sanchit-gandhi HF staff commited on
Commit
12a385e
1 Parent(s): 1d2bded

Training in progress, step 500

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ wandb/run-20220228_093705-yn2gmwrw/run-yn2gmwrw.wandb filter=lfs diff=lfs merge=lfs -text
.gitignore ADDED
@@ -0,0 +1 @@
 
 
1
+ checkpoint-*/
config.json ADDED
@@ -0,0 +1,265 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "./",
3
+ "architectures": [
4
+ "SpeechEncoderDecoderModel"
5
+ ],
6
+ "decoder": {
7
+ "_name_or_path": "gpt2-medium",
8
+ "activation_function": "gelu_new",
9
+ "add_cross_attention": true,
10
+ "architectures": [
11
+ "GPT2LMHeadModel"
12
+ ],
13
+ "attn_pdrop": 0.0,
14
+ "bad_words_ids": null,
15
+ "bos_token_id": 50256,
16
+ "chunk_size_feed_forward": 0,
17
+ "cross_attention_hidden_size": null,
18
+ "decoder_start_token_id": null,
19
+ "diversity_penalty": 0.0,
20
+ "do_sample": false,
21
+ "early_stopping": false,
22
+ "embd_pdrop": 0.0,
23
+ "encoder_no_repeat_ngram_size": 0,
24
+ "eos_token_id": 50256,
25
+ "finetuning_task": null,
26
+ "forced_bos_token_id": null,
27
+ "forced_eos_token_id": null,
28
+ "id2label": {
29
+ "0": "LABEL_0",
30
+ "1": "LABEL_1"
31
+ },
32
+ "initializer_range": 0.02,
33
+ "is_decoder": true,
34
+ "is_encoder_decoder": false,
35
+ "label2id": {
36
+ "LABEL_0": 0,
37
+ "LABEL_1": 1
38
+ },
39
+ "layer_norm_epsilon": 1e-05,
40
+ "length_penalty": 1.0,
41
+ "max_length": 20,
42
+ "min_length": 0,
43
+ "model_type": "gpt2",
44
+ "n_ctx": 1024,
45
+ "n_embd": 1024,
46
+ "n_head": 16,
47
+ "n_inner": null,
48
+ "n_layer": 24,
49
+ "n_positions": 1024,
50
+ "n_special": 0,
51
+ "no_repeat_ngram_size": 0,
52
+ "num_beam_groups": 1,
53
+ "num_beams": 1,
54
+ "num_return_sequences": 1,
55
+ "output_attentions": false,
56
+ "output_hidden_states": false,
57
+ "output_scores": false,
58
+ "pad_token_id": null,
59
+ "predict_special_tokens": true,
60
+ "prefix": null,
61
+ "problem_type": null,
62
+ "pruned_heads": {},
63
+ "remove_invalid_values": false,
64
+ "reorder_and_upcast_attn": false,
65
+ "repetition_penalty": 1.0,
66
+ "resid_pdrop": 0.0,
67
+ "return_dict": true,
68
+ "return_dict_in_generate": false,
69
+ "scale_attn_by_inverse_layer_idx": false,
70
+ "scale_attn_weights": true,
71
+ "sep_token_id": null,
72
+ "summary_activation": null,
73
+ "summary_first_dropout": 0.0,
74
+ "summary_proj_to_labels": true,
75
+ "summary_type": "cls_index",
76
+ "summary_use_proj": true,
77
+ "task_specific_params": {
78
+ "text-generation": {
79
+ "do_sample": true,
80
+ "max_length": 50
81
+ }
82
+ },
83
+ "temperature": 1.0,
84
+ "tie_encoder_decoder": false,
85
+ "tie_word_embeddings": true,
86
+ "tokenizer_class": null,
87
+ "top_k": 50,
88
+ "top_p": 1.0,
89
+ "torch_dtype": null,
90
+ "torchscript": false,
91
+ "transformers_version": "4.17.0.dev0",
92
+ "use_bfloat16": false,
93
+ "use_cache": false,
94
+ "vocab_size": 50257
95
+ },
96
+ "decoder_start_token_id": 50256,
97
+ "encoder": {
98
+ "_name_or_path": "facebook/wav2vec2-large-lv60",
99
+ "activation_dropout": 0.0,
100
+ "adapter_kernel_size": 3,
101
+ "adapter_stride": 2,
102
+ "add_adapter": true,
103
+ "add_cross_attention": false,
104
+ "apply_spec_augment": false,
105
+ "architectures": [
106
+ "Wav2Vec2ForPreTraining"
107
+ ],
108
+ "attention_dropout": 0.0,
109
+ "bad_words_ids": null,
110
+ "bos_token_id": 1,
111
+ "chunk_size_feed_forward": 0,
112
+ "classifier_proj_size": 256,
113
+ "codevector_dim": 768,
114
+ "contrastive_logits_temperature": 0.1,
115
+ "conv_bias": true,
116
+ "conv_dim": [
117
+ 512,
118
+ 512,
119
+ 512,
120
+ 512,
121
+ 512,
122
+ 512,
123
+ 512
124
+ ],
125
+ "conv_kernel": [
126
+ 10,
127
+ 3,
128
+ 3,
129
+ 3,
130
+ 3,
131
+ 2,
132
+ 2
133
+ ],
134
+ "conv_stride": [
135
+ 5,
136
+ 2,
137
+ 2,
138
+ 2,
139
+ 2,
140
+ 2,
141
+ 2
142
+ ],
143
+ "cross_attention_hidden_size": null,
144
+ "ctc_loss_reduction": "sum",
145
+ "ctc_zero_infinity": false,
146
+ "decoder_start_token_id": null,
147
+ "diversity_loss_weight": 0.1,
148
+ "diversity_penalty": 0.0,
149
+ "do_sample": false,
150
+ "do_stable_layer_norm": true,
151
+ "early_stopping": false,
152
+ "encoder_no_repeat_ngram_size": 0,
153
+ "eos_token_id": 2,
154
+ "feat_extract_activation": "gelu",
155
+ "feat_extract_dropout": 0.0,
156
+ "feat_extract_norm": "layer",
157
+ "feat_proj_dropout": 0.0,
158
+ "feat_quantizer_dropout": 0.0,
159
+ "final_dropout": 0.0,
160
+ "finetuning_task": null,
161
+ "forced_bos_token_id": null,
162
+ "forced_eos_token_id": null,
163
+ "gradient_checkpointing": false,
164
+ "hidden_act": "gelu",
165
+ "hidden_dropout": 0.0,
166
+ "hidden_dropout_prob": 0.0,
167
+ "hidden_size": 1024,
168
+ "id2label": {
169
+ "0": "LABEL_0",
170
+ "1": "LABEL_1"
171
+ },
172
+ "initializer_range": 0.02,
173
+ "intermediate_size": 4096,
174
+ "is_decoder": false,
175
+ "is_encoder_decoder": false,
176
+ "label2id": {
177
+ "LABEL_0": 0,
178
+ "LABEL_1": 1
179
+ },
180
+ "layer_norm_eps": 1e-05,
181
+ "layerdrop": 0.0,
182
+ "length_penalty": 1.0,
183
+ "mask_feature_length": 10,
184
+ "mask_feature_min_masks": 0,
185
+ "mask_feature_prob": 0.0,
186
+ "mask_time_length": 10,
187
+ "mask_time_min_masks": 2,
188
+ "mask_time_prob": 0.0,
189
+ "max_length": 20,
190
+ "min_length": 0,
191
+ "model_type": "wav2vec2",
192
+ "no_repeat_ngram_size": 0,
193
+ "num_adapter_layers": 3,
194
+ "num_attention_heads": 16,
195
+ "num_beam_groups": 1,
196
+ "num_beams": 1,
197
+ "num_codevector_groups": 2,
198
+ "num_codevectors_per_group": 320,
199
+ "num_conv_pos_embedding_groups": 16,
200
+ "num_conv_pos_embeddings": 128,
201
+ "num_feat_extract_layers": 7,
202
+ "num_hidden_layers": 24,
203
+ "num_negatives": 100,
204
+ "num_return_sequences": 1,
205
+ "output_attentions": false,
206
+ "output_hidden_size": 1024,
207
+ "output_hidden_states": false,
208
+ "output_scores": false,
209
+ "pad_token_id": 0,
210
+ "prefix": null,
211
+ "problem_type": null,
212
+ "proj_codevector_dim": 768,
213
+ "pruned_heads": {},
214
+ "remove_invalid_values": false,
215
+ "repetition_penalty": 1.0,
216
+ "return_dict": true,
217
+ "return_dict_in_generate": false,
218
+ "sep_token_id": null,
219
+ "task_specific_params": null,
220
+ "tdnn_dilation": [
221
+ 1,
222
+ 2,
223
+ 3,
224
+ 1,
225
+ 1
226
+ ],
227
+ "tdnn_dim": [
228
+ 512,
229
+ 512,
230
+ 512,
231
+ 512,
232
+ 1500
233
+ ],
234
+ "tdnn_kernel": [
235
+ 5,
236
+ 3,
237
+ 3,
238
+ 1,
239
+ 1
240
+ ],
241
+ "temperature": 1.0,
242
+ "tie_encoder_decoder": false,
243
+ "tie_word_embeddings": true,
244
+ "tokenizer_class": null,
245
+ "top_k": 50,
246
+ "top_p": 1.0,
247
+ "torch_dtype": null,
248
+ "torchscript": false,
249
+ "transformers_version": "4.17.0.dev0",
