sanchit-gandhi HF staff commited on
Commit
17cc70a
1 Parent(s): 1868423

Training in progress, step 1500

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ wandb/run-20220320_205317-13fe1w7o/run-13fe1w7o.wandb filter=lfs diff=lfs merge=lfs -text
.gitignore ADDED
@@ -0,0 +1 @@
 
 
1
+ checkpoint-*/
config.json ADDED
@@ -0,0 +1,251 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "./",
3
+ "architectures": [
4
+ "SpeechEncoderDecoderModel"
5
+ ],
6
+ "decoder": {
7
+ "_name_or_path": "roberta-large",
8
+ "add_cross_attention": true,
9
+ "architectures": [
10
+ "RobertaForMaskedLM"
11
+ ],
12
+ "attention_probs_dropout_prob": 0.1,
13
+ "bad_words_ids": null,
14
+ "bos_token_id": 0,
15
+ "chunk_size_feed_forward": 0,
16
+ "classifier_dropout": null,
17
+ "cross_attention_hidden_size": null,
18
+ "decoder_start_token_id": null,
19
+ "diversity_penalty": 0.0,
20
+ "do_sample": false,
21
+ "early_stopping": false,
22
+ "encoder_no_repeat_ngram_size": 0,
23
+ "eos_token_id": 2,
24
+ "finetuning_task": null,
25
+ "forced_bos_token_id": null,
26
+ "forced_eos_token_id": null,
27
+ "hidden_act": "gelu",
28
+ "hidden_dropout_prob": 0.1,
29
+ "hidden_size": 1024,
30
+ "id2label": {
31
+ "0": "LABEL_0",
32
+ "1": "LABEL_1"
33
+ },
34
+ "initializer_range": 0.02,
35
+ "intermediate_size": 4096,
36
+ "is_decoder": true,
37
+ "is_encoder_decoder": false,
38
+ "label2id": {
39
+ "LABEL_0": 0,
40
+ "LABEL_1": 1
41
+ },
42
+ "layer_norm_eps": 1e-05,
43
+ "length_penalty": 1.0,
44
+ "max_length": 20,
45
+ "max_position_embeddings": 514,
46
+ "min_length": 0,
47
+ "model_type": "roberta",
48
+ "no_repeat_ngram_size": 0,
49
+ "num_attention_heads": 16,
50
+ "num_beam_groups": 1,
51
+ "num_beams": 1,
52
+ "num_hidden_layers": 24,
53
+ "num_return_sequences": 1,
54
+ "output_attentions": false,
55
+ "output_hidden_states": false,
56
+ "output_scores": false,
57
+ "pad_token_id": 1,
58
+ "position_embedding_type": "absolute",
59
+ "prefix": null,
60
+ "problem_type": null,
61
+ "pruned_heads": {},
62
+ "remove_invalid_values": false,
63
+ "repetition_penalty": 1.0,
64
+ "return_dict": true,
65
+ "return_dict_in_generate": false,
66
+ "sep_token_id": null,
67
+ "task_specific_params": null,
68
+ "temperature": 1.0,
69
+ "tie_encoder_decoder": false,
70
+ "tie_word_embeddings": true,
71
+ "tokenizer_class": null,
72
+ "top_k": 50,
73
+ "top_p": 1.0,
74
+ "torch_dtype": null,
75
+ "torchscript": false,
76
+ "transformers_version": "4.17.0.dev0",
77
+ "type_vocab_size": 1,
78
+ "use_bfloat16": false,
79
+ "use_cache": false,
80
+ "vocab_size": 50265
81
+ },
82
+ "decoder_start_token_id": 0,
83
+ "encoder": {
84
+ "_name_or_path": "facebook/wav2vec2-large-lv60",
85
+ "activation_dropout": 0.1,
86
+ "adapter_kernel_size": 3,
87
+ "adapter_stride": 2,
88
+ "add_adapter": false,
89
+ "add_cross_attention": false,
90
+ "apply_spec_augment": true,
91
+ "architectures": [
92
+ "Wav2Vec2ForPreTraining"
93
+ ],
94
+ "attention_dropout": 0.1,
95
+ "bad_words_ids": null,
96
+ "bos_token_id": 1,
97
+ "chunk_size_feed_forward": 0,
98
+ "classifier_proj_size": 256,
99
+ "codevector_dim": 768,
100
+ "contrastive_logits_temperature": 0.1,
101
+ "conv_bias": true,
102
+ "conv_dim": [
103
+ 512,
104
+ 512,
105
+ 512,
106
+ 512,
107
+ 512,
108
+ 512,
109
+ 512
110
+ ],
111
+ "conv_kernel": [
112
+ 10,
113
+ 3,
114
+ 3,
115
+ 3,
116
+ 3,
117
+ 2,
118
+ 2
119
+ ],
120
+ "conv_stride": [
121
+ 5,
122
+ 2,
123
+ 2,
124
+ 2,
125
+ 2,
126
+ 2,
127
+ 2
128
+ ],
129
+ "cross_attention_hidden_size": null,
130
+ "ctc_loss_reduction": "sum",
131
+ "ctc_zero_infinity": false,
132
+ "decoder_start_token_id": null,
133
+ "diversity_loss_weight": 0.1,
134
+ "diversity_penalty": 0.0,
135
+ "do_sample": false,
136
+ "do_stable_layer_norm": true,
137
+ "early_stopping": false,
138
+ "encoder_no_repeat_ngram_size": 0,
139
+ "eos_token_id": 2,
140
+ "feat_extract_activation": "gelu",
141
+ "feat_extract_dropout": 0.0,
142
+ "feat_extract_norm": "layer",
143
+ "feat_proj_dropout": 0.0,
144
+ "feat_quantizer_dropout": 0.0,
145
+ "final_dropout": 0.0,
146
+ "finetuning_task": null,
147
+ "forced_bos_token_id": null,
148
+ "forced_eos_token_id": null,
149
+ "gradient_checkpointing": false,
150
+ "hidden_act": "gelu",
151
+ "hidden_dropout": 0.1,
152
+ "hidden_dropout_prob": 0.1,
153
+ "hidden_size": 1024,
154
+ "id2label": {
155
+ "0": "LABEL_0",
156
+ "1": "LABEL_1"
157
+ },
158
+ "initializer_range": 0.02,
159
+ "intermediate_size": 4096,
160
+ "is_decoder": false,
161
+ "is_encoder_decoder": false,
162
+ "label2id": {
163
+ "LABEL_0": 0,
164
+ "LABEL_1": 1
165
+ },
166
+ "layer_norm_eps": 1e-05,
167
+ "layerdrop": 0.0,
168
+ "length_penalty": 1.0,
169
+ "mask_feature_length": 10,
170
+ "mask_feature_min_masks": 0,
171
+ "mask_feature_prob": 0.0,
172
+ "mask_time_length": 10,
173
+ "mask_time_min_masks": 2,
174
+ "mask_time_prob": 0.1,
175
+ "max_length": 20,
176
+ "min_length": 0,
177
+ "model_type": "wav2vec2",
178
+ "no_repeat_ngram_size": 0,
179
+ "num_adapter_layers": 3,
180
+ "num_attention_heads": 16,
181
+ "num_beam_groups": 1,
182
+ "num_beams": 1,
183
+ "num_codevector_groups": 2,
184
+ "num_codevectors_per_group": 320,
185
+ "num_conv_pos_embedding_groups": 16,
186
+ "num_conv_pos_embeddings": 128,
187
+ "num_feat_extract_layers": 7,
188
+ "num_hidden_layers": 24,
189
+ "num_negatives": 100,
190
+ "num_return_sequences": 1,
191
+ "output_attentions": false,
192
+ "output_hidden_size": 1024,
193
+ "output_hidden_states": false,
194
+ "output_scores": false,
195
+ "pad_token_id": 0,
196
+ "prefix": null,
197
+ "problem_type": null,
198
+ "proj_codevector_dim": 768,
199
+ "pruned_heads": {},
200
+ "remove_invalid_values": false,
201
+ "repetition_penalty": 1.0,
202
+ "return_dict": true,
203
+ "return_dict_in_generate": false,
204
+ "sep_token_id": null,
205
+ "task_specific_params": null,
206
+ "tdnn_dilation": [
207
+ 1,
208
+ 2,
209
+ 3,
210
+ 1,
211
+ 1
212
+ ],
213
+ "tdnn_dim": [
214
+ 512,
215
+ 512,
216
+ 512,
217
+ 512,
218
+ 1500
219
+ ],
220
+ "tdnn_kernel": [
221
+ 5,
222
+ 3,
223
+ 3,
224
+ 1,
225
+ 1
226
+ ],
227
+ "temperature": 1.0,
228
+ "tie_encoder_decoder": false,
229
+ "tie_word_embeddings": true,
230
+ "tokenizer_class": null,
231
+ "top_k": 50,
232
+ "top_p": 1.0,
233
+ "torch_dtype": null,
234
+ "torchscript": false,
235
+ "transformers_version": "4.17.0.dev0",
