing the datasets.
|
686 |
+
# We need to read the audio files as arrays and tokenize the targets.
|
687 |
+
def prepare_dataset(batch):
|
688 |
+
# load audio
|
689 |
+
sample = batch[audio_column_name]
|
690 |
+
|
691 |
+
inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"])
|
692 |
+
batch["input_values"] = inputs.input_values[0]
|
693 |
+
batch["length"] = len(batch["input_values"])
|
694 |
+
|
695 |
+
# encode targets
|
696 |
+
additional_kwargs = {}
|
697 |
+
if phoneme_language is not None:
|
698 |
+
additional_kwargs["phonemizer_lang"] = phoneme_language
|
699 |
+
|
700 |
+
if is_text_target:
|
701 |
+
batch["labels"] = tokenizer(batch["target_text"], **additional_kwargs).input_ids
|
702 |
+
else:
|
703 |
+
batch["labels"] = batch[target_column_name]
|
704 |
+
|
705 |
+
batch["lang"] = batch["lang_id"]
|
706 |
+
|
707 |
+
return batch
|
708 |
+
|
709 |
+
with training_args.main_process_first(desc="dataset map preprocessing"):
|
710 |
+
vectorized_datasets = raw_datasets.map(
|
711 |
+
prepare_dataset,
|
712 |
+
remove_columns=next(iter(raw_datasets.values())).column_names,
|
713 |
+
num_proc=num_workers,
|
714 |
+
desc="preprocess datasets",
|
715 |
+
)
|
716 |
+
|
717 |
+
if training_args.do_train:
|
718 |
+
|
719 |
+
def is_audio_in_length_range(length):
|
720 |
+
return length > min_input_length and length < max_input_length
|
721 |
+
|
722 |
+
# filter data that is shorter than min_input_length
|
723 |
+
vectorized_datasets["train"] = vectorized_datasets["train"].filter(
|
724 |
+
is_audio_in_length_range,
|
725 |
+
num_proc=num_workers,
|
726 |
+
input_columns=["length"],
|
727 |
+
)
|
728 |
+
|
729 |
+
# 7. Next, we can prepare for the training step.
|
730 |
+
# Let's use the appropriate XTREME-S evaluation metric,
|
731 |
+
# instantiate a data collator and the trainer
|
732 |
+
|
733 |
+
# Define evaluation metrics during training, *i.e.* word error rate, character error rate
|
734 |
+
eval_metric = load_metric("xtreme_s", task_name)
|
735 |
+
|
736 |
+
# for large datasets it is advised to run the preprocessing on a
|
737 |
+
# single machine first with ``args.preprocessing_only`` since there will mostly likely
|
738 |
+
# be a timeout when running the script in distributed mode.
|
739 |
+
# In a second step ``args.preprocessing_only`` can then be set to `False` to load the
|
740 |
+
# cached dataset
|
741 |
+
if data_args.preprocessing_only:
|
742 |
+
logger.info(f"Data preprocessing finished. Files cached at {vectorized_datasets.cache_files}")
|
743 |
+
return
|
744 |
+
|
745 |
+
def compute_asr_metric(pred):
|
746 |
+
pred_logits = pred.predictions
|
747 |
+
pred_ids = np.argmax(pred_logits, axis=-1)
|
748 |
+
|
749 |
+
pred.label_ids[pred.label_ids == -100] = tokenizer.pad_token_id
|
750 |
+
|
751 |
+
pred_str = tokenizer.batch_decode(pred_ids)
|
752 |
+
# we do not want to group tokens when computing the metrics
|
753 |
+
label_str = tokenizer.batch_decode(pred.label_ids, group_tokens=False)
|
754 |
+
|
755 |
+
metric = eval_metric.compute(predictions=pred_str, references=label_str)
|
756 |
+
return metric
|
757 |
+
|
758 |
+
def compute_classification_metric(pred):
|
759 |
+
pred_ids = np.argmax(pred.predictions, axis=1)
|
760 |
+
metric = eval_metric.compute(predictions=pred_ids, references=pred.label_ids)
|
761 |
+
return metric
|
762 |
+
|
763 |
+
# Now save everything to be able to create a single processor later
|
764 |
+
if is_main_process(training_args.local_rank):
|
765 |
+
# save feature extractor, tokenizer and config
|
766 |
+
feature_extractor.save_pretrained(training_args.output_dir)
|
767 |
+
if is_text_target:
|
768 |
+
tokenizer.save_pretrained(training_args.output_dir)
|
769 |
+
config.save_pretrained(training_args.output_dir)
|
770 |
+
# wait until configs are saved in the main process before loading the processor
|
771 |
+
if training_args.local_rank != -1:
|
772 |
+
torch.distributed.barrier()
|
773 |
+
|
774 |
+
if is_text_target:
|
775 |
+
processor = AutoProcessor.from_pretrained(training_args.output_dir)
|
776 |
+
else:
|
777 |
+
processor = AutoFeatureExtractor.from_pretrained(training_args.output_dir)
|
778 |
+
|
779 |
+
# Instantiate custom data collator
|
780 |
+
data_collator = SpeechDataCollatorWithPadding(processor=processor, pad_labels=is_text_target)
|
781 |
+
|
782 |
+
# Initialize Trainer
|
783 |
+
if target_column_name == "translation":
|
784 |
+
trainer = Seq2SeqTrainer(