250
+ "use_bfloat16": false,
251
+ "use_weighted_layer_sum": false,
252
+ "vocab_size": 32,
253
+ "xvector_output_dim": 512
254
+ },
255
+ "eos_token_id": 50256,
256
+ "is_encoder_decoder": true,
257
+ "max_length": 50,
258
+ "model_type": "speech-encoder-decoder",
259
+ "pad_token_id": 50256,
260
+ "processor_class": "Wav2Vec2Processor",
261
+ "tie_word_embeddings": false,
262
+ "torch_dtype": "float32",
263
+ "transformers_version": null,
264
+ "use_cache": false
265
+ }
create_model.py ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import SpeechEncoderDecoderModel, AutoFeatureExtractor, GPT2Tokenizer
2
+ import torch
3
+
4
+ # checkpoints to leverage
5
+ encoder_id = "facebook/wav2vec2-large-lv60"
6
+ decoder_id = "gpt2-medium"
7
+
8
+ model = SpeechEncoderDecoderModel.from_encoder_decoder_pretrained(encoder_id, decoder_id, encoder_add_adapter=True)
9
+
10
+ # set all encoder regularisation to zero
11
+ model.config.encoder.feat_proj_dropout = 0.0
12
+ model.config.encoder.final_dropout = 0.0
13
+ model.config.encoder.activation_dropout = 0.0
14
+ model.config.encoder.apply_spec_augment = False
15
+ model.config.encoder.attention_dropout = 0.0
16
+ model.config.encoder.feat_extract_dropout = 0.0
17
+ model.config.encoder.feat_proj_dropout = 0.0
18
+ model.config.encoder.hidden_dropout = 0.0
19
+ model.config.encoder.hidden_dropout_prob = 0.0
20
+ model.config.encoder.layerdrop = 0.0
21
+ model.config.encoder.mask_feature_prob = 0.0
22
+ model.config.encoder.mask_time_prob = 0.0
23
+
24
+ # set all decoder regularisation to zero
25
+ model.config.decoder.attn_pdrop = 0.0
26
+ model.config.decoder.embd_pdrop = 0.0
27
+ model.config.decoder.resid_pdrop = 0.0
28
+ model.config.decoder.summary_first_dropout = 0.0
29
+
30
+ # force GPT2 to append EOS to begin and end of seq
31
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
32
+ outputs = [self.bos_token_id] + token_ids_0 + [self.eos_token_id]
33
+ return outputs
34
+
35
+ GPT2Tokenizer.build_inputs_with_special_tokens = build_inputs_with_special_tokens
36
+ gpt2_tokenizer = GPT2Tokenizer.from_pretrained(decoder_id)
37
+ # set pad_token_id to unk_token_id, note: unk_token_id == eos_token_id == bos_token_id
38
+ gpt2_tokenizer.pad_token = gpt2_tokenizer.unk_token
39
+ gpt2_tokenizer.save_pretrained("./")
40
+
41
+ model.config.pad_token_id = gpt2_tokenizer.pad_token_id
42
+ model.config.decoder_start_token_id = model.decoder.config.bos_token_id
43
+ model.config.eos_token_id = model.decoder.config.eos_token_id
44
+ model.config.max_length = 50
45
+ model.config.num_beams = 1
46
+
47
+ model.config.use_cache = False
48
+ model.config.decoder.use_cache = False
49
+ model.config.processor_class = "Wav2Vec2Processor"
50
+
51
+ # check if generation works
52
+ out = model.generate(torch.ones((1, 2000)))
53
+
54
+ model.save_pretrained("./")
55
+
56
+ feature_extractor = AutoFeatureExtractor.from_pretrained(encoder_id)
57
+ feature_extractor.save_pretrained("./")
58
+
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
preprocessor_config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_normalize": true,
3
+ "feature_extractor_type": "Wav2Vec2FeatureExtractor",
4
+ "feature_size": 1,
5
+ "padding_side": "right",
6
+ "padding_value": 0.0,
7
+ "return_attention_mask": true,
8
+ "sampling_rate": 16000
9
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:80dae0dc0d3975dc2f652e3e057ef9899f203485ebd52fa73614213714c5dcde
3
+ size 3210531882
run_grid_search.sh ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env bash
2
+
3
+ declare -a learning_rates=("1e-5" "3e-5" "1e-4" "3e-4" "1e-3")
4
+ declare -a batch_sizes=("8" "12" "14" "16")
5
+ declare -a gradient_accumulation_step_sizes=("2" "4" "8")
6
+
7
+ for learning_rate in "${learning_rates[@]}"; do
8
+ for batch_size in "${batch_sizes[@]}"; do
9
+ for gradient_accumulation_steps in "${gradient_accumulation_step_sizes[@]}"; do
10
+ python create_model.py
11
+ CUDA_VISIBLE_DEVICES=0 python run_speech_recognition_seq2seq.py \
12
+ --dataset_name="librispeech_asr" \
13
+ --model_name_or_path="./" \
14
+ --tokenizer_name="./" \
15
+ --dataset_config_name="clean" \
16
+ --train_split_name="train.100" \
17
+ --eval_split_name="validation" \
18
+ --output_dir="./" \
19
+ --preprocessing_num_workers="1" \
20
+ --length_column_name="input_length" \
21
+ --overwrite_output_dir \
22
+ --num_train_epochs="1" \
23
+ --per_device_train_batch_size=$batch_size \
24
+ --per_device_eval_batch_size=$batch_size \
25
+ --gradient_accumulation_steps=$gradient_accumulation_steps \
26
+ --generation_max_length="40" \
27
+ --generation_num_beams="1" \
28
+ --learning_rate=$learning_rate \
29
+ --warmup_steps="500" \
30
+ --evaluation_strategy="steps" \
31
+ --text_column_name="text" \
32
+ --save_steps="500" \
33
+ --eval_steps="500" \
34
+ --logging_steps="1" \
35
+ --save_total_limit="1" \
36
+ --freeze_feature_encoder \
37
+ --gradient_checkpointing \
38
+ --fp16 \
39
+ --group_by_length \
40
+ --predict_with_generate \
41
+ --do_lower_case \
42
+ --do_train \
43
+ --do_eval \
44
+ --report_to="wandb" \
45
+ --push_to_hub \
46
+ --use_auth_token
47
+ done
48
+ done
49
+ done
50
+
run_librispeech.sh ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env bash
2
+ CUDA_VISIBLE_DEVICES=1 python run_speech_recognition_seq2seq.py \
3
+ --dataset_name="librispeech_asr" \
4
+ --model_name_or_path="./" \
5
+ --tokenizer_name="./" \
6
+ --dataset_config_name="clean" \
7
+ --train_split_name="train.100" \
8
+ --eval_split_name="validation" \
9
+ --output_dir="./" \
10
+ --preprocessing_num_workers="1" \
11
+ --length_column_name="input_length" \
12
+ --overwrite_output_dir \
13
+ --num_train_epochs="3" \
14
+ --per_device_train_batch_size="14" \
15
+ --per_device_eval_batch_size="14" \
16
+ --gradient_accumulation_steps="8" \
17
+ --generation_max_length="40" \
18
+ --generation_num_beams="1" \
19
+ --learning_rate="1e-3" \
20
+ --warmup_steps="500" \
21
+ --evaluation_strategy="steps" \
22
+ --text_column_name="text" \
23
+ --save_steps="500" \
24
+ --eval_steps="500" \
25
+ --logging_steps="1" \
26
+ --save_total_limit="1" \
27
+ --freeze_feature_encoder \
28
+ --gradient_checkpointing \
29
+ --fp16 \
30
+ --group_by_length \
31
+ --predict_with_generate \
32
+ --do_lower_case \
33
+ --do_eval --do_train \
34
+ --push_to_hub \
35
+ --use_auth_token
36
+
run_speech_recognition_seq2seq.py ADDED
@@ -0,0 +1,539 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # coding=utf-8
3
+ # Copyright 2021 The HuggingFace Team. All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """
17
+ Fine-tuning the library models for sequence to sequence speech recognition.