236
+ "use_bfloat16": false,
237
+ "use_weighted_layer_sum": false,
238
+ "vocab_size": 32,
239
+ "xvector_output_dim": 512
240
+ },
241
+ "eos_token_id": 2,
242
+ "is_encoder_decoder": true,
243
+ "max_length": 50,
244
+ "model_type": "speech-encoder-decoder",
245
+ "pad_token_id": 1,
246
+ "processor_class": "Wav2Vec2Processor",
247
+ "tie_word_embeddings": false,
248
+ "torch_dtype": "float32",
249
+ "transformers_version": null,
250
+ "use_cache": false
251
+ }
create_model.py ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ from transformers import SpeechEncoderDecoderModel, AutoFeatureExtractor, AutoTokenizer
3
+ import torch
4
+
5
+
6
+ encoder_id = "facebook/wav2vec2-large-lv60"
7
+ decoder_id = "roberta-large"
8
+
9
+ model = SpeechEncoderDecoderModel.from_encoder_decoder_pretrained(encoder_id, decoder_id, encoder_add_adapter=False)
10
+ model.config.decoder_start_token_id = model.decoder.config.bos_token_id
11
+ model.config.pad_token_id = model.decoder.config.pad_token_id
12
+ model.config.eos_token_id = model.decoder.config.eos_token_id
13
+ model.config.max_length = 50
14
+ model.config.num_beams = 1
15
+ model.config.use_cache = False
16
+ model.config.decoder.use_cache = False
17
+ model.config.processor_class = "Wav2Vec2Processor"
18
+
19
+ # same enc regularisation as wav2vec2-2-bart
20
+ model.config.encoder.feat_proj_dropout = 0.0
21
+ model.config.encoder.final_dropout = 0.0
22
+ model.config.encoder.mask_time_prob = 0.1
23
+
24
+ # check if generation works
25
+ out = model.generate(torch.ones((1, 2000)))
26
+
27
+ model.save_pretrained("./")
28
+
29
+ feature_extractor = AutoFeatureExtractor.from_pretrained(encoder_id)
30
+ feature_extractor.save_pretrained("./")
31
+ tokenizer = AutoTokenizer.from_pretrained(decoder_id)
32
+ tokenizer.save_pretrained("./")
33
+
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
preprocessor_config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_normalize": true,
3
+ "feature_extractor_type": "Wav2Vec2FeatureExtractor",
4
+ "feature_size": 1,
5
+ "padding_side": "right",
6
+ "padding_value": 0.0,
7
+ "return_attention_mask": true,
8
+ "sampling_rate": 16000
9
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1f4a1803e137642f905d9cc9568639284c3a42e9ed2362a93ea584f58b1418f0
3
+ size 3087090488
run_librispeech.sh ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env bash
2
+ CUDA_VISIBLE_DEVICES=1 python run_speech_recognition_seq2seq.py \
3
+ --dataset_name="librispeech_asr" \
4
+ --model_name_or_path="./" \
5
+ --dataset_config_name="clean" \
6
+ --train_split_name="train.100" \
7
+ --eval_split_name="validation" \
8
+ --output_dir="./" \
9
+ --preprocessing_num_workers="1" \
10
+ --length_column_name="input_length" \
11
+ --overwrite_output_dir \
12
+ --num_train_epochs="20" \
13
+ --per_device_train_batch_size="8" \
14
+ --per_device_eval_batch_size="8" \
15
+ --gradient_accumulation_steps="4" \
16
+ --generation_max_length="40" \
17
+ --generation_num_beams="1" \
18
+ --learning_rate="1e-5" \
19
+ --warmup_steps="1500" \
20
+ --evaluation_strategy="steps" \
21
+ --text_column_name="text" \
22
+ --save_steps="1500" \
23
+ --eval_steps="1500" \
24
+ --logging_steps="1" \
25
+ --save_total_limit="1" \
26
+ --freeze_feature_encoder \
27
+ --gradient_checkpointing \
28
+ --fp16 \
29
+ --group_by_length \
30
+ --predict_with_generate \
31
+ --do_lower_case \
32
+ --do_eval --do_train \
33
+ --push_to_hub \
34
+ --use_auth_token
35
+
run_speech_recognition_seq2seq.py ADDED
@@ -0,0 +1,539 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # coding=utf-8
3
+ # Copyright 2021 The HuggingFace Team. All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """
17
+ Fine-tuning the library models for sequence to sequence speech recognition.
18
+ """
19
+ # You can also adapt this script on your own sequence to sequence speech
20
+ # recognition task. Pointers for this are left as comments.
21
+
22
+ import logging
23
+ import os
24
+ import sys
25
+ from dataclasses import dataclass, field
26
+ from typing import Any, Dict, List, Optional, Union
27
+
28
+ import datasets
29
+ import torch
30
+ from datasets import DatasetDict, load_dataset, load_metric
31
+
32
+ import bitsandbytes as bnb
33
+ import transformers
34
+ from transformers import (
35
+ AutoConfig,
36
+ AutoFeatureExtractor,
37
+ AutoModelForSpeechSeq2Seq,
38
+ AutoProcessor,
39
+ AutoTokenizer,
40
+ HfArgumentParser,
41
+ Seq2SeqTrainer,
42
+ Seq2SeqTrainingArguments,
43
+ set_seed,
44
+ )
45
+ from transformers.trainer_pt_utils import get_parameter_names
46
+ from transformers.trainer_utils import get_last_checkpoint, is_main_process
47
+ from transformers.utils import check_min_version
48
+ from transformers.utils.versions import require_version
49
+ from transformers.optimization import Adafactor
50
+
51
+
52
+ # Will error if the minimal version of Transformers is not installed. Remove at your own risks.
53
+ check_min_version("4.17.0.dev0")
54
+
55
+ require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/summarization/requirements.txt")
56
+
57
+ logger = logging.getLogger(__name__)
58
+
59
+
60
+ @dataclass
61
+ class ModelArguments:
62
+ """
63
+ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
64
+ """
65
+
66
+ model_name_or_path: str = field(
67
+ metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
68
+ )
69
+ config_name: Optional[str] = field(
70
+ default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
71
+ )
72
+ tokenizer_name: Optional[str] = field(
73
+ default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
74
+ )
75
+ feature_extractor_name: Optional[str] = field(
76
+ default=None, metadata={"help": "feature extractor name or path if not the same as model_name"}
77
+ )
78
+ cache_dir: Optional[str] = field(
79
+ default=None,
80
+ metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"},
81
+ )
82
+ use_fast_tokenizer: bool = field(
83
+ default=True,
84
+ metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
85
+ )
86
+ model_revision: str = field(
87
+ default="main",
88
+ metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
89
+ )
90
+ use_auth_token: bool = field(
91
+ default=False,
92
+ metadata={
93
+ "help": "Will use the token generated when running `transformers-cli login` (necessary to use this script "
94
+ "with private models)."