|
785 |
+
model=model,
|
786 |
+
data_collator=data_collator,
|
787 |
+
args=training_args,
|
788 |
+
compute_metrics=compute_asr_metric if training_args.predict_with_generate else None,
|
789 |
+
train_dataset=vectorized_datasets["train"] if training_args.do_train else None,
|
790 |
+
eval_dataset=vectorized_datasets["eval"] if training_args.do_eval else None,
|
791 |
+
tokenizer=feature_extractor,
|
792 |
+
)
|
793 |
+
else:
|
794 |
+
trainer = Trainer(
|
795 |
+
model=model,
|
796 |
+
data_collator=data_collator,
|
797 |
+
args=training_args,
|
798 |
+
compute_metrics=compute_asr_metric if is_text_target else compute_classification_metric,
|
799 |
+
train_dataset=vectorized_datasets["train"] if training_args.do_train else None,
|
800 |
+
eval_dataset=vectorized_datasets["eval"] if training_args.do_eval else None,
|
801 |
+
tokenizer=feature_extractor,
|
802 |
+
)
|
803 |
+
|
804 |
+
# 8. Finally, we can start training
|
805 |
+
|
806 |
+
# Training
|
807 |
+
if training_args.do_train:
|
808 |
+
|
809 |
+
# use last checkpoint if exist
|
810 |
+
if last_checkpoint is not None:
|
811 |
+
checkpoint = last_checkpoint
|
812 |
+
elif os.path.isdir(model_args.model_name_or_path):
|
813 |
+
checkpoint = model_args.model_name_or_path
|
814 |
+
else:
|
815 |
+
checkpoint = None
|
816 |
+
|
817 |
+
train_result = trainer.train(resume_from_checkpoint=checkpoint)
|
818 |
+
trainer.save_model()
|
819 |
+
|
820 |
+
metrics = train_result.metrics
|
821 |
+
max_train_samples = (
|
822 |
+
data_args.max_train_samples
|
823 |
+
if data_args.max_train_samples is not None
|
824 |
+
else len(vectorized_datasets["train"])
|
825 |
+
)
|
826 |
+
metrics["train_samples"] = min(max_train_samples, len(vectorized_datasets["train"]))
|
827 |
+
|
828 |
+
trainer.log_metrics("train", metrics)
|
829 |
+
trainer.save_metrics("train", metrics)
|
830 |
+
trainer.save_state()
|
831 |
+
|
832 |
+
# Evaluation on the test set
|
833 |
+
results = {}
|
834 |
+
if training_args.do_predict:
|
835 |
+
logger.info(f"*** Evaluating on the `{data_args.predict_split_name}` set ***")
|
836 |
+
if data_args.per_lang_metrics:
|
837 |
+
# separate the `test` dataset into language-specific subsets and compute metrics for each of them
|
838 |
+
metrics = {}
|
839 |
+
average_metrics = defaultdict(list)
|
840 |
+
for lang_id in range(len(lang_list)):
|
841 |
+
lang_name = lang_list[lang_id]
|
842 |
+
lang_dataset = vectorized_datasets["predict"].filter(lambda example: example["lang"] == lang_id)
|
843 |
+
lang_metrics = trainer.evaluate(lang_dataset)
|
844 |
+
for metric_name, value in lang_metrics.items():
|
845 |
+
average_metrics[metric_name].append(value)
|
846 |
+
if metric_name not in ["eval_runtime", "eval_samples_per_second", "eval_steps_per_second"]:
|
847 |
+
metrics[f"{metric_name}_{lang_name}"] = value
|
848 |
+
for metric_name, value in average_metrics.items():
|
849 |
+
metrics[metric_name] = np.mean(value)
|
850 |
+
else:
|
851 |
+
metrics = trainer.evaluate(vectorized_datasets["predict"])
|
852 |
+
max_predict_samples = (
|
853 |
+
data_args.max_predict_samples
|
854 |
+
if data_args.max_predict_samples is not None
|
855 |
+
else len(vectorized_datasets["predict"])
|
856 |
+
)
|
857 |
+
metrics["predict_samples"] = min(max_predict_samples, len(vectorized_datasets["predict"]))
|
858 |
+
|
859 |
+
# make sure that the `predict` metrics end up in the log history for the model card
|
860 |
+
trainer.log(OrderedDict(sorted(metrics.items())))
|
861 |
+
|
862 |
+
trainer.log_metrics("predict", metrics)
|
863 |
+
trainer.save_metrics("predict", metrics)
|
864 |
+
|
865 |
+
# Write model card and (optionally) push to hub
|
866 |
+
kwargs = {
|
867 |
+
"finetuned_from": model_args.model_name_or_path,
|
868 |
+
"tasks": task_name,
|
869 |
+
"tags": [task_name, data_args.dataset_name],
|
870 |
+
"dataset_args": f"Config: {config_name}, Training split: {data_args.train_split_name}, Eval split: {data_args.eval_split_name}, Predict split: {data_args.predict_split_name}",
|
871 |
+
"dataset": f"{data_args.dataset_name.upper()} - {config_name.upper()}",
|
872 |
+
"language": data_args.language,
|
873 |
+
}
|
874 |
+
|
875 |
+
if training_args.push_to_hub:
|
876 |
+
trainer.push_to_hub(**kwargs)
|
877 |
+
else:
|
878 |
+
trainer.create_model_card(**kwargs)
|
879 |
+
|
880 |
+
return results
|
881 |
+
|
882 |
+
|
883 |
+
if __name__ == "__main__":
|
884 |
+
main()
|
885 |
+
|