18
+ """
19
+ # You can also adapt this script on your own sequence to sequence speech
20
+ # recognition task. Pointers for this are left as comments.
21
+
22
+ import logging
23
+ import os
24
+ import sys
25
+ from dataclasses import dataclass, field
26
+ from typing import Any, Dict, List, Optional, Union
27
+
28
+ import datasets
29
+ import torch
30
+ from datasets import DatasetDict, load_dataset, load_metric
31
+
32
+ import bitsandbytes as bnb
33
+ import transformers
34
+ from transformers import (
35
+ AutoConfig,
36
+ AutoFeatureExtractor,
37
+ AutoModelForSpeechSeq2Seq,
38
+ AutoProcessor,
39
+ AutoTokenizer,
40
+ HfArgumentParser,
41
+ Seq2SeqTrainer,
42
+ Seq2SeqTrainingArguments,
43
+ set_seed,
44
+ )
45
+ from transformers.trainer_pt_utils import get_parameter_names
46
+ from transformers.trainer_utils import get_last_checkpoint, is_main_process
47
+ from transformers.utils import check_min_version
48
+ from transformers.utils.versions import require_version
49
+ from transformers.optimization import Adafactor
50
+
51
+
52
+ # Will error if the minimal version of Transformers is not installed. Remove at your own risks.
53
+ check_min_version("4.17.0.dev0")
54
+
55
+ require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/summarization/requirements.txt")
56
+
57
+ logger = logging.getLogger(__name__)
58
+
59
+
60
+ @dataclass
61
+ class ModelArguments:
62
+ """
63
+ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
64
+ """
65
+
66
+ model_name_or_path: str = field(
67
+ metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
68
+ )
69
+ config_name: Optional[str] = field(
70
+ default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
71
+ )
72
+ tokenizer_name: Optional[str] = field(
73
+ default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
74
+ )
75
+ feature_extractor_name: Optional[str] = field(
76
+ default=None, metadata={"help": "feature extractor name or path if not the same as model_name"}
77
+ )
78
+ cache_dir: Optional[str] = field(
79
+ default=None,
80
+ metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"},
81
+ )
82
+ use_fast_tokenizer: bool = field(
83
+ default=True,
84
+ metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
85
+ )
86
+ model_revision: str = field(
87
+ default="main",
88
+ metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
89
+ )
90
+ use_auth_token: bool = field(
91
+ default=False,
92
+ metadata={
93
+ "help": "Will use the token generated when running `transformers-cli login` (necessary to use this script "
94
+ "with private models)."
95
+ },
96
+ )
97
+ freeze_feature_encoder: bool = field(
98
+ default=True, metadata={"help": "Whether to freeze the feature encoder layers of the model."}
99
+ )
100
+
101
+
102
+ @dataclass
103
+ class DataTrainingArguments:
104
+ """
105
+ Arguments pertaining to what data we are going to input our model for training and eval.
106
+ """
107
+
108
+ dataset_name: str = field(
109
+ default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
110
+ )
111
+ dataset_config_name: Optional[str] = field(
112
+ default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
113
+ )
114
+ text_column: Optional[str] = field(
115
+ default=None,
116
+ metadata={"help": "The name of the column in the datasets containing the full texts (for summarization)."},
117
+ )
118
+ overwrite_cache: bool = field(
119
+ default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
120
+ )
121
+ preprocessing_num_workers: Optional[int] = field(
122
+ default=None,
123
+ metadata={"help": "The number of processes to use for the preprocessing."},
124
+ )
125
+ max_train_samples: Optional[int] = field(
126
+ default=None,
127
+ metadata={
128
+ "help": "For debugging purposes or quicker training, truncate the number of training examples to this "
129
+ "value if set."
130
+ },
131
+ )
132
+ max_eval_samples: Optional[int] = field(
133
+ default=None,
134
+ metadata={
135
+ "help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
136
+ "value if set."
137
+ },
138
+ )
139
+ audio_column_name: str = field(
140
+ default="audio",
141
+ metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"},
142
+ )
143
+ text_column_name: str = field(
144
+ default="text",
145
+ metadata={"help": "The name of the dataset column containing the text data. Defaults to 'text'"},
146
+ )
147
+ max_duration_in_seconds: float = field(
148
+ default=20.0,
149
+ metadata={
150
+ "help": "Truncate audio files that are longer than `max_duration_in_seconds` seconds to 'max_duration_in_seconds`"
151
+ },
152
+ )
153
+ min_duration_in_seconds: float = field(
154
+ default=0.0, metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"}
155
+ )
156
+ preprocessing_only: bool = field(
157
+ default=False,
158
+ metadata={
159
+ "help": "Whether to only do data preprocessing and skip training. "
160
+ "This is especially useful when data preprocessing errors out in distributed training due to timeout. "
161
+ "In this case, one should run the preprocessing in a non-distributed setup with `preprocessing_only=True` "
162
+ "so that the cached datasets can consequently be loaded in distributed training"
163
+ },
164
+ )
165
+ train_split_name: str = field(
166
+ default="train",
167
+ metadata={
168
+ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
169
+ },
170
+ )
171
+ eval_split_name: str = field(
172
+ default="test",
173
+ metadata={
174
+ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
175
+ },
176
+ )
177
+ do_lower_case: bool = field(
178
+ default=True,
179
+ metadata={"help": "Whether the target text should be lower cased."},
180
+ )
181
+
182
+
183
+ @dataclass
184
+ class DataCollatorSpeechSeq2SeqWithPadding:
185
+ """
186
+ Data collator that will dynamically pad the inputs received.
187
+ Args:
188
+ processor ([`Wav2Vec2Processor`])
189
+ The processor used for proccessing the data.
190
+ decoder_start_token_id (`int`)
191
+ The begin-of-sentence of the decoder.
192
+ """
193
+
194
+ processor: Any
195
+ decoder_start_token_id: int
196
+
197
+ def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
198
+ # split inputs and labels since they have to be of different lenghts and need
199
+ # different padding methods
200
+ input_features = [{"input_values": feature["input_values"]} for feature in features]
201
+ label_features = [{"input_ids": feature["labels"]} for feature in features]
202
+
203
+ batch = self.processor.feature_extractor.pad(input_features, return_tensors="pt")
204
+
205
+ labels_batch = self.processor.tokenizer.pad(label_features, return_tensors="pt")
206
+
207
+ # replace padding with -100 to ignore loss correctly
208
+ labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)
209
+
210
+ # if bos token is appended in previous tokenization step,
211
+ # cut bos token here as it's append later anyways
212
+ if (labels[:, 0] == self.decoder_start_token_id).all().cpu().item():
213
+ labels = labels[:, 1:]
214
+
215
+ batch["labels"] = labels
216
+
217
+ return batch
218
+
219
+
220
+ def main():
221
+ # 1. Parse input arguments
222
+ # See all possible arguments in src/transformers/training_args.py
223
+ # or by passing the --help flag to this script.
224
+ # We now keep distinct sets of args, for a cleaner separation of concerns.