95
+ },
96
+ )
97
+ freeze_feature_encoder: bool = field(
98
+ default=True, metadata={"help": "Whether to freeze the feature encoder layers of the model."}
99
+ )
100
+
101
+
102
+ @dataclass
103
+ class DataTrainingArguments:
104
+ """
105
+ Arguments pertaining to what data we are going to input our model for training and eval.
106
+ """
107
+
108
+ dataset_name: str = field(
109
+ default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
110
+ )
111
+ dataset_config_name: Optional[str] = field(
112
+ default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
113
+ )
114
+ text_column: Optional[str] = field(
115
+ default=None,
116
+ metadata={"help": "The name of the column in the datasets containing the full texts (for summarization)."},
117
+ )
118
+ overwrite_cache: bool = field(
119
+ default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
120
+ )
121
+ preprocessing_num_workers: Optional[int] = field(
122
+ default=None,
123
+ metadata={"help": "The number of processes to use for the preprocessing."},
124
+ )
125
+ max_train_samples: Optional[int] = field(
126
+ default=None,
127
+ metadata={
128
+ "help": "For debugging purposes or quicker training, truncate the number of training examples to this "
129
+ "value if set."
130
+ },
131
+ )
132
+ max_eval_samples: Optional[int] = field(
133
+ default=None,
134
+ metadata={
135
+ "help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
136
+ "value if set."
137
+ },
138
+ )
139
+ audio_column_name: str = field(
140
+ default="audio",
141
+ metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"},
142
+ )
143
+ text_column_name: str = field(
144
+ default="text",
145
+ metadata={"help": "The name of the dataset column containing the text data. Defaults to 'text'"},
146
+ )
147
+ max_duration_in_seconds: float = field(
148
+ default=20.0,
149
+ metadata={
150
+ "help": "Truncate audio files that are longer than `max_duration_in_seconds` seconds to 'max_duration_in_seconds`"
151
+ },
152
+ )
153
+ min_duration_in_seconds: float = field(
154
+ default=0.0, metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"}
155
+ )
156
+ preprocessing_only: bool = field(
157
+ default=False,
158
+ metadata={
159
+ "help": "Whether to only do data preprocessing and skip training. "
160
+ "This is especially useful when data preprocessing errors out in distributed training due to timeout. "
161
+ "In this case, one should run the preprocessing in a non-distributed setup with `preprocessing_only=True` "
162
+ "so that the cached datasets can consequently be loaded in distributed training"
163
+ },
164
+ )
165
+ train_split_name: str = field(
166
+ default="train",
167
+ metadata={
168
+ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
169
+ },
170
+ )
171
+ eval_split_name: str = field(
172
+ default="test",
173
+ metadata={
174
+ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
175
+ },
176
+ )
177
+ do_lower_case: bool = field(
178
+ default=True,
179
+ metadata={"help": "Whether the target text should be lower cased."},
180
+ )
181
+
182
+
183
+ @dataclass
184
+ class DataCollatorSpeechSeq2SeqWithPadding:
185
+ """
186
+ Data collator that will dynamically pad the inputs received.
187
+ Args:
188
+ processor ([`Wav2Vec2Processor`])
189
+ The processor used for proccessing the data.
190
+ decoder_start_token_id (`int`)
191
+ The begin-of-sentence of the decoder.
192
+ """
193
+
194
+ processor: Any
195
+ decoder_start_token_id: int
196
+
197
+ def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
198
+ # split inputs and labels since they have to be of different lenghts and need
199
+ # different padding methods
200
+ input_features = [{"input_values": feature["input_values"]} for feature in features]
201
+ label_features = [{"input_ids": feature["labels"]} for feature in features]
202
+
203
+ batch = self.processor.feature_extractor.pad(input_features, return_tensors="pt")
204
+
205
+ labels_batch = self.processor.tokenizer.pad(label_features, return_tensors="pt")
206
+
207
+ # replace padding with -100 to ignore loss correctly
208
+ labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)
209
+
210
+ # if bos token is appended in previous tokenization step,
211
+ # cut bos token here as it's append later anyways
212
+ if (labels[:, 0] == self.decoder_start_token_id).all().cpu().item():
213
+ labels = labels[:, 1:]
214
+
215
+ batch["labels"] = labels
216
+
217
+ return batch
218
+
219
+
220
+ def main():
221
+ # 1. Parse input arguments
222
+ # See all possible arguments in src/transformers/training_args.py
223
+ # or by passing the --help flag to this script.
224
+ # We now keep distinct sets of args, for a cleaner separation of concerns.
225
+ parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments))
226
+
227
+ if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
228
+ # If we pass only one argument to the script and it's the path to a json file,
229
+ # let's parse it to get our arguments.
230
+ model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
231
+ else:
232
+ model_args, data_args, training_args = parser.parse_args_into_dataclasses()
233
+
234
+ # 2. Setup logging
235
+ logging.basicConfig(
236
+ format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
237
+ datefmt="%m/%d/%Y %H:%M:%S",
238
+ handlers=[logging.StreamHandler(sys.stdout)],
239
+ )
240
+ log_level = training_args.get_process_log_level()
241
+ logger.setLevel(log_level)
242
+ datasets.utils.logging.set_verbosity(log_level)
243
+ transformers.utils.logging.set_verbosity(log_level)
244
+ transformers.utils.logging.enable_default_handler()
245
+ transformers.utils.logging.enable_explicit_format()
246
+
247
+ logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
248
+
249
+ # Log on each process the small summary:
250
+ logger.warning(
251
+ f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
252
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
253
+ )
254
+ logger.info(f"Training/evaluation parameters {training_args}")
255
+
256
+ # Set the verbosity to info of the Transformers logger (on main process only):
257
+ if is_main_process(training_args.local_rank):
258
+ transformers.utils.logging.set_verbosity_info()
259
+ logger.info("Training/evaluation parameters %s", training_args)
260
+
261
+ # 3. Detecting last checkpoint and eventualy continue from last checkpoint
262
+ last_checkpoint = None
263
+ if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
264
+ last_checkpoint = get_last_checkpoint(training_args.output_dir)
265
+ if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
266
+ raise ValueError(
267
+ f"Output directory ({training_args.output_dir}) already exists and is not empty. "
268
+ "Use --overwrite_output_dir to overcome."
269
+ )
270
+ elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
271
+ logger.info(
272
+ f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
273
+ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
274
+ )
275
+
276
+ # Set seed before initializing model.
277
+ set_seed(training_args.seed)
278
+
279
+ # 4. Load dataset
280
+ raw_datasets = DatasetDict()
281
+
282
+ if training_args.do_train:
283
+ raw_datasets["train"] = load_dataset(
284
+ data_args.dataset_name, data_args.dataset_config_name, split=data_args.train_split_name
285
+ )
286
+
287
+ if training_args.do_eval:
288
+ raw_datasets["eval"] = load_dataset(
289
+ data_args.dataset_name, data_args.dataset_config_name, split=data_args.eval_split_name
290
+ )
291
+
292
+ if data_args.audio_column_name not in next(iter(raw_datasets.values())).column_names:
293
+ raise ValueError(
294
+ f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'. "
295
+ "Make sure to set `--audio_column_name` to the correct audio column - one of "
296
+ f"{', '.join(next(iter(raw_datasets.values())).column_names)}."
297
+ )
298
+
299
+ if data_args.text_column_name not in next(iter(raw_datasets.values())).column_names:
300
+ raise ValueError(
301
+ f"--text_column_name {data_args.text_column_name} not found in dataset '{data_args.dataset_name}'. "
302
+ "Make sure to set `--text_column_name` to the correct text column - one of "
303
+ f"{', '.join(next(iter(raw_datasets.values())).column_names)}."
