sanchit-gandhi's picture
Saving train state of step 90000
e05457b verified
raw
history blame
14.5 kB
import logging
from dataclasses import dataclass
from typing import Dict, List, Optional, Union, Set
import torch
import numpy as np
import datasets
from datasets import load_dataset, Dataset, IterableDataset, interleave_datasets, concatenate_datasets
from transformers import AutoFeatureExtractor, AutoTokenizer
from tqdm import tqdm
from accelerate import Accelerator
@dataclass
class DataCollatorEncodecWithPadding:
"""
Data collator that will dynamically pad the inputs received to the longest sequence in the batch or
to `max_length` if `max_length` is set and `padding=max_length`.
"""
feature_extractor: AutoFeatureExtractor
audio_column_name: str
feature_extractor_input_name: Optional[str] = "input_values"
max_length: Optional[int] = None
padding: Optional[str] = "longest"
def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
# split inputs and labels since they have to be of different lengths and need
# different padding methods
audios = [feature[self.audio_column_name]["array"] for feature in features]
len_audio = [len(audio) for audio in audios]
# since resampling has already been performed in the 'load_multiple_datasets' function,
# a fixed sampling_rate(44100hz) is passed to the feature_extractor.
sampling_rate = self.feature_extractor.sampling_rate
batch = self.feature_extractor(
audios, sampling_rate=sampling_rate, return_tensors="pt", padding=self.padding, max_length=self.max_length
)
batch["len_audio"] = torch.tensor(len_audio).unsqueeze(1)
return batch
@dataclass
class DataCollatorParlerTTSWithPadding:
"""
Data collator that will dynamically pad the inputs received.
Args:
prompt_tokenizer (:class:`~transformers.AutoTokenizer`)
The prompt_tokenizer used for proccessing the data.
description_tokenizer (:class:`~transformers.AutoTokenizer`)
The description_tokenizer used for proccessing the data.
padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
among:
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
maximum acceptable input length for the model if that argument is not provided.
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
different lengths).
pad_to_multiple_of (:obj:`int`, `optional`):
If set will pad the sequence to a multiple of the provided value.
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
7.5 (Volta).
"""
prompt_tokenizer: AutoTokenizer
description_tokenizer: AutoTokenizer
padding: Union[bool, str] = "longest"
pad_to_multiple_of: Optional[int] = None
prompt_max_length: Optional[int] = None
description_max_length: Optional[int] = None
audio_max_length: Optional[int] = None
def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
# split inputs and labels since they have to be of different lengths and need
# different padding methods
labels = [torch.tensor(feature["labels"]).transpose(0, 1) for feature in features]
# (bsz, seq_len, num_codebooks)
labels = torch.nn.utils.rnn.pad_sequence(labels, batch_first=True, padding_value=-100)
if self.audio_max_length is not None and self.padding == "max_length":
labels = torch.nn.functional.pad(labels, pad=(0, 0, 0, max(self.audio_max_length - labels.shape[1], 0)))
input_ids = [{"input_ids": feature["input_ids"]} for feature in features]
input_ids = self.description_tokenizer.pad(
input_ids,
return_tensors="pt",
padding=self.padding,
pad_to_multiple_of=self.pad_to_multiple_of,
max_length=self.description_max_length,
)
batch = {"labels": labels, **input_ids}
if self.audio_max_length is not None and self.padding == "max_length":
# if we do torch.compile, we need to also specify the attention_mask
decoder_attention_mask = torch.ones(labels.shape[:2], dtype=input_ids["attention_mask"].dtype)
batch["decoder_attention_mask"] = decoder_attention_mask
prompt_input_ids = [{"input_ids": feature["prompt_input_ids"]} for feature in features]
prompt_input_ids = self.prompt_tokenizer.pad(
prompt_input_ids,
return_tensors="pt",
padding=self.padding,
pad_to_multiple_of=self.pad_to_multiple_of,
max_length=self.prompt_max_length,
)
batch["prompt_input_ids"] = prompt_input_ids["input_ids"]
if "attention_mask" in prompt_input_ids:
batch["prompt_attention_mask"] = prompt_input_ids["attention_mask"]
return batch
def convert_dataset_str_to_list(
dataset_names,
dataset_config_names,
metadata_dataset_names=None,
splits=None,
dataset_samples=None,
default_split="train",
):
if isinstance(dataset_names, str):
dataset_names = dataset_names.split("+")
dataset_config_names = dataset_config_names.split("+")
splits = splits.split("+") if splits is not None else None
dataset_samples = dataset_samples.split("+") if dataset_samples is not None else None
metadata_dataset_names = metadata_dataset_names.split("+") if metadata_dataset_names is not None else None
# basic checks to ensure we've got the right number of datasets/configs/splits/columns/probs
if len(dataset_names) != len(dataset_config_names):
raise ValueError(
f"Ensure one config is passed for each dataset, got {len(dataset_names)} datasets and"
f" {len(dataset_config_names)} configs."
)
if splits is not None and len(splits) != len(dataset_names):
raise ValueError(
f"Ensure one split is passed for each dataset, got {len(dataset_names)} datasets and {len(splits)} splits."
)
if metadata_dataset_names is not None and len(metadata_dataset_names) != len(dataset_names):
raise ValueError(
f"Ensure one metadata dataset is passed for each dataset, got {len(dataset_names)} datasets and {len(metadata_dataset_names)} metadata datasets."
)
if dataset_samples is not None:
if len(dataset_samples) != len(dataset_names):
raise ValueError(
f"Ensure one sample is passed for each dataset, got {len(dataset_names)} datasets and "
f"{len(dataset_samples)} samples."
