sanchit-gandhi's picture
Saving train state of step 10000
29776c5 verified
raw
history blame
12.3 kB
from dataclasses import dataclass, field
from typing import Optional
from transformers import Seq2SeqTrainingArguments
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
feature_extractor_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained feature extractor name or path if not the same as model_name"}
)
description_tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained description tokenizer name or path if not the same as model_name"}
)
prompt_tokenizer_name: Optional[str] = field(
default=None,
metadata={"help": "Pretrained prompt tokenizer name or path if not the same as description_tokenizer_name"},
)
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"},
)
use_fast_tokenizer: bool = field(
default=True,
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
)
model_revision: str = field(
default="main",
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
)
pad_token_id: int = field(
default=None,
metadata={"help": "If specified, change the model pad token id."},
)
decoder_start_token_id: int = field(
default=None,
metadata={"help": "If specified, change the model decoder start token id."},
)
freeze_text_encoder: bool = field(
default=False,
metadata={"help": "Whether to freeze the text encoder."},
)
do_sample: bool = field(
default=True,
metadata={"help": "Whether to do sampling or greedy decoding."},
)
temperature: float = field(
default=1.0,
metadata={"help": "Temperature if sampling."},
)
max_length: int = field(
default=2580,
metadata={"help": "Generation max length."},
)
bandwidth: float = field(
default=6,
metadata={"help": "Audio encoder bandwidth."},
)
asr_model_name_or_path: str = field(
default="distil-whisper/distil-large-v2",
metadata={
"help": "Used to compute WER during evaluation. Path to pretrained model or model identifier from huggingface.co/models"
},
)
clap_model_name_or_path: str = field(
default="laion/larger_clap_music_and_speech",
metadata={
"help": "Used to compute audio similarity during evaluation. Path to pretrained model or model identifier from huggingface.co/models"
},
)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
Using `HfArgumentParser` we can turn this class
into argparse arguments to be able to specify them on
the command line.
"""
train_dataset_name: str = field(
default=None,
metadata={
"help": "The name of the training dataset to use (via the datasets library). Load and combine "
"multiple datasets by separating dataset ids by a '+' symbol. For example, to load and combine "
" librispeech and common voice, set `train_dataset_name='librispeech_asr+common_voice'`."
},
)
train_dataset_config_name: Optional[str] = field(
default=None,
metadata={
"help": "The configuration name of the training dataset to use (via the datasets library). Load and combine "
"multiple datasets by separating dataset configs by a '+' symbol."
},
)
train_split_name: str = field(
default="train",
metadata={
"help": ("The name of the training data set split to use (via the datasets library). Defaults to 'train'")
},
)
train_dataset_samples: str = field(
default=None,
metadata={
"help": "Number of samples in the training data. Load and combine "
"multiple datasets by separating dataset samples by a '+' symbol."
},
)
train_metadata_dataset_name: str = field(
default=None,
metadata={
"help": "The name of the metadata training dataset to use (via the datasets library). Load and combine "
"multiple datasets by separating dataset ids by a '+' symbol. For example, to load and combine "
" librispeech and common voice, set `train_dataset_name='librispeech_asr+common_voice'`."
},
)
eval_dataset_name: str = field(
default=None,
metadata={
"help": "The name of the evaluation dataset to use (via the datasets library). Defaults to the training dataset name if unspecified."
},
)
eval_dataset_config_name: Optional[str] = field(
default=None,
metadata={
"help": "The configuration name of the evaluation dataset to use (via the datasets library). Defaults to the training dataset config name if unspecified"
},
)
eval_split_name: str = field(
default="test",
metadata={
"help": "The name of the evaluation data set split to use (via the datasets library). Defaults to 'test'"
},
)
eval_metadata_dataset_name: str = field(
default=None,
metadata={
"help": "The name of the metadata training dataset to use (via the datasets library). Load and combine "
"multiple datasets by separating dataset ids by a '+' symbol. For example, to load and combine "
" librispeech and common voice, set `train_dataset_name='librispeech_asr+common_voice'`."