304
+ )
305
+
306
+ # 5. Load pretrained model, tokenizer, and feature extractor
307
+ #
308
+ # Distributed training:
309
+ # The .from_pretrained methods guarantee that only one local process can concurrently
310
+ config = AutoConfig.from_pretrained(
311
+ model_args.config_name if model_args.config_name else model_args.model_name_or_path,
312
+ cache_dir=model_args.cache_dir,
313
+ revision=model_args.model_revision,
314
+ use_auth_token=True if model_args.use_auth_token else None,
315
+ )
316
+
317
+ feature_extractor = AutoFeatureExtractor.from_pretrained(
318
+ model_args.feature_extractor_name if model_args.feature_extractor_name else model_args.model_name_or_path,
319
+ cache_dir=model_args.cache_dir,
320
+ revision=model_args.model_revision,
321
+ use_auth_token=True if model_args.use_auth_token else None,
322
+ )
323
+ tokenizer = AutoTokenizer.from_pretrained(
324
+ model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
325
+ cache_dir=model_args.cache_dir,
326
+ use_fast=model_args.use_fast_tokenizer,
327
+ revision=model_args.model_revision,
328
+ use_auth_token=True if model_args.use_auth_token else None,
329
+ )
330
+ model = AutoModelForSpeechSeq2Seq.from_pretrained(
331
+ model_args.model_name_or_path,
332
+ config=config,
333
+ cache_dir=model_args.cache_dir,
334
+ revision=model_args.model_revision,
335
+ use_auth_token=True if model_args.use_auth_token else None,
336
+ )
337
+
338
+ if model.config.decoder_start_token_id is None:
339
+ raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined")
340
+
341
+ if model_args.freeze_feature_encoder:
342
+ model.freeze_feature_encoder()
343
+
344
+ # 6. Resample speech dataset if necassary
345
+ dataset_sampling_rate = next(iter(raw_datasets.values())).features[data_args.audio_column_name].sampling_rate
346
+ if dataset_sampling_rate != feature_extractor.sampling_rate:
347
+ raw_datasets = raw_datasets.cast_column(
348
+ data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate)
349
+ )
350
+
351
+ # 7. Preprocessing the datasets.
352
+ # We need to read the audio files as arrays and tokenize the targets.
353
+ max_input_length = data_args.max_duration_in_seconds * feature_extractor.sampling_rate
354
+ min_input_length = data_args.min_duration_in_seconds * feature_extractor.sampling_rate
355
+ audio_column_name = data_args.audio_column_name
356
+ num_workers = data_args.preprocessing_num_workers
357
+ text_column_name = data_args.text_column_name
358
+ model_input_name = feature_extractor.model_input_names[0]
359
+ do_lower_case = data_args.do_lower_case
360
+
361
+ if data_args.max_train_samples is not None:
362
+ raw_datasets["train"] = raw_datasets["train"].select(range(data_args.max_train_samples))
363
+
364
+ if data_args.max_eval_samples is not None:
365
+ raw_datasets["eval"] = raw_datasets["eval"].select(range(data_args.max_eval_samples))
366
+
367
+ def prepare_dataset(batch):
368
+ # process audio
369
+ sample = batch[audio_column_name]
370
+ inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"])
371
+ # process audio length
372
+ batch[model_input_name] = inputs.input_values[0]
373
+ batch["input_length"] = len(batch["input_values"])
374
+
375
+ # process targets
376
+ input_str = batch[text_column_name].lower() if do_lower_case else batch[text_column_name]
377
+ batch["labels"] = tokenizer(input_str).input_ids
378
+ return batch
379
+
380
+ with training_args.main_process_first(desc="dataset map pre-processing"):
381
+ vectorized_datasets = raw_datasets.map(
382
+ prepare_dataset,
383
+ remove_columns=next(iter(raw_datasets.values())).column_names,
384
+ num_proc=data_args.preprocessing_num_workers,
385
+ desc="preprocess train dataset",
386
+ )
387
+
388
+ # filter data that is shorter than min_input_length or longer than
389
+ # max_input_length
390
+ def is_audio_in_length_range(length):
391
+ return length > min_input_length and length < max_input_length
392
+
393
+ vectorized_datasets = vectorized_datasets.filter(
394
+ is_audio_in_length_range,
395
+ num_proc=num_workers,
396
+ input_columns=["input_length"],
397
+ )
398
+
399
+ # for large datasets it is advised to run the preprocessing on a
400
+ # single machine first with `args.preprocessing_only` since there will mostly likely
401
+ # be a timeout when running the script in distributed mode.
402
+ # In a second step `args.preprocessing_only` can then be set to `False` to load the
403
+ # cached dataset
404
+ if data_args.preprocessing_only:
405
+ cache = {k: v.cache_files for k, v in vectorized_datasets.items()}
406
+ logger.info(f"Data preprocessing finished. Files cached at {cache}.")
407
+ return
408
+
409
+ # 8. Load Metric
410
+ metric = load_metric("wer")
411
+
412
+ def compute_metrics(pred):
413
+ pred_ids = pred.predictions
414
+
415
+ pred.label_ids[pred.label_ids == -100] = tokenizer.pad_token_id
416
+
417
+ pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True)
418
+ # we do not want to group tokens when computing the metrics
419
+ label_str = tokenizer.batch_decode(pred.label_ids, skip_special_tokens=True)
420
+
421
+ wer = metric.compute(predictions=pred_str, references=label_str)
422
+
423
+ return {"wer": wer}
424
+
425
+ # 9. Create a single speech processor
426
+ if is_main_process(training_args.local_rank):
427
+ # save feature extractor, tokenizer and config
428
+ feature_extractor.save_pretrained(training_args.output_dir)
429
+ tokenizer.save_pretrained(training_args.output_dir)
430
+ config.save_pretrained(training_args.output_dir)
431
+
432
+ processor = AutoProcessor.from_pretrained(training_args.output_dir)
433
+
434
+ # 10. Define data collator
435
+ data_collator = DataCollatorSpeechSeq2SeqWithPadding(
436
+ processor=processor, decoder_start_token_id=model.config.decoder_start_token_id
437
+ )
438
+
439
+ decay_parameters = get_parameter_names(model, [torch.nn.LayerNorm])
440
+ decay_parameters = [name for name in decay_parameters if "bias" not in name]
441
+ optimizer_grouped_parameters = [
442
+ {
443
+ "params": [p for n, p in model.named_parameters() if n in decay_parameters],
444
+ "weight_decay": training_args.weight_decay,
445
+ },
446
+ {
447
+ "params": [p for n, p in model.named_parameters() if n not in decay_parameters],
448
+ "weight_decay": 0.0,
449
+ },
450
+ ]
451
+
452
+ optimizer = bnb.optim.Adam8bit(
453
+ params=optimizer_grouped_parameters,
454
+ lr=training_args.learning_rate,
455
+ betas=(training_args.adam_beta1, training_args.adam_beta2),
456
+ eps=training_args.adam_epsilon,
457
+ )
458
+
459
+ """optimizer = Adafactor(
460
+ params=optimizer_grouped_parameters,
461
+ lr=training_args.learning_rate,
462
+ beta1=training_args.adam_beta1,
463
+ eps=training_args.adam_epsilon,
464
+ relative_step=False,
465
+ )"""
466
+