)
dataset_samples = [float(ds_sample) for ds_sample in dataset_samples]
else:
dataset_samples = [None] * len(dataset_names)
splits = splits if splits is not None else [default_split for _ in range(len(dataset_names))]
dataset_names_dict = []
for i, ds_name in enumerate(dataset_names):
dataset_names_dict.append(
{
"name": ds_name,
"config": dataset_config_names[i],
"split": splits[i],
"metadata_dataset_name": metadata_dataset_names[i],
"samples": dataset_samples[i],
}
)
return dataset_names_dict
def load_multiple_datasets(
accelerator: Accelerator,
dataset_names: Union[List, str],
dataset_config_names: Union[List, str],
metadata_dataset_names: Optional[str] = None,
splits: Optional[Union[List, str]] = None,
label_column_names: Optional[List] = None,
stopping_strategy: Optional[str] = "first_exhausted",
dataset_samples: Optional[Union[List, np.array]] = None,
streaming: Optional[bool] = False,
seed: Optional[int] = None,
id_column_name: Optional[str] = None,
columns_to_keep: Optional[Set[str]] = None,
prompt_column_name: Optional[str] = None,
sampling_rate: Optional[int] = None,
audio_column_name: Optional[str] = None,
logger: Optional[logging.Logger] = None,
**kwargs,
) -> Union[Dataset, IterableDataset]:
dataset_names_dict = convert_dataset_str_to_list(
dataset_names, dataset_config_names, metadata_dataset_names, splits, label_column_names, dataset_samples
)
if dataset_samples is not None:
dataset_samples = [ds_dict["samples"] for ds_dict in dataset_names_dict]
probabilities = np.array(dataset_samples) / np.sum(dataset_samples)
else:
probabilities = None
all_datasets = []
# iterate over the datasets we want to interleave
for dataset_dict in tqdm(dataset_names_dict, desc="Combining datasets..."):
with accelerator.main_process_first():
dataset = load_dataset(
dataset_dict["name"],
dataset_dict["config"],
split=dataset_dict["split"],
streaming=streaming,
**kwargs,
)
dataset_features = dataset.features.keys()
if sampling_rate is not None and audio_column_name is not None:
# resample target audio
dataset = dataset.cast_column(audio_column_name, datasets.features.Audio(sampling_rate=sampling_rate))
metadata_dataset_name = dataset_dict["metadata_dataset_name"]
if metadata_dataset_name is not None:
logger.info(
f'Merging {dataset_dict["name"]} - {dataset_dict["split"]} with {metadata_dataset_name} - {dataset_dict["split"]}'
)
metadata_dataset = load_dataset(
metadata_dataset_name,
dataset_dict["config"],
split=dataset_dict["split"],
streaming=streaming,
**kwargs,
)
# TODO(YL): I forgot to create unique ids for MLS english.
# To iterate faster, I bypass the original id check and do another one. - Done once because assuming it won't change next time
# if dataset_dict["name"] == "parler-tts/mls_eng_10k":
# def concat_ids(book_id, speaker_id, begin_time):
# return {"id": f"{book_id}_{speaker_id}_{str(begin_time).replace('.', '_')}"}
# dataset = dataset.map(concat_ids, input_columns=["book_id", "speaker_id", "begin_time"], num_proc=24)
# metadata_dataset = metadata_dataset.map(concat_ids, input_columns=["book_id", "speaker_id", "begin_time"], num_proc=24)
# metadata_dataset = metadata_dataset.rename_column(id_column_name, f"metadata_{id_column_name}")
if dataset_dict["name"] != "parler-tts/mls_eng_10k":
if id_column_name is not None and id_column_name not in dataset.column_names:
raise ValueError(
f"id_column_name={id_column_name} but has not been found in the dataset columns"
f"- one of {', '.join(list(dataset.column_names))}."
)
if id_column_name is not None and id_column_name not in metadata_dataset.column_names:
raise ValueError(
f"id_column_name={id_column_name} but has not been found in the metadata dataset columns"
f"- one of {', '.join(list(metadata_dataset.column_names))}."
)
elif id_column_name is not None:
metadata_dataset = metadata_dataset.rename_column(id_column_name, f"metadata_{id_column_name}")
metadata_columns_to_remove = set(metadata_dataset.column_names).intersection(set(dataset.column_names))
if prompt_column_name is not None:
# We might have applied some transformations to the prompts (e.g punctuation restoration)
# so we make sure to remove it from the original dataset
if prompt_column_name in dataset.column_names:
logger.info(
f"REMOVE {prompt_column_name} from dataset {dataset_dict['name']} - dataset_dict['split']"
)
dataset.remove_columns(prompt_column_name)
metadata_columns_to_remove = set(metadata_dataset.column_names).intersection(set(dataset.column_names))
metadata_dataset = metadata_dataset.remove_columns(metadata_columns_to_remove)
dataset = concatenate_datasets([dataset, metadata_dataset], axis=1)
if id_column_name is not None and dataset_dict["name"] != "parler-tts/mls_eng_10k":
if (
len(
dataset.filter(
lambda id1, id2: id1 != id2,
input_columns=[id_column_name, f"metadata_{id_column_name}"],
)
)
!= 0
):
raise ValueError(
f"Concatenate didn't work. Some ids don't correspond on dataset {dataset_dict['name']}"
)
dataset_features = dataset.features.keys()
if columns_to_keep is not None:
dataset = dataset.remove_columns(set(dataset_features - columns_to_keep))
all_datasets.append(dataset)
if len(all_datasets) == 1:
# we have a single dataset so just return it as is
return all_datasets[0]
if streaming:
interleaved_dataset = interleave_datasets(
all_datasets,
stopping_strategy=stopping_strategy,
probabilities=probabilities,
seed=seed,
)
else:
with accelerator.main_process_first():
interleaved_dataset = concatenate_datasets(all_datasets)
return interleaved_dataset