225
+ parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments))
226
+
227
+ if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
228
+ # If we pass only one argument to the script and it's the path to a json file,
229
+ # let's parse it to get our arguments.
230
+ model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
231
+ else:
232
+ model_args, data_args, training_args = parser.parse_args_into_dataclasses()
233
+
234
+ # 2. Setup logging
235
+ logging.basicConfig(
236
+ format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
237
+ datefmt="%m/%d/%Y %H:%M:%S",
238
+ handlers=[logging.StreamHandler(sys.stdout)],
239
+ )
240
+ log_level = training_args.get_process_log_level()
241
+ logger.setLevel(log_level)
242
+ datasets.utils.logging.set_verbosity(log_level)
243
+ transformers.utils.logging.set_verbosity(log_level)
244
+ transformers.utils.logging.enable_default_handler()
245
+ transformers.utils.logging.enable_explicit_format()
246
+
247
+ logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
248
+
249
+ # Log on each process the small summary:
250
+ logger.warning(
251
+ f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
252
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
253
+ )
254
+ logger.info(f"Training/evaluation parameters {training_args}")
255
+
256
+ # Set the verbosity to info of the Transformers logger (on main process only):
257
+ if is_main_process(training_args.local_rank):
258
+ transformers.utils.logging.set_verbosity_info()
259
+ logger.info("Training/evaluation parameters %s", training_args)
260
+
261
+ # 3. Detecting last checkpoint and eventualy continue from last checkpoint
262
+ last_checkpoint = None
263
+ if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
264
+ last_checkpoint = get_last_checkpoint(training_args.output_dir)
265
+ if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
266
+ raise ValueError(
267
+ f"Output directory ({training_args.output_dir}) already exists and is not empty. "
268
+ "Use --overwrite_output_dir to overcome."
269
+ )
270
+ elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
271
+ logger.info(
272
+ f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
273
+ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
274
+ )
275
+
276
+ # Set seed before initializing model.
277
+ set_seed(training_args.seed)
278
+
279
+ # 4. Load dataset
280
+ raw_datasets = DatasetDict()
281
+
282
+ if training_args.do_train:
283
+ raw_datasets["train"] = load_dataset(
284
+ data_args.dataset_name, data_args.dataset_config_name, split=data_args.train_split_name
285
+ )
286
+
287
+ if training_args.do_eval:
288
+ raw_datasets["eval"] = load_dataset(
289
+ data_args.dataset_name, data_args.dataset_config_name, split=data_args.eval_split_name
290
+ )
291
+
292
+ if data_args.audio_column_name not in next(iter(raw_datasets.values())).column_names:
293
+ raise ValueError(
294
+ f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'. "
295
+ "Make sure to set `--audio_column_name` to the correct audio column - one of "
296
+ f"{', '.join(next(iter(raw_datasets.values())).column_names)}."
297
+ )
298
+
299
+ if data_args.text_column_name not in next(iter(raw_datasets.values())).column_names:
300
+ raise ValueError(
301
+ f"--text_column_name {data_args.text_column_name} not found in dataset '{data_args.dataset_name}'. "
302
+ "Make sure to set `--text_column_name` to the correct text column - one of "
303
+ f"{', '.join(next(iter(raw_datasets.values())).column_names)}."
304
+ )
305
+
306
+ # 5. Load pretrained model, tokenizer, and feature extractor
307
+ #
308
+ # Distributed training:
309
+ # The .from_pretrained methods guarantee that only one local process can concurrently
310
+ config = AutoConfig.from_pretrained(
311
+ model_args.config_name if model_args.config_name else model_args.model_name_or_path,
312
+ cache_dir=model_args.cache_dir,
313
+ revision=model_args.model_revision,
314
+ use_auth_token=True if model_args.use_auth_token else None,
315
+ )
316
+
317
+ feature_extractor = AutoFeatureExtractor.from_pretrained(
318
+ model_args.feature_extractor_name if model_args.feature_extractor_name else model_args.model_name_or_path,
319
+ cache_dir=model_args.cache_dir,
320
+ revision=model_args.model_revision,
321
+ use_auth_token=True if model_args.use_auth_token else None,
322
+ )
323
+ tokenizer = AutoTokenizer.from_pretrained(
324
+ model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
325
+ cache_dir=model_args.cache_dir,
326
+ use_fast=model_args.use_fast_tokenizer,
327
+ revision=model_args.model_revision,
328
+ use_auth_token=True if model_args.use_auth_token else None,
329
+ )
330
+ model = AutoModelForSpeechSeq2Seq.from_pretrained(
331
+ model_args.model_name_or_path,
332
+ config=config,
333
+ cache_dir=model_args.cache_dir,
334
+ revision=model_args.model_revision,
335
+ use_auth_token=True if model_args.use_auth_token else None,
336
+ )
337
+
338
+ if model.config.decoder_start_token_id is None:
339
+ raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined")
340
+
341
+ if model_args.freeze_feature_encoder:
342
+ model.freeze_feature_encoder()
343
+
344
+ # 6. Resample speech dataset if necassary
345
+ dataset_sampling_rate = next(iter(raw_datasets.values())).features[data_args.audio_column_name].sampling_rate
346
+ if dataset_sampling_rate != feature_extractor.sampling_rate:
347
+ raw_datasets = raw_datasets.cast_column(
348
+ data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate)
349
+ )
350
+
351
+ # 7. Preprocessing the datasets.
352
+ # We need to read the audio files as arrays and tokenize the targets.
353
+ max_input_length = data_args.max_duration_in_seconds * feature_extractor.sampling_rate
354
+ min_input_length = data_args.min_duration_in_seconds * feature_extractor.sampling_rate
355
+ audio_column_name = data_args.audio_column_name
356
+ num_workers = data_args.preprocessing_num_workers
357
+ text_column_name = data_args.text_column_name
358
+ model_input_name = feature_extractor.model_input_names[0]
359
+ do_lower_case = data_args.do_lower_case
360
+
361
+ if data_args.max_train_samples is not None:
362
+ raw_datasets["train"] = raw_datasets["train"].select(range(data_args.max_train_samples))
363
+
364
+ if data_args.max_eval_samples is not None:
365
+ raw_datasets["eval"] = raw_datasets["eval"].select(range(data_args.max_eval_samples))
366
+
367
+ def prepare_dataset(batch):
368
+ # process audio
369
+ sample = batch[audio_column_name]
370
+ inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"])
371
+ # process audio length
372
+ batch[model_input_name] = inputs.input_values[0]
373
+ batch["input_length"] = len(batch["input_values"])
374
+
375
+ # process targets
376
+ input_str = batch[text_column_name].lower() if do_lower_case else batch[text_column_name]
377
+ batch["labels"] = tokenizer(input_str).input_ids
378
+ return batch
379
+
380
+ with training_args.main_process_first(desc="dataset map pre-processing"):
381
+ vectorized_datasets = raw_datasets.map(
382
+ prepare_dataset,
383
+ remove_columns=next(iter(raw_datasets.values())).column_names,
384
+ num_proc=data_args.preprocessing_num_workers,
385
+ desc="preprocess train dataset",
386
+ )
387
+
388
+ # filter data that is shorter than min_input_length or longer than
389
+ # max_input_length
390
+ def is_audio_in_length_range(length):
391
+ return length > min_input_length and length < max_input_length
392
+
393
+ vectorized_datasets = vectorized_datasets.filter(
394
+ is_audio_in_length_range,
395
+ num_proc=num_workers,
396
+ input_columns=["input_length"],
397
+ )
398
+
399
+ # for large datasets it is advised to run the preprocessing on a
400
+ # single machine first with `args.preprocessing_only` since there will mostly likely
401
+ # be a timeout when running the script in distributed mode.
402
+ # In a second step `args.preprocessing_only` can then be set to `False` to load the
403
+ # cached dataset
404
+ if data_args.preprocessing_only:
405
+ cache = {k: v.cache_files for k, v in vectorized_datasets.items()}
406
+ logger.info(f"Data preprocessing finished. Files cached at {cache}.")