467
+
468
+ optimizers = (optimizer, None)
469
+
470
+
471
+ #11. Initialize Trainer
472
+
473
+ trainer = Seq2SeqTrainer(
474
+ model=model,
475
+ args=training_args,
476
+ train_dataset=vectorized_datasets["train"] if training_args.do_train else None,
477
+ eval_dataset=vectorized_datasets["eval"] if training_args.do_eval else None,
478
+ tokenizer=feature_extractor,
479
+ data_collator=data_collator,
480
+ compute_metrics=compute_metrics if training_args.predict_with_generate else None,
481
+ optimizers=optimizers,
482
+ )
483
+
484
+ # 12. Training
485
+ if training_args.do_train:
486
+ checkpoint = None
487
+ if training_args.resume_from_checkpoint is not None:
488
+ checkpoint = training_args.resume_from_checkpoint
489
+ elif last_checkpoint is not None:
490
+ checkpoint = last_checkpoint
491
+ train_result = trainer.train(resume_from_checkpoint=checkpoint)
492
+ trainer.save_model() # Saves the feature extractor too for easy upload
493
+
494
+ metrics = train_result.metrics
495
+ max_train_samples = (
496
+ data_args.max_train_samples
497
+ if data_args.max_train_samples is not None
498
+ else len(vectorized_datasets["train"])
499
+ )
500
+ metrics["train_samples"] = min(max_train_samples, len(vectorized_datasets["train"]))
501
+ trainer.log_metrics("train", metrics)
502
+ trainer.save_metrics("train", metrics)
503
+ trainer.save_state()
504
+
505
+ # 13. Evaluation
506
+ results = {}
507
+ if training_args.do_eval:
508
+ logger.info("*** Evaluate ***")
509
+ metrics = trainer.evaluate(
510
+ metric_key_prefix="eval", max_length=model.config.max_length, num_beams=model.config.num_beams
511
+ )
512
+ max_eval_samples = (
513
+ data_args.max_eval_samples if data_args.max_eval_samples is not None else len(vectorized_datasets["eval"])
514
+ )
515
+ metrics["eval_samples"] = min(max_eval_samples, len(vectorized_datasets["eval"]))
516
+
517
+ trainer.log_metrics("eval", metrics)
518
+ trainer.save_metrics("eval", metrics)
519
+
520
+ # 14. Write Training Stats
521
+ kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "speech recognition"}
522
+ if data_args.dataset_name is not None:
523
+ kwargs["dataset_tags"] = data_args.dataset_name
524
+ if data_args.dataset_config_name is not None:
525
+ kwargs["dataset_args"] = data_args.dataset_config_name
526
+ kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
527
+ else:
528
+ kwargs["dataset"] = data_args.dataset_name
529
+
530
+ if training_args.push_to_hub:
531
+ trainer.push_to_hub(**kwargs)
532
+ else:
533
+ trainer.create_model_card(**kwargs)
534
+
535
+ return results
536
+
537
+
538
+ if __name__ == "__main__":
539
+ main()
runs/Mar13_20-56-15_sanchit--v100/1647205013.8373075/events.out.tfevents.1647205013.sanchit--v100.2804298.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:702a76459893d9414e78336616ca0106f42c28739a17a5001ff3042ba33410a1
3
+ size 4973
runs/Mar13_20-56-15_sanchit--v100/events.out.tfevents.1647205013.sanchit--v100.2804298.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8a629dddbf89a0a1daabe64fb287ebd5eafef0306c46b6a90a0e74ea2d4f9579
3
+ size 1355401
runs/Mar20_20-52-47_sanchit--v100/1647809597.1708777/events.out.tfevents.1647809597.sanchit--v100.15700.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:38a5b1f4392bc7263d224206279dc7fe285e9930583c8f805c8040ee85c90151
3
+ size 4973
runs/Mar20_20-52-47_sanchit--v100/events.out.tfevents.1647809597.sanchit--v100.15700.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b109e6f4e9124a47b28af49dd5a5c1eed593f9c38cb1ea03deeeb44bc8f1730
3
+ size 244296
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "sep_token": "</s>", "pad_token": "<pad>", "cls_token": "<s>", "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": false}}
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"errors": "replace", "bos_token": "<s>", "eos_token": "</s>", "sep_token": "</s>", "cls_token": "<s>", "unk_token": "<unk>", "pad_token": "<pad>", "mask_token": "<mask>", "add_prefix_space": false, "trim_offsets": true, "model_max_length": 512, "special_tokens_map_file": null, "name_or_path": "./", "tokenizer_class": "RobertaTokenizer"}
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7f4f5cc9e51e1021b8fa699625bf6dc9ded0122f755ddc86c59d92bc08aa6cb2
3
+ size 3119
vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
wandb/debug-internal.log ADDED
@@ -0,0 +1 @@
 
 
1
+ run-20220320_205317-13fe1w7o/logs/debug-internal.log
wandb/debug.log ADDED
@@ -0,0 +1 @@
 
 
1
+ run-20220320_205317-13fe1w7o/logs/debug.log
wandb/latest-run ADDED
@@ -0,0 +1 @@
 
 
1
+ run-20220320_205317-13fe1w7o
wandb/run-20220320_205317-13fe1w7o/files/config.yaml ADDED
The diff for this file is too large to render. See raw diff
 
wandb/run-20220320_205317-13fe1w7o/files/output.log ADDED
The diff for this file is too large to render. See raw diff
 
wandb/run-20220320_205317-13fe1w7o/files/requirements.txt ADDED
@@ -0,0 +1,186 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ absl-py==1.0.0
2
+ aiohttp==3.8.1
3
+ aiosignal==1.2.0
4
+ anyio==3.5.0
5
+ appdirs==1.4.4
6
+ argon2-cffi-bindings==21.2.0
7
+ argon2-cffi==21.3.0
8
+ asttokens==2.0.5
9
+ async-timeout==4.0.2
10
+ attrs==21.4.0
11
+ audioread==2.1.9
12
+ babel==2.9.1
13
+ backcall==0.2.0
14
+ bitsandbytes-cuda113==0.26.0
15
+ black==22.1.0
16
+ bleach==4.1.0
17
+ cachetools==5.0.0
18
+ certifi==2021.10.8
19
+ cffi==1.15.0
20
+ charset-normalizer==2.0.11
21
+ chex==0.1.0
22
+ click==8.0.3
23
+ clldutils==3.10.1
24
+ colorlog==6.6.0
25
+ csvw==1.11.0
26
+ cycler==0.11.0
27
+ datasets==1.18.3
28
+ debugpy==1.5.1
29
+ decorator==5.1.1
30
+ defusedxml==0.7.1
31
+ dill==0.3.4
32
+ dlinfo==1.2.1
33
+ dm-tree==0.1.6
34
+ docker-pycreds==0.4.0
35
+ entrypoints==0.4
36
+ executing==0.8.2
37
+ filelock==3.4.2
38
+ flatbuffers==2.0
39
+ flax==0.4.0
40
+ fonttools==4.29.1
41
+ frozenlist==1.3.0
42
+ fsspec==2022.1.0
43
+ gitdb==4.0.9
44
+ gitpython==3.1.27
45
+ google-auth-oauthlib==0.4.6
46
+ google-auth==2.6.0
47
+ grpcio==1.43.0
48
+ huggingface-hub==0.4.0
49
+ hypothesis==6.36.1
50
+ idna==3.3
51
+ importlib-metadata==4.10.1
52
+ ipdb==0.13.9
53
+ ipykernel==6.8.0
54
+ ipython-genutils==0.2.0
55
+ ipython==8.0.1
56
+ ipywidgets==7.6.5
57
+ isodate==0.6.1
58
+ jax==0.2.28
59
+ jaxlib==0.1.76+cuda11.cudnn82
60
+ jedi==0.18.1
61
+ jinja2==3.0.3
62
+ jiwer==2.3.0
63
+ joblib==1.1.0
64
+ json5==0.9.6
65
+ jsonschema==4.4.0
66
+ jupyter-client==7.1.2
67
+ jupyter-console==6.4.0
68
+ jupyter-core==4.9.1
69
+ jupyter-server==1.13.5
70
+ jupyter==1.0.0
71
+ jupyterlab-pygments==0.1.2
72
+ jupyterlab-server==2.10.3
73
+ jupyterlab-widgets==1.0.2
74
+ jupyterlab==3.2.9
75
+ kiwisolver==1.3.2
76
+ librosa==0.8.1
77
+ llvmlite==0.38.0
78
+ markdown==3.3.6
79
+ markupsafe==2.0.1
80
+ matplotlib-inline==0.1.3
81