},
)
target_audio_column_name: str = field(
default="audio",
metadata={"help": "The name of the dataset column containing the target audio data. Defaults to 'audio'"},
)
description_column_name: str = field(
default=None,
metadata={"help": "The name of the dataset column containing the description text data. Defaults to 'None'."},
)
prompt_column_name: str = field(
default=None,
metadata={"help": "The name of the dataset column containing the prompt text data. Defaults to 'None'."},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."},
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of validation examples to this "
"value if set."
)
},
)
max_duration_in_seconds: float = field(
default=35.0,
metadata={
"help": (
"Filter audio files that are longer than `max_duration_in_seconds` seconds to 'max_duration_in_seconds`."
"Also, used to set maximum audio length if `pad_to_max_length=True`."
)
},
)
min_duration_in_seconds: float = field(
default=0.0, metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"}
)
max_text_length: int = field(
default=500, metadata={"help": "If set, max description lengths in number of characters."}
)
max_prompt_token_length: int = field(
default=None,
metadata={
"help": (
"If set, filter samples with prompts that are longer than `max_prompt_token_length` tokens."
"Also, used to set maximum prompt token length if `pad_to_max_length=True`."
)
},
)
max_description_token_length: int = field(
default=None,
metadata={
"help": (
"If set, filter samples with descriptions that are longer than `max_description_token_length` tokens."
"Also, used to set maximum desription token length if `pad_to_max_length=True`."
)
},
)
pad_to_max_length: bool = field(
default=False,
metadata={
"help": (
"If `True`, pad audio, prompt and description to a maximum length set with respectively "
"`max_duration_in_seconds`, `max_prompt_token_length`, `max_description_token_length`."
)
},
)
preprocessing_only: bool = field(
default=False,
metadata={
"help": (
"Whether to only do data preprocessing and skip training. This is especially useful when data"
" preprocessing errors out in distributed training due to timeout. In this case, one should run the"
" preprocessing in a non-distributed setup with `preprocessing_only=True` so that the cached datasets"
" can consequently be loaded in distributed training."
" In this training script, `save_to_disk` must be set to the path in which the dataset should be saved. "
)
},
)
token: str = field(
default=None,
metadata={
"help": (
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
)
},
)
use_auth_token: bool = field(
default=None,
metadata={
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead."
},
)
trust_remote_code: bool = field(
default=False,
metadata={
"help": (
"Whether or not to allow for custom models defined on the Hub in their own modeling files. This option "
"should only be set to `True` for repositories you trust and in which you have read the code, as it will "
"execute code present on the Hub on your local machine."
)
},
)
add_audio_samples_to_wandb: bool = field(
default=False,
metadata={"help": "If set and if `wandb` in args.report_to, will add generated audio samples to wandb logs."},
)
id_column_name: str = field(default=None, metadata={"help": "id column name."})
wandb_project: str = field(
default="parler-speech",
metadata={"help": "The name of the wandb project."},
)
save_to_disk: str = field(
default=None,
metadata={
"help": "If set, will save the dataset to this path if this is an empyt folder. If not empty, will load the datasets from it."
},
)
temporary_save_to_disk: str = field(default=None, metadata={"help": "Temporarily save audio labels here."})
pad_to_multiple_of: Optional[int] = field(
default=2,
metadata={"help": ("Pad to multiple of for tokenizers.")},
)
@dataclass
class ParlerTTSTrainingArguments(Seq2SeqTrainingArguments):
dtype: Optional[str] = field(
default="float32",
metadata={
"help": (
"The data type (dtype) in which to run training. One of `float32` (full-precision), "
"`float16` or `bfloat16` (both half-precision)."
)
},
)
audio_encoder_per_device_batch_size: int = field(
default=8,
metadata={"help": ("Specify the batch size of the audio encoding pre-processing steps.")},
)