large-v3-32-2-token-ids-freeze-embeds-label-smoothing-label-length-256
/
distil_whisper
/modeling_flax_whisper.py
# coding=utf-8 | |
# Copyright 2023 The OpenAI Authors and The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Flax whisper model.""" | |
import random | |
from functools import partial | |
from typing import Dict, Optional, Tuple, Union | |
import flax.linen as nn | |
import jax | |
import jax.numpy as jnp | |
from flax.core.frozen_dict import FrozenDict, freeze, unfreeze | |
from flax.linen import combine_masks, make_causal_mask | |
from flax.linen.attention import dot_product_attention_weights | |
from flax.linen.partitioning import remat, scan_with_axes | |
from flax.traverse_util import flatten_dict, unflatten_dict | |
from jax import lax | |
from jax.random import PRNGKey | |
from transformers import WhisperConfig | |
from transformers.generation.flax_logits_process import ( | |
FlaxLogitsProcessor, | |
FlaxLogitsProcessorList, | |
FlaxWhisperTimeStampLogitsProcessor, | |
) | |
from transformers.modeling_flax_outputs import ( | |
FlaxBaseModelOutput, | |
FlaxBaseModelOutputWithPastAndCrossAttentions, | |
FlaxCausalLMOutputWithCrossAttentions, | |
FlaxSeq2SeqLMOutput, | |
FlaxSeq2SeqModelOutput, | |
) | |
from transformers.modeling_flax_utils import ( | |
ACT2FN, | |
FlaxPreTrainedModel, | |
append_call_sample_docstring, | |
append_replace_return_docstrings, | |
overwrite_call_docstring, | |
) | |
from transformers.utils import ( | |
add_start_docstrings, | |
add_start_docstrings_to_model_forward, | |
logging, | |
replace_return_docstrings, | |
) | |
from .layers import Conv, DenseGeneral, Embed, LayerNorm, with_sharding_constraint | |
logger = logging.get_logger(__name__) | |
_CHECKPOINT_FOR_DOC = "openai/whisper-tiny" | |
_CONFIG_FOR_DOC = "WhisperConfig" | |
WHISPER_START_DOCSTRING = r""" | |
This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the | |
library implements for all its models (such as downloading or saving, resizing the input embeddings, pruning heads | |
etc.) This model is also a Flax Linen | |
[flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a | |
regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior. | |
Finally, this model supports inherent JAX features such as: | |
- [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit) | |
- [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation) | |
- [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap) | |
- [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap) | |
Parameters: | |
config ([`WhisperConfig`]): Model configuration class with all the parameters of the model. | |
Initializing with a config file does not load the weights associated with the model, only the | |
configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights. | |
dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`): | |
The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and | |
`jax.numpy.bfloat16` (on TPUs). This can be used to enable mixed-precision training or half-precision | |
inference on GPUs or TPUs. If specified all the computation will be performed with the given `dtype`. | |
**Note that this only specifies the dtype of the computation and does not influence the dtype of model | |
parameters.** If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] | |
and [`~FlaxPreTrainedModel.to_bf16`]. | |
""" | |
WHISPER_INPUTS_DOCSTRING = r""" | |
Args: | |
input_features (`numpy.ndarray` of shape `(batch_size, feature_size, sequence_length)`): | |
Float values mel features extracted from the raw speech waveform. Raw speech waveform can be obtained by | |
loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via | |
the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the | |
[`WhisperFeatureExtractor`] should be used for extracting the features, padding and conversion into a | |
tensor of type `numpy.ndarray`. See [`~WhisperFeatureExtractor.__call__`] | |
attention_mask (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): | |