+ matplotlib==3.5.1
82
+ mistune==0.8.4
83
+ msgpack==1.0.3
84
+ multidict==6.0.2
85
+ multiprocess==0.70.12.2
86
+ mypy-extensions==0.4.3
87
+ nbclassic==0.3.5
88
+ nbclient==0.5.10
89
+ nbconvert==6.4.1
90
+ nbformat==5.1.3
91
+ nest-asyncio==1.5.4
92
+ notebook==6.4.8
93
+ numba==0.55.1
94
+ numpy==1.21.5
95
+ oauthlib==3.2.0
96
+ opt-einsum==3.3.0
97
+ optax==0.1.0
98
+ packaging==21.3
99
+ pandas==1.4.0
100
+ pandocfilters==1.5.0
101
+ parso==0.8.3
102
+ pathspec==0.9.0
103
+ pathtools==0.1.2
104
+ pexpect==4.8.0
105
+ phonemizer==3.0.1
106
+ pickleshare==0.7.5
107
+ pillow==9.0.0
108
+ pip==22.0.2
109
+ pkg-resources==0.0.0
110
+ platformdirs==2.4.1
111
+ pooch==1.6.0
112
+ prometheus-client==0.13.1
113
+ promise==2.3
114
+ prompt-toolkit==3.0.26
115
+ protobuf==3.19.4
116
+ psutil==5.9.0
117
+ ptyprocess==0.7.0
118
+ pure-eval==0.2.2
119
+ pyarrow==6.0.1
120
+ pyasn1-modules==0.2.8
121
+ pyasn1==0.4.8
122
+ pycparser==2.21
123
+ pyctcdecode==0.3.0
124
+ pygments==2.11.2
125
+ pygtrie==2.4.2
126
+ pyparsing==3.0.7
127
+ pyrsistent==0.18.1
128
+ python-dateutil==2.8.2
129
+ python-levenshtein==0.12.2
130
+ pytz==2021.3
131
+ pyyaml==6.0
132
+ pyzmq==22.3.0
133
+ qtconsole==5.2.2
134
+ qtpy==2.0.1
135
+ regex==2022.1.18
136
+ requests-oauthlib==1.3.1
137
+ requests==2.27.1
138
+ resampy==0.2.2
139
+ rfc3986==2.0.0
140
+ rsa==4.8
141
+ sacremoses==0.0.47
142
+ scikit-learn==1.0.2
143
+ scipy==1.7.3
144
+ segments==2.2.0
145
+ send2trash==1.8.0
146
+ sentry-sdk==1.5.6
147
+ setuptools==44.1.1
148
+ shortuuid==1.0.8
149
+ six==1.16.0
150
+ smmap==5.0.0
151
+ sniffio==1.2.0
152
+ sortedcontainers==2.4.0
153
+ soundfile==0.10.3.post1
154
+ stack-data==0.1.4
155
+ tabulate==0.8.9
156
+ tensorboard-data-server==0.6.1
157
+ tensorboard-plugin-wit==1.8.1
158
+ tensorboard==2.8.0
159
+ termcolor==1.1.0
160
+ terminado==0.13.1
161
+ testpath==0.5.0
162
+ threadpoolctl==3.1.0
163
+ tokenizers==0.11.4
164
+ toml==0.10.2
165
+ tomli==2.0.0
166
+ toolz==0.11.2
167
+ torch==1.10.2+cu113
168
+ torchaudio==0.10.2+cu113
169
+ tornado==6.1
170
+ tqdm==4.62.3
171
+ traitlets==5.1.1
172
+ transformers==4.17.0.dev0
173
+ typing-extensions==3.10.0.2
174
+ uritemplate==4.1.1
175
+ urllib3==1.26.8
176
+ wandb==0.12.10
177
+ wcwidth==0.2.5
178
+ webencodings==0.5.1
179
+ websocket-client==1.2.3
180
+ werkzeug==2.0.2
181
+ wheel==0.37.1
182
+ widgetsnbextension==3.5.2
183
+ xxhash==2.0.2
184
+ yarl==1.7.2
185
+ yaspin==2.1.0
186
+ zipp==3.7.0
wandb/run-20220320_205317-13fe1w7o/files/wandb-metadata.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "os": "Linux-5.11.0-1028-gcp-x86_64-with-glibc2.33",
3
+ "python": "3.9.5",
4
+ "heartbeatAt": "2022-03-20T20:53:18.687683",
5
+ "startedAt": "2022-03-20T20:53:17.610868",
6
+ "docker": null,
7
+ "gpu": "Tesla V100-SXM2-16GB",
8
+ "gpu_count": 2,
9
+ "cpu_count": 16,
10
+ "cuda": null,
11
+ "args": [
12
+ "--dataset_name=librispeech_asr",
13
+ "--model_name_or_path=./",
14
+ "--dataset_config_name=clean",
15
+ "--train_split_name=train.100",
16
+ "--eval_split_name=validation",
17
+ "--output_dir=./",
18
+ "--preprocessing_num_workers=1",
19
+ "--length_column_name=input_length",
20
+ "--overwrite_output_dir",
21
+ "--num_train_epochs=20",
22
+ "--per_device_train_batch_size=8",
23
+ "--per_device_eval_batch_size=8",
24
+ "--gradient_accumulation_steps=4",
25
+ "--generation_max_length=40",
26
+ "--generation_num_beams=1",
27
+ "--learning_rate=1e-5",
28
+ "--warmup_steps=1500",
29
+ "--evaluation_strategy=steps",
30
+ "--text_column_name=text",
31
+ "--save_steps=1500",
32
+ "--eval_steps=1500",
33
+ "--logging_steps=1",
34
+ "--save_total_limit=1",
35
+ "--freeze_feature_encoder",
36
+ "--gradient_checkpointing",
37
+ "--fp16",
38
+ "--group_by_length",
39
+ "--predict_with_generate",
40
+ "--do_lower_case",
41
+ "--do_eval",
42
+ "--do_train",
43
+ "--push_to_hub",
44
+ "--use_auth_token"
45
+ ],
46
+ "state": "running",
47
+ "program": "/home/sanchit_huggingface_co/wav2vec2-2-roberta-no-adapter-regularisation/run_speech_recognition_seq2seq.py",
48
+ "codePath": "run_speech_recognition_seq2seq.py",
49
+ "git": {
50
+ "remote": "https://huggingface.co/sanchit-gandhi/wav2vec2-2-roberta-no-adapter-regularisation",
51
+ "commit": "1868423dfb05ad273cfd8551c7556a6817ebafdc"
52
+ },
53
+ "email": "sanchit@huggingface.co",
54
+ "root": "/home/sanchit_huggingface_co/wav2vec2-2-roberta-no-adapter-regularisation",
55
+ "host": "sanchit--v100",
56
+ "username": "sanchit_huggingface_co",
57
+ "executable": "/home/sanchit_huggingface_co/gcp/bin/python"
58
+ }
wandb/run-20220320_205317-13fe1w7o/files/wandb-summary.json ADDED
The diff for this file is too large to render. See raw diff
 
wandb/run-20220320_205317-13fe1w7o/logs/debug-internal.log ADDED
The diff for this file is too large to render. See raw diff
 
wandb/run-20220320_205317-13fe1w7o/logs/debug.log ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2022-03-20 20:53:17,612 INFO MainThread:15700 [wandb_setup.py:_flush():75] Loading settings from /home/sanchit_huggingface_co/.config/wandb/settings
2
+ 2022-03-20 20:53:17,612 INFO MainThread:15700 [wandb_setup.py:_flush():75] Loading settings from /home/sanchit_huggingface_co/wav2vec2-2-roberta-no-adapter-regularisation/wandb/settings
3
+ 2022-03-20 20:53:17,612 INFO MainThread:15700 [wandb_setup.py:_flush():75] Loading settings from environment variables: {}
4
+ 2022-03-20 20:53:17,612 INFO MainThread:15700 [wandb_setup.py:_flush():75] Inferring run settings from compute environment: {'program_relpath': 'run_speech_recognition_seq2seq.py', 'program': '/home/sanchit_huggingface_co/wav2vec2-2-roberta-no-adapter-regularisation/run_speech_recognition_seq2seq.py'}
5
+ 2022-03-20 20:53:17,612 INFO MainThread:15700 [wandb_init.py:_log_setup():386] Logging user logs to /home/sanchit_huggingface_co/wav2vec2-2-roberta-no-adapter-regularisation/wandb/run-20220320_205317-13fe1w7o/logs/debug.log
6
+ 2022-03-20 20:53:17,612 INFO MainThread:15700 [wandb_init.py:_log_setup():387] Logging internal logs to /home/sanchit_huggingface_co/wav2vec2-2-roberta-no-adapter-regularisation/wandb/run-20220320_205317-13fe1w7o/logs/debug-internal.log
7
+ 2022-03-20 20:53:17,613 INFO MainThread:15700 [wandb_init.py:init():420] calling init triggers
8
+ 2022-03-20 20:53:17,613 INFO MainThread:15700 [wandb_init.py:init():425] wandb.init called with sweep_config: {}
9
+ config: {}
10
+ 2022-03-20 20:53:17,613 INFO MainThread:15700 [wandb_init.py:init():471] starting backend
11
+ 2022-03-20 20:53:17,613 INFO MainThread:15700 [backend.py:_multiprocessing_setup():99] multiprocessing start_methods=fork,spawn,forkserver, using: spawn
12
+ 2022-03-20 20:53:17,668 INFO MainThread:15700 [backend.py:ensure_launched():219] starting backend process...