407
+ return
408
+
409
+ # 8. Load Metric
410
+ metric = load_metric("wer")
411
+
412
+ def compute_metrics(pred):
413
+ pred_ids = pred.predictions
414
+
415
+ pred.label_ids[pred.label_ids == -100] = tokenizer.pad_token_id
416
+
417
+ pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True)
418
+ # we do not want to group tokens when computing the metrics
419
+ label_str = tokenizer.batch_decode(pred.label_ids, skip_special_tokens=True)
420
+
421
+ wer = metric.compute(predictions=pred_str, references=label_str)
422
+
423
+ return {"wer": wer}
424
+
425
+ # 9. Create a single speech processor
426
+ if is_main_process(training_args.local_rank):
427
+ # save feature extractor, tokenizer and config
428
+ feature_extractor.save_pretrained(training_args.output_dir)
429
+ tokenizer.save_pretrained(training_args.output_dir)
430
+ config.save_pretrained(training_args.output_dir)
431
+
432
+ processor = AutoProcessor.from_pretrained(training_args.output_dir)
433
+
434
+ # 10. Define data collator
435
+ data_collator = DataCollatorSpeechSeq2SeqWithPadding(
436
+ processor=processor, decoder_start_token_id=model.config.decoder_start_token_id
437
+ )
438
+
439
+ decay_parameters = get_parameter_names(model, [torch.nn.LayerNorm])
440
+ decay_parameters = [name for name in decay_parameters if "bias" not in name]
441
+ optimizer_grouped_parameters = [
442
+ {
443
+ "params": [p for n, p in model.named_parameters() if n in decay_parameters],
444
+ "weight_decay": training_args.weight_decay,
445
+ },
446
+ {
447
+ "params": [p for n, p in model.named_parameters() if n not in decay_parameters],
448
+ "weight_decay": 0.0,
449
+ },
450
+ ]
451
+
452
+ optimizer = bnb.optim.Adam8bit(
453
+ params=optimizer_grouped_parameters,
454
+ lr=training_args.learning_rate,
455
+ betas=(training_args.adam_beta1, training_args.adam_beta2),
456
+ eps=training_args.adam_epsilon,
457
+ )
458
+
459
+ """optimizer = Adafactor(
460
+ params=optimizer_grouped_parameters,
461
+ lr=training_args.learning_rate,
462
+ beta1=training_args.adam_beta1,
463
+ eps=training_args.adam_epsilon,
464
+ relative_step=False,
465
+ )"""
466
+
467
+
468
+ optimizers = (optimizer, None)
469
+
470
+
471
+ #11. Initialize Trainer
472
+
473
+ trainer = Seq2SeqTrainer(
474
+ model=model,
475
+ args=training_args,
476
+ train_dataset=vectorized_datasets["train"] if training_args.do_train else None,
477
+ eval_dataset=vectorized_datasets["eval"] if training_args.do_eval else None,
478
+ tokenizer=feature_extractor,
479
+ data_collator=data_collator,
480
+ compute_metrics=compute_metrics if training_args.predict_with_generate else None,
481
+ optimizers=optimizers,
482
+ )
483
+
484
+ # 12. Training
485
+ if training_args.do_train:
486
+ checkpoint = None
487
+ if training_args.resume_from_checkpoint is not None:
488
+ checkpoint = training_args.resume_from_checkpoint
489
+ elif last_checkpoint is not None:
490
+ checkpoint = last_checkpoint
491
+ train_result = trainer.train(resume_from_checkpoint=checkpoint)
492
+ trainer.save_model() # Saves the feature extractor too for easy upload
493
+
494
+ metrics = train_result.metrics
495
+ max_train_samples = (
496
+ data_args.max_train_samples
497
+ if data_args.max_train_samples is not None
498
+ else len(vectorized_datasets["train"])
499
+ )
500
+ metrics["train_samples"] = min(max_train_samples, len(vectorized_datasets["train"]))
501
+ trainer.log_metrics("train", metrics)
502
+ trainer.save_metrics("train", metrics)
503
+ trainer.save_state()
504
+
505
+ # 13. Evaluation
506
+ results = {}
507
+ if training_args.do_eval:
508
+ logger.info("*** Evaluate ***")
509
+ metrics = trainer.evaluate(
510
+ metric_key_prefix="eval", max_length=model.config.max_length, num_beams=model.config.num_beams
511
+ )
512
+ max_eval_samples = (
513
+ data_args.max_eval_samples if data_args.max_eval_samples is not None else len(vectorized_datasets["eval"])
514
+ )
515
+ metrics["eval_samples"] = min(max_eval_samples, len(vectorized_datasets["eval"]))
516
+
517
+ trainer.log_metrics("eval", metrics)
518
+ trainer.save_metrics("eval", metrics)
519
+
520
+ # 14. Write Training Stats
521
+ kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "speech recognition"}
522
+ if data_args.dataset_name is not None:
523
+ kwargs["dataset_tags"] = data_args.dataset_name
524
+ if data_args.dataset_config_name is not None:
525
+ kwargs["dataset_args"] = data_args.dataset_config_name
526
+ kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
527
+ else:
528
+ kwargs["dataset"] = data_args.dataset_name
529
+
530
+ if training_args.push_to_hub:
531
+ trainer.push_to_hub(**kwargs)
532
+ else:
533
+ trainer.create_model_card(**kwargs)
534
+
535
+ return results
536
+
537
+
538
+ if __name__ == "__main__":
539
+ main()
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"bos_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "eos_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "unk_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "pad_token": "<|endoftext|>"}
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"unk_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "bos_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "eos_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "add_prefix_space": false, "errors": "replace", "model_max_length": 1024, "special_tokens_map_file": null, "name_or_path": "./", "tokenizer_class": "GPT2Tokenizer"}
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bdbb29101684863ff261d24c35a1939e62b99d8c9255d77d06750453f301290b
3
+ size 3119
vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
wandb/debug-internal.log ADDED
@@ -0,0 +1 @@
 
 
1
+ run-20220228_093705-yn2gmwrw/logs/debug-internal.log
wandb/debug.log ADDED
@@ -0,0 +1 @@
 
 
1
+ run-20220228_093705-yn2gmwrw/logs/debug.log
wandb/latest-run ADDED
@@ -0,0 +1 @@
 
 
1
+ run-20220228_093705-yn2gmwrw
wandb/run-20220228_093705-yn2gmwrw/files/config.yaml ADDED
The diff for this file is too large to render. See raw diff
 
wandb/run-20220228_093705-yn2gmwrw/files/output.log ADDED
The diff for this file is too large to render. See raw diff
 
wandb/run-20220228_093705-yn2gmwrw/files/requirements.txt ADDED
@@ -0,0 +1,184 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ absl-py==1.0.0
2
+ aiohttp==3.8.1
3
+ aiosignal==1.2.0
4
+ anyio==3.5.0
5
+ appdirs==1.4.4
6