Whisper does not support masking of the `input_features`, this argument is preserved for compatibility, but | |
is not used. By default the silence in the input log mel spectrogram are ignored. | |
decoder_input_ids (`numpy.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): | |
Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using | |
[`WhisperTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. | |
[What are decoder input IDs?](../glossary#decoder-input-ids) Whisper uses the `decoder_start_token_id` as | |
the starting token for `decoder_input_ids` generation. | |
decoder_attention_mask (`numpy.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): | |
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also | |
be used by default. If you want to change padding behavior, you should modify to your needs. See diagram 1 | |
in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. | |
position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): | |
Whisper does not use `position_ids` in the encoder as `input_features` is always the same size and doesn't | |
use masking, but this argument is preserved for compatibility. By default the silence in the input log mel | |
spectrogram are ignored. | |
decoder_position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): | |
Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the | |
range `[0, config.max_position_embeddings - 1]`. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
WHISPER_ENCODE_INPUTS_DOCSTRING = r""" | |
Args: | |
input_features (`numpy.ndarray` of shape `(batch_size, feature_size, sequence_length)`): | |
Float values mel features extracted from the raw speech waveform. Raw speech waveform can be obtained by | |
loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via | |
the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the | |
[`WhisperFeatureExtractor`] should be used for extracting the mel features, padding and conversion into a | |
tensor of type `numpy.ndarray`. See [`~WhisperFeatureExtractor.__call__`]. | |
attention_mask (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): | |
Whisper does not support masking of the `input_features`, this argument is preserved for compatibility, but | |
is not used. By default the silence in the input log mel spectrogram are ignored. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
WHISPER_DECODE_INPUTS_DOCSTRING = r""" | |
Args: | |
decoder_input_ids (`numpy.ndarray` of shape `(batch_size, target_sequence_length)`): | |
Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using | |
[`WhisperTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. | |
[What are decoder input IDs?](../glossary#decoder-input-ids) | |
encoder_outputs (`tuple(tuple(numpy.ndarray)`): | |
Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) | |
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of | |
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. | |
encoder_attention_mask (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): | |
Whisper does not support masking of the `input_features`, this argument is preserved for compatibility, | |
but it is not used. By default the silence in the input log mel spectrogram are ignored. | |
decoder_attention_mask (`numpy.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): | |
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also | |
be used by default. If you want to change padding behavior, you should modify to your needs. See diagram 1 | |
in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. | |
decoder_position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): | |
Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the | |
range `[0, config.max_position_embeddings - 1]`. | |
past_key_values (`Dict[str, numpy.ndarray]`, *optional*, returned by `init_cache` or when passing previous `past_key_values`): | |
Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast | |
auto-regressive decoding. Pre-computed key and value hidden-states are of shape *[batch_size, max_length]*. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