13
+ 2022-03-20 20:53:17,722 INFO MainThread:15700 [backend.py:ensure_launched():224] started backend process with pid: 15907
14
+ 2022-03-20 20:53:17,724 INFO MainThread:15700 [wandb_init.py:init():480] backend started and connected
15
+ 2022-03-20 20:53:17,734 INFO MainThread:15700 [wandb_init.py:init():550] updated telemetry
16
+ 2022-03-20 20:53:17,864 INFO MainThread:15700 [wandb_init.py:init():581] communicating current version
17
+ 2022-03-20 20:53:18,568 INFO MainThread:15700 [wandb_init.py:init():586] got version response upgrade_message: "wandb version 0.12.11 is available! To upgrade, please run:\n $ pip install wandb --upgrade"
18
+
19
+ 2022-03-20 20:53:18,568 INFO MainThread:15700 [wandb_init.py:init():596] communicating run to backend with 30 second timeout
20
+ 2022-03-20 20:53:18,682 INFO MainThread:15700 [wandb_init.py:init():624] starting run threads in backend
21
+ 2022-03-20 20:53:18,787 INFO MainThread:15700 [wandb_run.py:_console_start():1827] atexit reg
22
+ 2022-03-20 20:53:18,787 INFO MainThread:15700 [wandb_run.py:_redirect():1701] redirect: SettingsConsole.REDIRECT
23
+ 2022-03-20 20:53:18,787 INFO MainThread:15700 [wandb_run.py:_redirect():1706] Redirecting console.
24
+ 2022-03-20 20:53:18,789 INFO MainThread:15700 [wandb_run.py:_redirect():1762] Redirects installed.
25
+ 2022-03-20 20:53:18,789 INFO MainThread:15700 [wandb_init.py:init():651] run started, returning control to user process
26
+ 2022-03-20 20:53:18,792 INFO MainThread:15700 [wandb_run.py:_config_callback():966] config_cb None None {'return_dict': True, 'output_hidden_states': False, 'output_attentions': False, 'torchscript': False, 'torch_dtype': 'torch.float32', 'use_bfloat16': False, 'pruned_heads': {}, 'tie_word_embeddings': False, 'is_encoder_decoder': True, 'is_decoder': False, 'cross_attention_hidden_size': None, 'add_cross_attention': False, 'tie_encoder_decoder': False, 'max_length': 50, 'min_length': 0, 'do_sample': False, 'early_stopping': False, 'num_beams': 1, 'num_beam_groups': 1, 'diversity_penalty': 0.0, 'temperature': 1.0, 'top_k': 50, 'top_p': 1.0, 'repetition_penalty': 1.0, 'length_penalty': 1.0, 'no_repeat_ngram_size': 0, 'encoder_no_repeat_ngram_size': 0, 'bad_words_ids': None, 'num_return_sequences': 1, 'chunk_size_feed_forward': 0, 'output_scores': False, 'return_dict_in_generate': False, 'forced_bos_token_id': None, 'forced_eos_token_id': None, 'remove_invalid_values': False, 'architectures': ['SpeechEncoderDecoderModel'], 'finetuning_task': None, 'id2label': {0: 'LABEL_0', 1: 'LABEL_1'}, 'label2id': {'LABEL_0': 0, 'LABEL_1': 1}, 'tokenizer_class': None, 'prefix': None, 'bos_token_id': None, 'pad_token_id': 1, 'eos_token_id': 2, 'sep_token_id': None, 'decoder_start_token_id': 0, 'task_specific_params': None, 'problem_type': None, '_name_or_path': './', 'transformers_version': None, 'decoder': {'return_dict': True, 'output_hidden_states': False, 'output_attentions': False, 'torchscript': False, 'torch_dtype': None, 'use_bfloat16': False, 'pruned_heads': {}, 'tie_word_embeddings': True, 'is_encoder_decoder': False, 'is_decoder': True, 'cross_attention_hidden_size': None, 'add_cross_attention': True, 'tie_encoder_decoder': False, 'max_length': 20, 'min_length': 0, 'do_sample': False, 'early_stopping': False, 'num_beams': 1, 'num_beam_groups': 1, 'diversity_penalty': 0.0, 'temperature': 1.0, 'top_k': 50, 'top_p': 1.0, 'repetition_penalty': 1.0, 'length_penalty': 1.0, 'no_repeat_ngram_size': 0, 'encoder_no_repeat_ngram_size': 0, 'bad_words_ids': None, 'num_return_sequences': 1, 'chunk_size_feed_forward': 0, 'output_scores': False, 'return_dict_in_generate': False, 'forced_bos_token_id': None, 'forced_eos_token_id': None, 'remove_invalid_values': False, 'architectures': ['RobertaForMaskedLM'], 'finetuning_task': None, 'id2label': {0: 'LABEL_0', 1: 'LABEL_1'}, 'label2id': {'LABEL_0': 0, 'LABEL_1': 1}, 'tokenizer_class': None, 'prefix': None, 'bos_token_id': 0, 'pad_token_id': 1, 'eos_token_id': 2, 'sep_token_id': None, 'decoder_start_token_id': None, 'task_specific_params': None, 'problem_type': None, '_name_or_path': 'roberta-large', 'transformers_version': '4.17.0.dev0', 'vocab_size': 50265, 'hidden_size': 1024, 'num_hidden_layers': 24, 'num_attention_heads': 16, 'hidden_act': 'gelu', 'intermediate_size': 4096, 'hidden_dropout_prob': 0.1, 'attention_probs_dropout_prob': 0.1, 'max_position_embeddings': 514, 'type_vocab_size': 1, 'initializer_range': 0.02, 'layer_norm_eps': 1e-05, 'position_embedding_type': 'absolute', 'use_cache': False, 'classifier_dropout': None, 'model_type': 'roberta'}, 'encoder': {'return_dict': True, 'output_hidden_states': False, 'output_attentions': False, 'torchscript': False, 'torch_dtype': None, 'use_bfloat16': False, 'pruned_heads': {}, 'tie_word_embeddings': True, 'is_encoder_decoder': False, 'is_decoder': False, 'cross_attention_hidden_size': None, 'add_cross_attention': False, 'tie_encoder_decoder': False, 'max_length': 20, 'min_length': 0, 'do_sample': False, 'early_stopping': False, 'num_beams': 1, 'num_beam_groups': 1, 'diversity_penalty': 0.0, 'temperature': 1.0, 'top_k': 50, 'top_p': 1.0, 'repetition_penalty': 1.0, 