+ argon2-cffi-bindings==21.2.0
7
+ argon2-cffi==21.3.0
8
+ asttokens==2.0.5
9
+ async-timeout==4.0.2
10
+ attrs==21.4.0
11
+ audioread==2.1.9
12
+ babel==2.9.1
13
+ backcall==0.2.0
14
+ bitsandbytes-cuda113==0.26.0
15
+ black==22.1.0
16
+ bleach==4.1.0
17
+ cachetools==5.0.0
18
+ certifi==2021.10.8
19
+ cffi==1.15.0
20
+ charset-normalizer==2.0.11
21
+ chex==0.1.0
22
+ click==8.0.3
23
+ clldutils==3.10.1
24
+ colorlog==6.6.0
25
+ csvw==1.11.0
26
+ cycler==0.11.0
27
+ datasets==1.18.3
28
+ debugpy==1.5.1
29
+ decorator==5.1.1
30
+ defusedxml==0.7.1
31
+ dill==0.3.4
32
+ dlinfo==1.2.1
33
+ dm-tree==0.1.6
34
+ docker-pycreds==0.4.0
35
+ entrypoints==0.4
36
+ executing==0.8.2
37
+ filelock==3.4.2
38
+ flatbuffers==2.0
39
+ flax==0.4.0
40
+ fonttools==4.29.1
41
+ frozenlist==1.3.0
42
+ fsspec==2022.1.0
43
+ gitdb==4.0.9
44
+ gitpython==3.1.27
45
+ google-auth-oauthlib==0.4.6
46
+ google-auth==2.6.0
47
+ grpcio==1.43.0
48
+ huggingface-hub==0.4.0
49
+ hypothesis==6.36.1
50
+ idna==3.3
51
+ importlib-metadata==4.10.1
52
+ ipykernel==6.8.0
53
+ ipython-genutils==0.2.0
54
+ ipython==8.0.1
55
+ ipywidgets==7.6.5
56
+ isodate==0.6.1
57
+ jax==0.2.28
58
+ jaxlib==0.1.76+cuda11.cudnn82
59
+ jedi==0.18.1
60
+ jinja2==3.0.3
61
+ jiwer==2.3.0
62
+ joblib==1.1.0
63
+ json5==0.9.6
64
+ jsonschema==4.4.0
65
+ jupyter-client==7.1.2
66
+ jupyter-console==6.4.0
67
+ jupyter-core==4.9.1
68
+ jupyter-server==1.13.5
69
+ jupyter==1.0.0
70
+ jupyterlab-pygments==0.1.2
71
+ jupyterlab-server==2.10.3
72
+ jupyterlab-widgets==1.0.2
73
+ jupyterlab==3.2.9
74
+ kiwisolver==1.3.2
75
+ librosa==0.8.1
76
+ llvmlite==0.38.0
77
+ markdown==3.3.6
78
+ markupsafe==2.0.1
79
+ matplotlib-inline==0.1.3
80
+ matplotlib==3.5.1
81
+ mistune==0.8.4
82
+ msgpack==1.0.3
83
+ multidict==6.0.2
84
+ multiprocess==0.70.12.2
85
+ mypy-extensions==0.4.3
86
+ nbclassic==0.3.5
87
+ nbclient==0.5.10
88
+ nbconvert==6.4.1
89
+ nbformat==5.1.3
90
+ nest-asyncio==1.5.4
91
+ notebook==6.4.8
92
+ numba==0.55.1
93
+ numpy==1.21.5
94
+ oauthlib==3.2.0
95
+ opt-einsum==3.3.0
96
+ optax==0.1.0
97
+ packaging==21.3
98
+ pandas==1.4.0
99
+ pandocfilters==1.5.0
100
+ parso==0.8.3
101
+ pathspec==0.9.0
102
+ pathtools==0.1.2
103
+ pexpect==4.8.0
104
+ phonemizer==3.0.1
105
+ pickleshare==0.7.5
106
+ pillow==9.0.0
107
+ pip==22.0.2
108
+ pkg-resources==0.0.0
109
+ platformdirs==2.4.1
110
+ pooch==1.6.0
111
+ prometheus-client==0.13.1
112
+ promise==2.3
113
+ prompt-toolkit==3.0.26
114
+ protobuf==3.19.4
115
+ psutil==5.9.0
116
+ ptyprocess==0.7.0
117
+ pure-eval==0.2.2
118
+ pyarrow==6.0.1
119
+ pyasn1-modules==0.2.8
120
+ pyasn1==0.4.8
121
+ pycparser==2.21
122
+ pyctcdecode==0.3.0
123
+ pygments==2.11.2
124
+ pygtrie==2.4.2
125
+ pyparsing==3.0.7
126
+ pyrsistent==0.18.1
127
+ python-dateutil==2.8.2
128
+ python-levenshtein==0.12.2
129
+ pytz==2021.3
130
+ pyyaml==6.0
131
+ pyzmq==22.3.0
132
+ qtconsole==5.2.2
133
+ qtpy==2.0.1
134
+ regex==2022.1.18
135
+ requests-oauthlib==1.3.1
136
+ requests==2.27.1
137
+ resampy==0.2.2
138
+ rfc3986==2.0.0
139
+ rsa==4.8
140
+ sacremoses==0.0.47
141
+ scikit-learn==1.0.2
142
+ scipy==1.7.3
143
+ segments==2.2.0
144
+ send2trash==1.8.0
145
+ sentry-sdk==1.5.6
146
+ setuptools==44.1.1
147
+ shortuuid==1.0.8
148
+ six==1.16.0
149
+ smmap==5.0.0
150
+ sniffio==1.2.0
151
+ sortedcontainers==2.4.0
152
+ soundfile==0.10.3.post1
153
+ stack-data==0.1.4
154
+ tabulate==0.8.9
155
+ tensorboard-data-server==0.6.1
156
+ tensorboard-plugin-wit==1.8.1
157
+ tensorboard==2.8.0
158
+ termcolor==1.1.0
159
+ terminado==0.13.1
160
+ testpath==0.5.0
161
+ threadpoolctl==3.1.0
162
+ tokenizers==0.11.4
163
+ tomli==2.0.0
164
+ toolz==0.11.2
165
+ torch==1.10.2+cu113
166
+ torchaudio==0.10.2+cu113
167
+ tornado==6.1
168
+ tqdm==4.62.3
169
+ traitlets==5.1.1
170
+ transformers==4.17.0.dev0
171
+ typing-extensions==3.10.0.2
172
+ uritemplate==4.1.1
173
+ urllib3==1.26.8
174
+ wandb==0.12.10
175
+ wcwidth==0.2.5
176
+ webencodings==0.5.1
177
+ websocket-client==1.2.3
178
+ werkzeug==2.0.2
179
+ wheel==0.37.1
180
+ widgetsnbextension==3.5.2
181
+ xxhash==2.0.2
182
+ yarl==1.7.2
183
+ yaspin==2.1.0
184
+ zipp==3.7.0
wandb/run-20220228_093705-yn2gmwrw/files/wandb-metadata.json ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "os": "Linux-5.11.0-1028-gcp-x86_64-with-glibc2.33",
3
+ "python": "3.9.5",
4
+ "heartbeatAt": "2022-02-28T09:37:06.811386",
5
+ "startedAt": "2022-02-28T09:37:05.566873",
6
+ "docker": null,
7
+ "gpu": "Tesla V100-SXM2-16GB",
8
+ "gpu_count": 2,
9
+ "cpu_count": 16,
10
+ "cuda": null,
11
+ "args": [
12
+ "--dataset_name=librispeech_asr",
13
+ "--model_name_or_path=./",
14
+ "--tokenizer_name=./",
15
+ "--dataset_config_name=clean",
16
+ "--train_split_name=train.100",
17
+ "--eval_split_name=validation",
18
+ "--output_dir=./",
19
+ "--preprocessing_num_workers=1",
20
+ "--length_column_name=input_length",
21
+ "--overwrite_output_dir",
22
+ "--num_train_epochs=1",
23
+ "--per_device_train_batch_size=8",
24
+ "--per_device_eval_batch_size=8",
25
+ "--gradient_accumulation_steps=2",
26
+ "--generation_max_length=40",
27
+ "--generation_num_beams=1",
28
+ "--learning_rate=1e-5",
29
+ "--warmup_steps=500",
30
+ "--evaluation_strategy=steps",
31
+ "--text_column_name=text",
32
+ "--save_steps=500",
33
+ "--eval_steps=500",
34
+ "--logging_steps=1",
35
+ "--save_total_limit=1",
36
+ "--freeze_feature_encoder",
37
+ "--gradient_checkpointing",
38
+ "--fp16",
39
+ "--group_by_length",
40
+ "--predict_with_generate",
41
+ "--do_lower_case",
42
+ "--do_train",
43
+ "--do_eval",
44
+ "--report_to=wandb",
45
+ "--push_to_hub",
46
+ "--use_auth_token"
47
+ ],
48
+ "state": "running",
49
+ "program": "/home/sanchit_huggingface_co/wav2vec2-gpt2-wandb-grid-search/run_speech_recognition_seq2seq.py",
50
+ "codePath": "run_speech_recognition_seq2seq.py",
51
+ "git": {
52
+ "remote": "https://huggingface.co/sanchit-gandhi/wav2vec2-gpt2-wandb-grid-search",
53
+ "commit": "1d2bded5b2a9a272e2b53e924e0812d0636afc84"
54
+ },
55
+ "email": "sanchit@huggingface.co",
56
+ "root": "/home/sanchit_huggingface_co/wav2vec2-gpt2-wandb-grid-search",
57
+ "host": "sanchit--v100",
58
+ "username": "sanchit_huggingface_co",
59
+ "executable": "/home/sanchit_huggingface_co/gcp/bin/python"
60
+ }
wandb/run-20220228_093705-yn2gmwrw/files/wandb-summary.json ADDED