class FlaxStaticForceTokensLogitsProcessor(FlaxLogitsProcessor): | |
r""" | |
[`FlaxLogitsProcessor`] that takes a list of pairs of integers which indicates a mapping from generation indices to | |
token indices that will be forced before sampling. The processor will set their log probs to 0 and all other tokens | |
to `-inf` so that they are sampled at their corresponding index. This is a static version of the `transformers` logit | |
processor [`FlaxForceTokensLogitsProcessor`] that is compatible with sharded forced tokens. | |
Args: | |
force_token_map (`list`): | |
Map giving token ids and indices where they will be forced to be sampled. | |
""" | |
def __init__(self, force_token_map): | |
# The generic `transformers` logit processor builds `force_token_array` as a dictionary - this is not a valid | |
# JAX type, and so we switch to using a JAX array instead | |
force_token_map = jnp.array(force_token_map) | |
# Converts the array of format [[index, token]] containing the tokens to be forced to an array, where the | |
# index of the array corresponds to the index of the token to be forced. For XLA compatibility, | |
# indexes without forced tokens will have a negative value. Note that the last token we ever need to force in | |
# Whisper is at position 3, so we only construct an array up to this index. The native version constructs a tensor | |
# dynamically according to the length of the `force_token_map`. Array shapes need to be concrete for XLA compatibility, | |
# so this is not permitted here. | |
force_token_array = jnp.ones(3, dtype=jnp.int32) * -1 | |
for index, token in force_token_map: | |
force_token_array = force_token_array.at[index].set(token) | |
self.force_token_array = jnp.int32(force_token_array) | |
def __call__(self, input_ids: jnp.ndarray, scores: jnp.ndarray, cur_len: int) -> jnp.ndarray: | |
def _force_token(generation_idx): | |
batch_size = scores.shape[0] | |
current_token = self.force_token_array[generation_idx] | |
new_scores = jnp.ones_like(scores, dtype=scores.dtype) * -float("inf") | |
updates = jnp.zeros((batch_size, 1), dtype=scores.dtype) | |
new_scores = lax.dynamic_update_slice(new_scores, updates, (0, current_token)) | |
return new_scores | |
scores = lax.cond( | |
cur_len >= self.force_token_array.shape[0], | |
# If the current length is geq than the length of force_token_array, the processor does nothing. | |
lambda: scores, | |
# Otherwise, it may force a certain token. | |
lambda: lax.cond( | |
self.force_token_array[cur_len] >= 0, | |
# Only valid (positive) tokens are forced | |
lambda: _force_token(cur_len), | |
# Otherwise, the processor does nothing. | |
lambda: scores, | |
), | |
) | |
return scores | |
class FlaxWhisperAttention(nn.Module): | |
config: WhisperConfig | |
embed_dim: int | |
num_heads: int | |
dropout: float = 0.0 | |
causal: bool = False | |
bias: bool = True | |
dtype: jnp.dtype = jnp.float32 | |
params_dtype: jnp.dtype = jnp.float32 | |
def setup(self) -> None: | |
self.head_dim = self.embed_dim // self.num_heads | |
if self.head_dim * self.num_heads != self.embed_dim: | |
raise ValueError( | |
"embed_dim must be divisible by num_heads (got `embed_dim`:" | |
f" {self.embed_dim} and `num_heads`: {self.num_heads})." | |
) | |
dense = partial( | |
DenseGeneral, | |
self.embed_dim, | |
axis=-1, | |
dtype=self.dtype, | |
params_dtype=self.params_dtype, | |
kernel_axes=("embed", "joined_kv"), | |
) | |
self.q_proj = dense(use_bias=self.bias) | |
self.k_proj = dense(use_bias=False) | |
self.v_proj = dense(use_bias=self.bias) | |
self.out_proj = DenseGeneral( | |
self.embed_dim, | |
axis=-1, | |
dtype=self.dtype, | |
params_dtype=self.params_dtype, | |
kernel_axes=("joined_kv", "embed"), | |
use_bias=self.bias, | |
) | |
if self.causal: | |
self.causal_mask = make_causal_mask( | |
jnp.ones((1, self.config.max_target_positions), dtype="bool"), | |
dtype="bool", | |
) | |
def __call__( | |
self, | |
hidden_states: jnp.ndarray, | |
key_value_states: Optional[jnp.ndarray] = None, | |