'length_penalty': 1.0, 'no_repeat_ngram_size': 0, 'encoder_no_repeat_ngram_size': 0, 'bad_words_ids': None, 'num_return_sequences': 1, 'chunk_size_feed_forward': 0, 'output_scores': False, 'return_dict_in_generate': False, 'forced_bos_token_id': None, 'forced_eos_token_id': None, 'remove_invalid_values': False, 'architectures': ['Wav2Vec2ForPreTraining'], 'finetuning_task': None, 'id2label': {0: 'LABEL_0', 1: 'LABEL_1'}, 'label2id': {'LABEL_0': 0, 'LABEL_1': 1}, 'tokenizer_class': None, 'prefix': None, 'bos_token_id': 1, 'pad_token_id': 0, 'eos_token_id': 2, 'sep_token_id': None, 'decoder_start_token_id': None, 'task_specific_params': None, 'problem_type': None, '_name_or_path': 'facebook/wav2vec2-large-lv60', 'transformers_version': '4.17.0.dev0', 'feat_extract_dropout': 0.0, 'gradient_checkpointing': False, 'hidden_dropout_prob': 0.1, 'num_feat_extract_layers': 7, 'hidden_size': 1024, 'feat_extract_norm': 'layer', 'feat_extract_activation': 'gelu', 'conv_dim': [512, 512, 512, 512, 512, 512, 512], 'conv_stride': [5, 2, 2, 2, 2, 2, 2], 'conv_kernel': [10, 3, 3, 3, 3, 2, 2], 'conv_bias': True, 'num_conv_pos_embeddings': 128, 'num_conv_pos_embedding_groups': 16, 'num_hidden_layers': 24, 'intermediate_size': 4096, 'hidden_act': 'gelu', 'num_attention_heads': 16, 'hidden_dropout': 0.1, 'attention_dropout': 0.1, 'activation_dropout': 0.1, 'feat_proj_dropout': 0.0, 'final_dropout': 0.0, 'layerdrop': 0.0, 'layer_norm_eps': 1e-05, 'initializer_range': 0.02, 'vocab_size': 32, 'do_stable_layer_norm': True, 'use_weighted_layer_sum': False, 'apply_spec_augment': True, 'mask_time_prob': 0.1, 'mask_time_length': 10, 'mask_time_min_masks': 2, 'mask_feature_prob': 0.0, 'mask_feature_length': 10, 'mask_feature_min_masks': 0, 'num_codevectors_per_group': 320, 'num_codevector_groups': 2, 'contrastive_logits_temperature': 0.1, 'feat_quantizer_dropout': 0.0, 'num_negatives': 100, 'codevector_dim': 768, 'proj_codevector_dim': 768, 'diversity_loss_weight': 0.1, 'ctc_loss_reduction': 'sum', 'ctc_zero_infinity': False, 'add_adapter': False, 'adapter_kernel_size': 3, 'adapter_stride': 2, 'num_adapter_layers': 3, 'output_hidden_size': 1024, 'classifier_proj_size': 256, 'tdnn_dim': [512, 512, 512, 512, 1500], 'tdnn_kernel': [5, 3, 3, 1, 1], 'tdnn_dilation': [1, 2, 3, 1, 1], 'xvector_output_dim': 512, 'model_type': 'wav2vec2'}, 'model_type': 'speech-encoder-decoder', 'processor_class': 'Wav2Vec2Processor', 'use_cache': False, 'output_dir': './', 'overwrite_output_dir': True, 'do_train': True, 'do_eval': True, 'do_predict': False, 'evaluation_strategy': 'steps', 'prediction_loss_only': False, 'per_device_train_batch_size': 8, 'per_device_eval_batch_size': 8, 'per_gpu_train_batch_size': 'None', 'per_gpu_eval_batch_size': 'None', 'gradient_accumulation_steps': 4, 'eval_accumulation_steps': 'None', 'learning_rate': 1e-05, 'weight_decay': 0.0, 'adam_beta1': 0.9, 'adam_beta2': 0.999, 'adam_epsilon': 1e-08, 'max_grad_norm': 1.0, 'num_train_epochs': 20.0, 'max_steps': -1, 'lr_scheduler_type': 'linear', 'warmup_ratio': 0.0, 'warmup_steps': 1500, 'log_level': -1, 'log_level_replica': -1, 'log_on_each_node': True, 'logging_dir': './runs/Mar20_20-52-47_sanchit--v100', 'logging_strategy': 'steps', 'logging_first_step': False, 'logging_steps': 1, 'logging_nan_inf_filter': True, 'save_strategy': 'steps', 'save_steps': 1500, 'save_total_limit': 1, 'save_on_each_node': False, 'no_cuda': False, 'seed': 42, 'bf16': False, 'fp16': True, 'fp16_opt_level': 'O1', 'half_precision_backend': 'amp', 'bf16_full_eval': False, 'fp16_full_eval': False, 'tf32': 'None', 'local_rank': -1, 'xpu_backend': 'None', 'tpu_num_cores': 'None', 'tpu_metrics_debug': False, 'debug': '[]', 'dataloader_drop_last': False, 'eval_steps': 1500, 'dataloader_num_workers': 0, 'past_index': -1, 'run_name': './', 'disable_tqdm': False, 'remove_unused_columns': True, 'label_names': 'None', 'load_best_model_at_end': False, 'metric_for_best_model': 'None', 'greater_is_better': 'None', 'ignore_data_skip': False, 'sharded_ddp': '[]', 'deepspeed': 'None', 'label_smoothing_factor': 0.0, 'optim': 'adamw_hf', 'adafactor': False, 'group_by_length': True, 'length_column_name': 'input_length', 'report_to': "['tensorboard', 'wandb']", 'ddp_find_unused_parameters': 'None', 'ddp_bucket_cap_mb': 'None', 'dataloader_pin_memory': True, 'skip_memory_metrics': True, 'use_legacy_prediction_loop': False, 'push_to_hub': True, 'resume_from_checkpoint': 'None', 'hub_model_id': 'None', 'hub_strategy': 'every_save', 'hub_token': '<HUB_TOKEN>', 'gradient_checkpointing': True, 'fp16_backend': 'auto', 'push_to_hub_model_id': 'None', 'push_to_hub_organization': 'None', 'push_to_hub_token': '<PUSH_TO_HUB_TOKEN>', '_n_gpu': 1, 'mp_parameters': '', 'sortish_sampler': False, 'predict_with_generate': True, 'generation_max_length': 40, 'generation_num_beams': 1, 'train_batch_size': 8, 'eval_batch_size': 8}
27
+ 2022-03-20 20:53:18,795 INFO MainThread:15700 [wandb_watch.py:watch():43] Watching
wandb/run-20220320_205317-13fe1w7o/run-13fe1w7o.wandb ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a2fb092e3e1f9c82c69f5b088bb7530b4ec7160cc1a2c398a5f8e866ff3c87a5
3
+ size 114135354