The diff for this file is too large to render. See raw diff
 
wandb/run-20220228_093705-yn2gmwrw/logs/debug-internal.log ADDED
The diff for this file is too large to render. See raw diff
 
wandb/run-20220228_093705-yn2gmwrw/logs/debug.log ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2022-02-28 09:37:05,568 INFO MainThread:219058 [wandb_setup.py:_flush():75] Loading settings from /home/sanchit_huggingface_co/.config/wandb/settings
2
+ 2022-02-28 09:37:05,569 INFO MainThread:219058 [wandb_setup.py:_flush():75] Loading settings from /home/sanchit_huggingface_co/wav2vec2-gpt2-wandb-grid-search/wandb/settings
3
+ 2022-02-28 09:37:05,569 INFO MainThread:219058 [wandb_setup.py:_flush():75] Loading settings from environment variables: {}
4
+ 2022-02-28 09:37:05,569 INFO MainThread:219058 [wandb_setup.py:_flush():75] Inferring run settings from compute environment: {'program_relpath': 'run_speech_recognition_seq2seq.py', 'program': '/home/sanchit_huggingface_co/wav2vec2-gpt2-wandb-grid-search/run_speech_recognition_seq2seq.py'}
5
+ 2022-02-28 09:37:05,569 INFO MainThread:219058 [wandb_setup.py:_flush():75] Applying login settings: {'api_key': '***REDACTED***'}
6
+ 2022-02-28 09:37:05,569 INFO MainThread:219058 [wandb_init.py:_log_setup():386] Logging user logs to /home/sanchit_huggingface_co/wav2vec2-gpt2-wandb-grid-search/wandb/run-20220228_093705-yn2gmwrw/logs/debug.log
7
+ 2022-02-28 09:37:05,569 INFO MainThread:219058 [wandb_init.py:_log_setup():387] Logging internal logs to /home/sanchit_huggingface_co/wav2vec2-gpt2-wandb-grid-search/wandb/run-20220228_093705-yn2gmwrw/logs/debug-internal.log
8
+ 2022-02-28 09:37:05,569 INFO MainThread:219058 [wandb_init.py:init():420] calling init triggers
9
+ 2022-02-28 09:37:05,569 INFO MainThread:219058 [wandb_init.py:init():425] wandb.init called with sweep_config: {}
10
+ config: {}
11
+ 2022-02-28 09:37:05,569 INFO MainThread:219058 [wandb_init.py:init():471] starting backend
12
+ 2022-02-28 09:37:05,569 INFO MainThread:219058 [backend.py:_multiprocessing_setup():99] multiprocessing start_methods=fork,spawn,forkserver, using: spawn
13
+ 2022-02-28 09:37:05,647 INFO MainThread:219058 [backend.py:ensure_launched():219] starting backend process...
14
+ 2022-02-28 09:37:05,722 INFO MainThread:219058 [backend.py:ensure_launched():224] started backend process with pid: 219340
15
+ 2022-02-28 09:37:05,724 INFO MainThread:219058 [wandb_init.py:init():480] backend started and connected
16
+ 2022-02-28 09:37:05,736 INFO MainThread:219058 [wandb_init.py:init():550] updated telemetry
17
+ 2022-02-28 09:37:05,917 INFO MainThread:219058 [wandb_init.py:init():581] communicating current version
18
+ 2022-02-28 09:37:06,640 INFO MainThread:219058 [wandb_init.py:init():586] got version response
19
+ 2022-02-28 09:37:06,640 INFO MainThread:219058 [wandb_init.py:init():596] communicating run to backend with 30 second timeout
20
+ 2022-02-28 09:37:06,797 INFO MainThread:219058 [wandb_init.py:init():624] starting run threads in backend
21
+ 2022-02-28 09:37:06,922 INFO MainThread:219058 [wandb_run.py:_console_start():1827] atexit reg
22
+ 2022-02-28 09:37:06,923 INFO MainThread:219058 [wandb_run.py:_redirect():1701] redirect: SettingsConsole.REDIRECT
23
+ 2022-02-28 09:37:06,923 INFO MainThread:219058 [wandb_run.py:_redirect():1706] Redirecting console.
24
+ 2022-02-28 09:37:06,925 INFO MainThread:219058 [wandb_run.py:_redirect():1762] Redirects installed.
25
+ 2022-02-28 09:37:06,925 INFO MainThread:219058 [wandb_init.py:init():651] run started, returning control to user process
26
+ 2022-02-28 09:37:06,927 INFO MainThread:219058 [wandb_run.py:_config_callback():966] config_cb None None {'return_dict': True, 'output_hidden_states': False, 'output_attentions': False, 'torchscript': False, 'torch_dtype': 'torch.float32', 'use_bfloat16': False, 'pruned_heads': {}, 'tie_word_embeddings': False, 'is_encoder_decoder': True, 'is_decoder': False, 'cross_attention_hidden_size': None, 'add_cross_attention': False, 'tie_encoder_decoder': False, 'max_length': 50, 'min_length': 0, 'do_sample': False, 'early_stopping': False, 'num_beams': 1, 'num_beam_groups': 1, 'diversity_penalty': 0.0, 'temperature': 1.0, 'top_k': 50, 'top_p': 1.0, 'repetition_penalty': 1.0, 'length_penalty': 1.0, 'no_repeat_ngram_size': 0, 'encoder_no_repeat_ngram_size': 0, 'bad_words_ids': None, 'num_return_sequences': 1, 'chunk_size_feed_forward': 0, 'output_scores': False, 'return_dict_in_generate': False, 'forced_bos_token_id': None, 'forced_eos_token_id': None, 'remove_invalid_values': False, 'architectures': ['SpeechEncoderDecoderModel'], 'finetuning_task': None, 'id2label': {0: 'LABEL_0', 1: 'LABEL_1'}, 'label2id': {'LABEL_0': 0, 'LABEL_1': 1}, 'tokenizer_class': None, 'prefix': None, 'bos_token_id': None, 'pad_token_id': 50256, 'eos_token_id': 50256, 'sep_token_id': None, 'decoder_start_token_id': 50256, 'task_specific_params': None, 'problem_type': None, '_name_or_path': './', 'transformers_version': None, 'decoder': {'vocab_size': 50257, 'n_positions': 1024, 'n_embd': 1024, 'n_layer': 24, 'n_head': 16, 'n_inner': None, 'activation_function': 'gelu_new', 'resid_pdrop': 0.0, 'embd_pdrop': 0.0, 'attn_pdrop': 0.0, 'layer_norm_epsilon': 1e-05, 'initializer_range': 0.02, 'summary_type': 'cls_index', 'summary_use_proj': True, 'summary_activation': None, 'summary_first_dropout': 0.0, 'summary_proj_to_labels': True, 'scale_attn_weights': True, 'use_cache': False, 'scale_attn_by_inverse_layer_idx': False, 'reorder_and_upcast_attn': False, 'bos_token_id': 50256, 'eos_token_id': 50256, 'return_dict': True, 'output_hidden_states': False, 'output_attentions': False, 'torchscript': False, 'torch_dtype': None, 'use_bfloat16': False, 'pruned_heads': {}, 'tie_word_embeddings': True, 'is_encoder_decoder': False, 'is_decoder': True, 'cross_attention_hidden_size': None, 'add_cross_attention': True, 'tie_encoder_decoder': False, 'max_length': 20, 'min_length': 0, 'do_sample': False, 'early_stopping': False, 'num_beams': 1, 'num_beam_groups': 1, 'diversity_penalty': 0.0, 'temperature': 1.0, 'top_k': 50, 'top_p': 1.0, 'repetition_penalty': 1.0, 'length_penalty': 1.0, 'no_repeat_ngram_size': 0, 'encoder_no_repeat_ngram_size': 0, 'bad_words_ids': None, 'num_return_sequences': 1, 'chunk_size_feed_forward': 0, 'output_scores': False, 'return_dict_in_generate': False, 