attention_mask: Optional[jnp.ndarray] = None, | |
init_cache: bool = False, | |
deterministic: bool = True, | |
) -> Tuple[jnp.ndarray]: | |
is_cross_attention = key_value_states is not None | |
batch_size = hidden_states.shape[0] | |
query_states = self.q_proj(hidden_states) | |
if is_cross_attention: | |
key_states = self.k_proj(key_value_states) | |
value_states = self.v_proj(key_value_states) | |
else: | |
key_states = self.k_proj(hidden_states) | |
value_states = self.v_proj(hidden_states) | |
query_states = self._split_heads(query_states) | |
key_states = self._split_heads(key_states) | |
value_states = self._split_heads(value_states) | |
query_states = with_sharding_constraint(query_states, ("batch", "length", "heads", "kv")) | |
key_states = with_sharding_constraint(key_states, ("batch", "length", "heads", "kv")) | |
value_states = with_sharding_constraint(value_states, ("batch", "length", "heads", "kv")) | |
if self.causal: | |
query_length, key_length = query_states.shape[1], key_states.shape[1] | |
if self.has_variable("cache", "cached_key"): | |
mask_shift = self.variables["cache"]["cache_index"] | |
# max_length of cached_key is last dim | |
max_decoder_length = self.variables["cache"]["cached_key"].shape[-1] | |
causal_mask = lax.dynamic_slice( | |
self.causal_mask, | |
(0, 0, mask_shift, 0), | |
(1, 1, query_length, max_decoder_length), | |
) | |
else: | |
causal_mask = self.causal_mask[:, :, :query_length, :key_length] | |
causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:]) | |
# combine masks if needed | |
if attention_mask is not None and self.causal: | |
attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape) | |
attention_mask = combine_masks(attention_mask, causal_mask) | |
elif self.causal: | |
attention_mask = causal_mask | |
elif attention_mask is not None: | |
attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2)) | |
# During fast autoregressive decoding, we feed one position at a time, | |
# and cache the keys and values step by step. | |
if self.causal and (self.has_variable("cache", "cached_key") or init_cache): | |
key_states, value_states, attention_mask = self._concatenate_to_cache( | |
key_states, value_states, query_states, attention_mask | |
) | |
# Convert the boolean attention mask to an attention bias. | |
if attention_mask is not None: | |
# attention mask in the form of attention bias | |
attention_bias = lax.select( | |
attention_mask > 0, | |
jnp.full(attention_mask.shape, 0.0).astype(self.dtype), | |
jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype), | |
) | |
else: | |
attention_bias = None | |
dropout_rng = None | |
if not deterministic and self.dropout > 0.0: | |
dropout_rng = self.make_rng("dropout") | |
attn_weights = dot_product_attention_weights( | |
query_states, | |
key_states, | |
bias=attention_bias, | |
dropout_rng=dropout_rng, | |
dropout_rate=self.dropout, | |
broadcast_dropout=True, | |
deterministic=deterministic, | |
dtype=self.dtype, | |
precision=None, | |
) | |
attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states) | |
attn_output = self._merge_heads(attn_output) | |
attn_output = self.out_proj(attn_output) | |
return attn_output, attn_weights | |
def _split_heads(self, hidden_state) -> jnp.ndarray: | |
return hidden_state.reshape(hidden_state.shape[:2] + (self.num_heads, self.head_dim)) | |
def _merge_heads(self, hidden_state) -> jnp.ndarray: | |
return hidden_state.reshape(hidden_state.shape[:2] + (self.embed_dim,)) | |
def _concatenate_to_cache(self, key, value, query, attention_mask): | |
# The following code is largely copied from: https://github.com/google-research/t5x/blob/63d9addf628c6d8c547a407a32095fcb527bb20b/t5x/examples/scalable_t5/layers.py#L280-L284 | |
is_initialized = self.has_variable("cache", "cached_key") | |
# The key and value have dimension [batch_size, seq_length, num_heads, head_dim], | |
# but we cache them as [batch_size, num_heads, head_dim, seq_length] as a TPU | |
# fusion optimization. This also enables the "scatter via one-hot | |
# broadcast" trick, which means we do a one-hot broadcast instead of a | |
# scatter/gather operations, resulting in a 3-4x speedup in practice. | |
def swap_dims(x): | |
return x[:-3] + tuple(x[i] for i in [-2, -1, -3]) | |
cached_key = self.variable("cache", "cached_key", jnp.zeros, swap_dims(key.shape), key.dtype) | |
cached_value = self.variable("cache", "cached_value", jnp.zeros, swap_dims(value.shape), value.dtype) | |
cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32)) | |
if is_initialized: | |
batch_size, num_heads, head_dim, seq_length = cached_key.value.shape | |
# During fast autoregressive decoding, we feed one position at a time, | |
# and cache the keys and values step by step. | |
# Sanity shape check of cached key against input query. | |
num_updated_cache_vectors = query.shape[1] | |
expected_shape = (batch_size, 1, num_heads, head_dim) | |
if num_updated_cache_vectors == 1 and expected_shape != query.shape: | |
raise ValueError( | |
"Autoregressive cache shape error, expected query shape" | |
f" {expected_shape} instead got {query.shape}" | |
) | |
# Create a OHE of the current index. NOTE: the index is increased below. | |
cur_index = cache_index.value | |
# In order to update the key, value caches with the current key and | |
# value, we move the seq_length axis to the back, similar to what we did for | |
# the cached ones above. | |
# Note these are currently the key and value of a single position, since | |
# we feed one position at a time. | |
one_token_key = jnp.moveaxis(key, -3, -1) | |
one_token_value = jnp.moveaxis(value, -3, -1) | |
# Update key, value caches with our new 1d spatial slices. | |
# We implement an efficient scatter into the cache via one-hot | |
# broadcast and addition. | |
if num_updated_cache_vectors > 1: | |
indices = jnp.eye(num_updated_cache_vectors, seq_length)[None, None] | |
key = cached_key.value + jnp.matmul(one_token_key, indices) | |
value = cached_value.value + jnp.matmul(one_token_value, indices) | |
else: | |
one_hot_indices = jax.nn.one_hot(cur_index, seq_length, dtype=key.dtype) | |
key = cached_key.value + one_token_key * one_hot_indices | |
value = cached_value.value + one_token_value * one_hot_indices | |
cached_key.value = key | |
cached_value.value = value | |
cache_index.value = cache_index.value + num_updated_cache_vectors | |
# Move the keys and values back to their original shapes. | |
key = jnp.moveaxis(key, -1, -3) | |
value = jnp.moveaxis(value, -1, -3) | |
# causal mask for cached decoder self-attention: our single query position should only | |
# attend to those key positions that have already been generated and cached, not the | |
# remaining zero elements. | |
pad_mask = jnp.broadcast_to( | |
jnp.arange(seq_length) < cur_index + num_updated_cache_vectors, | |
(batch_size,) + (1, num_updated_cache_vectors, seq_length), | |
) | |
attention_mask = combine_masks(pad_mask, attention_mask) | |
return key, value, attention_mask | |
class FlaxWhisperEncoderLayer(nn.Module): | |
config: WhisperConfig | |
dtype: jnp.dtype = jnp.float32 | |
params_dtype: jnp.dtype = jnp.float32 | |
use_scan: bool = False | |
def setup(self) -> None: | |
self.embed_dim = self.config.d_model | |
self.self_attn = FlaxWhisperAttention( | |
config=self.config, | |
embed_dim=self.embed_dim, | |
num_heads=self.config.encoder_attention_heads, | |
dropout=self.config.attention_dropout, | |
dtype=self.dtype, | |
params_dtype=self.params_dtype, | |
) | |
self.self_attn_layer_norm = LayerNorm(dtype=self.dtype, epsilon=1e-05, params_dtype=self.params_dtype) | |
self.dropout_layer = nn.Dropout(rate=self.config.dropout) | |
self.activation_fn = ACT2FN[self.config.activation_function] | |
self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout) | |
self.fc1 = DenseGeneral( | |
self.config.encoder_ffn_dim, | |
dtype=self.dtype, | |
params_dtype=self.params_dtype, | |
kernel_axes=("embed", "mlp"), | |
) | |
self.fc2 = DenseGeneral( | |
self.embed_dim, | |
dtype=self.dtype, | |
params_dtype=self.params_dtype, | |