'forced_bos_token_id': None, 'forced_eos_token_id': None, 'remove_invalid_values': False, 'architectures': ['GPT2LMHeadModel'], 'finetuning_task': None, 'id2label': {0: 'LABEL_0', 1: 'LABEL_1'}, 'label2id': {'LABEL_0': 0, 'LABEL_1': 1}, 'tokenizer_class': None, 'prefix': None, 'pad_token_id': None, 'sep_token_id': None, 'decoder_start_token_id': None, 'task_specific_params': {'text-generation': {'do_sample': True, 'max_length': 50}}, 'problem_type': None, '_name_or_path': 'gpt2-medium', 'transformers_version': '4.17.0.dev0', 'n_ctx': 1024, 'n_special': 0, 'predict_special_tokens': True, 'model_type': 'gpt2'}, 'encoder': {'return_dict': True, 'output_hidden_states': False, 'output_attentions': False, 'torchscript': False, 'torch_dtype': None, 'use_bfloat16': False, 'pruned_heads': {}, 'tie_word_embeddings': True, 'is_encoder_decoder': False, 'is_decoder': False, 'cross_attention_hidden_size': None, 'add_cross_attention': False, 'tie_encoder_decoder': False, 'max_length': 20, 'min_length': 0, 'do_sample': False, 'early_stopping': False, 'num_beams': 1, 'num_beam_groups': 1, 'diversity_penalty': 0.0, 'temperature': 1.0, 'top_k': 50, 'top_p': 1.0, 'repetition_penalty': 1.0, 'length_penalty': 1.0, 'no_repeat_ngram_size': 0, 'encoder_no_repeat_ngram_size': 0, 'bad_words_ids': None, 'num_return_sequences': 1, 'chunk_size_feed_forward': 0, 'output_scores': False, 'return_dict_in_generate': False, 'forced_bos_token_id': None, 'forced_eos_token_id': None, 'remove_invalid_values': False, 'architectures': ['Wav2Vec2ForPreTraining'], 'finetuning_task': None, 'id2label': {0: 'LABEL_0', 1: 'LABEL_1'}, 'label2id': {'LABEL_0': 0, 'LABEL_1': 1}, 'tokenizer_class': None, 'prefix': None, 'bos_token_id': 1, 'pad_token_id': 0, 'eos_token_id': 2, 'sep_token_id': None, 'decoder_start_token_id': None, 'task_specific_params': None, 'problem_type': None, '_name_or_path': 'facebook/wav2vec2-large-lv60', 'transformers_version': '4.17.0.dev0', 'feat_extract_dropout': 0.0, 'gradient_checkpointing': False, 'hidden_dropout_prob': 0.0, 'num_feat_extract_layers': 7, 'hidden_size': 1024, 'feat_extract_norm': 'layer', 'feat_extract_activation': 'gelu', 'conv_dim': [512, 512, 512, 512, 512, 512, 512], 'conv_stride': [5, 2, 2, 2, 2, 2, 2], 'conv_kernel': [10, 3, 3, 3, 3, 2, 2], 'conv_bias': True, 'num_conv_pos_embeddings': 128, 'num_conv_pos_embedding_groups': 16, 'num_hidden_layers': 24, 'intermediate_size': 4096, 'hidden_act': 'gelu', 'num_attention_heads': 16, 'hidden_dropout': 0.0, 'attention_dropout': 0.0, 'activation_dropout': 0.0, 'feat_proj_dropout': 0.0, 'final_dropout': 0.0, 'layerdrop': 0.0, 'layer_norm_eps': 1e-05, 'initializer_range': 0.02, 'vocab_size': 32, 'do_stable_layer_norm': True, 'use_weighted_layer_sum': False, 'apply_spec_augment': False, 'mask_time_prob': 0.0, 'mask_time_length': 10, 'mask_time_min_masks': 2, 'mask_feature_prob': 0.0, 'mask_feature_length': 10, 'mask_feature_min_masks': 0, 'num_codevectors_per_group': 320, 'num_codevector_groups': 2, 'contrastive_logits_temperature': 0.1, 'feat_quantizer_dropout': 0.0, 'num_negatives': 100, 'codevector_dim': 768, 'proj_codevector_dim': 768, 'diversity_loss_weight': 0.1, 'ctc_loss_reduction': 'sum', 'ctc_zero_infinity': False, 'add_adapter': True, 'adapter_kernel_size': 3, 'adapter_stride': 2, 'num_adapter_layers': 3, 'output_hidden_size': 1024, 'classifier_proj_size': 256, 'tdnn_dim': [512, 512, 512, 512, 1500], 'tdnn_kernel': [5, 3, 3, 1, 1], 'tdnn_dilation': [1, 2, 3, 1, 1], 'xvector_output_dim': 512, 'model_type': 'wav2vec2'}, 'model_type': 'speech-encoder-decoder', 'processor_class': 'Wav2Vec2Processor', 'use_cache': False, 'output_dir': './', 'overwrite_output_dir': True, 'do_train': True, 'do_eval': True, 'do_predict': False, 'evaluation_strategy': 'steps', 'prediction_loss_only': False, 'per_device_train_batch_size': 8, 'per_device_eval_batch_size': 8, 'per_gpu_train_batch_size': 'None', 'per_gpu_eval_batch_size': 'None', 'gradient_accumulation_steps': 2, 'eval_accumulation_steps': 'None', 'learning_rate': 1e-05, 'weight_decay': 0.0, 'adam_beta1': 0.9, 'adam_beta2': 0.999, 'adam_epsilon': 1e-08, 'max_grad_norm': 1.0, 'num_train_epochs': 1.0, 'max_steps': -1, 'lr_scheduler_type': 'linear', 'warmup_ratio': 0.0, 'warmup_steps': 500, 'log_level': -1, 'log_level_replica': -1, 'log_on_each_node': True, 'logging_dir': './runs/Feb28_09-34-39_sanchit--v100', 'logging_strategy': 'steps', 'logging_first_step': False, 'logging_steps': 1, 'logging_nan_inf_filter': True, 'save_strategy': 'steps', 'save_steps': 500, 'save_total_limit': 1, 'save_on_each_node': False, 'no_cuda': False, 'seed': 42, 'bf16': False, 'fp16': True, 'fp16_opt_level': 'O1', 'half_precision_backend': 'amp', 'bf16_full_eval': False, 'fp16_full_eval': False, 'tf32': 'None', 'local_rank': -1, 'xpu_backend': 'None', 'tpu_num_cores': 'None', 'tpu_metrics_debug': False, 'debug': '[]', 'dataloader_drop_last': False, 'eval_steps': 500, 'dataloader_num_workers': 0, 'past_index': -1, 'run_name': './', 'disable_tqdm': False, 'remove_unused_columns': True, 'label_names': 'None', 'load_best_model_at_end': False, 'metric_for_best_model': 'None', 'greater_is_better': 'None', 'ignore_data_skip': False, 'sharded_ddp': '[]', 'deepspeed': 'None', 'label_smoothing_factor': 0.0, 'optim': 'adamw_hf', 'adafactor': False, 'group_by_length': True, 'length_column_name': 'input_length', 'report_to': "['wandb']", 'ddp_find_unused_parameters': 'None', 'ddp_bucket_cap_mb': 'None', 'dataloader_pin_memory': True, 'skip_memory_metrics': True, 'use_legacy_prediction_loop': False, 'push_to_hub': True, 'resume_from_checkpoint': 'None', 'hub_model_id': 'None', 'hub_strategy': 'every_save', 'hub_token': '<HUB_TOKEN>', 'gradient_checkpointing': True, 'fp16_backend': 'auto', 'push_to_hub_model_id': 'None', 'push_to_hub_organization': 'None', 'push_to_hub_token': '<PUSH_TO_HUB_TOKEN>', '_n_gpu': 1, 'mp_parameters': '', 'sortish_sampler': False, 'predict_with_generate': True, 'generation_max_length': 40, 'generation_num_beams': 1, 'train_batch_size': 8, 'eval_batch_size': 8}
27
+ 2022-02-28 09:37:06,930 INFO MainThread:219058 [wandb_watch.py:watch():43] Watching
wandb/run-20220228_093705-yn2gmwrw/run-yn2gmwrw.wandb ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4cf2f32b0b0693b4f1f8320df3f48129079f1c57c38c2bfad1d0bdb669828532
3
+ size 16060545