kernel_axes=("mlp", "embed"), | |
) | |
self.final_layer_norm = LayerNorm(dtype=self.dtype, epsilon=1e-05, params_dtype=self.params_dtype) | |
def __call__( | |
self, | |
hidden_states: jnp.ndarray, | |
attention_mask: jnp.ndarray, | |
output_attentions: bool = True, | |
deterministic: bool = True, | |
all_hidden_states=None, # only used when `use_scan=True` -> we have to fetch the hidden states from within the layer | |
) -> Tuple[jnp.ndarray]: | |
if self.use_scan: | |
hidden_states = hidden_states[0] | |
hidden_states = with_sharding_constraint(hidden_states, ("batch", "length", "embed")) | |
residual = hidden_states | |
layernorm_output = self.self_attn_layer_norm(hidden_states) | |
layernorm_output = with_sharding_constraint(layernorm_output, ("batch", "length", "embed")) | |
attn_output, attn_weights = self.self_attn(hidden_states=layernorm_output, attention_mask=attention_mask) | |
attn_output = self.dropout_layer(attn_output, deterministic=deterministic) | |
attn_output = residual + attn_output | |
attn_output = with_sharding_constraint(attn_output, ("batch", "length", "embed")) | |
residual = attn_output | |
post_layer_norm = self.final_layer_norm(attn_output) | |
post_layer_norm = with_sharding_constraint(post_layer_norm, ("batch", "length", "embed")) | |
fc1_output = self.activation_fn(self.fc1(post_layer_norm)) | |
fc1_output = self.activation_dropout_layer(fc1_output, deterministic=deterministic) | |
fc1_output = with_sharding_constraint(fc1_output, ("batch", "length", "mlp")) | |
hidden_states = self.fc2(fc1_output) | |
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) | |
hidden_states = residual + hidden_states | |
hidden_states = with_sharding_constraint(hidden_states, ("batch", "length", "embed")) | |
outputs = (hidden_states,) | |
if output_attentions: | |
outputs += (attn_weights,) | |
if self.use_scan: | |
if all_hidden_states is not None: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
outputs = ( | |
outputs, | |
all_hidden_states, | |
) | |
return outputs | |
class FlaxWhisperEncoderLayerCollection(nn.Module): | |
config: WhisperConfig | |
dtype: jnp.dtype = jnp.float32 # the dtype of the computation | |
params_dtype: jnp.dtype = jnp.float32 | |
use_scan: bool = False | |
gradient_checkpointing: bool = False | |
def __call__( | |
self, | |
hidden_states, | |
attention_mask, | |
deterministic: bool = True, | |
output_attentions: bool = False, | |
output_hidden_states: bool = False, | |
return_dict: bool = True, | |
): | |
all_attentions = () if output_attentions else None | |
all_hidden_states = () if output_hidden_states else None | |
FlaxWhisperEncoderCheckpointLayer = ( | |
remat( | |
FlaxWhisperEncoderLayer, | |
static_argnums=(2, 3), | |
prevent_cse=not self.use_scan, | |
) | |
if self.gradient_checkpointing | |
else FlaxWhisperEncoderLayer | |
) | |
if self.use_scan: | |
if output_attentions: | |
raise ValueError("Cannot use `scan` with `output_attentions` set to True") | |
# nicest behaviour for scan is to let the compiler figure out the correct shapes for the hidden states | |
# so we'll just pass an empty tuple as the carry initializer and hold on to the first hidden states for later | |
input_hidden_states = hidden_states | |
hidden_states = (hidden_states,) | |
hidden_states, all_hidden_states = scan_with_axes( | |
FlaxWhisperEncoderCheckpointLayer, | |
variable_axes={"params": 0, "cache": 0}, | |
split_rngs={"params": True, "dropout": True}, | |
in_axes=( | |
nn.broadcast, | |
nn.broadcast, | |
nn.broadcast, | |
nn.broadcast, | |
), | |
variable_carry="all_hidden_states", | |
length=self.config.encoder_layers, | |
)( | |
self.config, | |
dtype=self.dtype, | |
params_dtype=self.params_dtype, | |
use_scan=True, | |
name="FlaxEncoderScanLayers", | |
)( | |
hidden_states, | |
attention_mask, | |
output_attentions, | |
deterministic, | |
all_hidden_states, # tuple intializer (or None if not using output_hidden_states) | |
) | |
# remove the scan dimension | |
hidden_states = hidden_states[0] | |
if output_hidden_states: | |
# if we're using scan we'll surely be training -> return hidden states as a tensor rather than tuple | |
all_hidden_states = jnp.vstack([input_hidden_states[None, ...], all_hidden_states[0]]) | |
else: | |
for layer_idx in range(self.config.encoder_layers): | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) | |
dropout_probability = random.uniform(0, 1) | |
if not deterministic and (dropout_probability < self.config.encoder_layerdrop): # skip the layer | |
layer_outputs = (None, None) | |
else: | |
layer_outputs = FlaxWhisperEncoderCheckpointLayer( | |
self.config, | |
dtype=self.dtype, | |
params_dtype=self.params_dtype, | |
name=str(layer_idx), | |
)( | |
hidden_states, | |
attention_mask, | |
output_attentions, | |
deterministic, | |
) | |
hidden_states = layer_outputs[0] | |
if output_attentions: | |
all_attentions = all_attentions + (layer_outputs[1],) | |
if output_hidden_states: | |
all_hidden_states += (hidden_states,) | |
outputs = (hidden_states, all_hidden_states, all_attentions) | |
if not return_dict: | |
return tuple(v for v in outputs if v is not None) | |
return FlaxBaseModelOutput( | |
last_hidden_state=hidden_states, | |
hidden_states=all_hidden_states, | |
attentions=all_attentions, | |
) | |
class FlaxWhisperDecoderLayer(nn.Module): | |
config: WhisperConfig | |
dtype: jnp.dtype = jnp.float32 | |
params_dtype: jnp.dtype = jnp.float32 | |
use_scan: bool = False | |
def setup(self) -> None: | |
self.embed_dim = self.config.d_model | |
self.self_attn = FlaxWhisperAttention( | |
config=self.config, | |
embed_dim=self.embed_dim, | |
num_heads=self.config.decoder_attention_heads, | |
dropout=self.config.attention_dropout, | |
causal=True, | |
dtype=self.dtype, | |
params_dtype=self.params_dtype, | |
) | |
self.dropout_layer = nn.Dropout(rate=self.config.dropout) | |
self.activation_fn = ACT2FN[self.config.activation_function] | |
self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout) | |
self.self_attn_layer_norm = LayerNorm(dtype=self.dtype, epsilon=1e-05, params_dtype=self.params_dtype) | |
self.encoder_attn = FlaxWhisperAttention( | |
config=self.config, | |
embed_dim=self.embed_dim, | |
num_heads=self.config.decoder_attention_heads, | |
dropout=self.config.attention_dropout, | |
dtype=self.dtype, | |
params_dtype=self.params_dtype, | |
) | |
self.encoder_attn_layer_norm = LayerNorm(dtype=self.dtype, epsilon=1e-05, params_dtype=self.params_dtype) | |
self.fc1 = DenseGeneral( | |
self.config.decoder_ffn_dim, | |
dtype=self.dtype, | |
params_dtype=self.params_dtype, | |
kernel_axes=("embed", "mlp"), | |
) | |
self.fc2 = DenseGeneral( | |
self.embed_dim, | |
dtype=self.dtype, | |
params_dtype=self.params_dtype, | |
kernel_axes=("mlp", "embed"), | |
) | |
self.final_layer_norm = LayerNorm(dtype=self.dtype, epsilon=1e-05, params_dtype=self.params_dtype) | |
def __call__( | |
self, | |
hidden_states: jnp.ndarray, | |
attention_mask: jnp.ndarray, | |
encoder_hidden_states: Optional[jnp.ndarray] = None, | |
encoder_attention_mask: Optional[jnp.ndarray] = None, | |
init_cache: bool = False, | |
output_attentions: bool = True, | |
deterministic: bool = True, | |
all_hidden_states=None, # only used when `use_scan=True` -> we have to fetch the hidden states from within the layer | |
) -> Tuple[jnp.ndarray]: | |
if self.use_scan: | |
hidden_states = hidden_states[0] | |
hidden_states = with_sharding_constraint(hidden_states, ("batch", "length", "embed")) | |
residual = hidden_states | |
layer_norm_output = self.self_attn_layer_norm(hidden_states) | |
layer_norm_output = with_sharding_constraint(layer_norm_output, ("batch", "length", "embed")) | |
# Self Attention | |
self_attn_output, self_attn_weights = self.self_attn( | |
hidden_states=layer_norm_output, | |
attention_mask=attention_mask, | |
init_cache=init_cache, | |
) | |
self_attn_output = self.dropout_layer(self_attn_output, deterministic=deterministic) | |
self_attn_output = residual + self_attn_output | |
self_attn_output = with_sharding_constraint(self_attn_output, ("batch", "length", "embed")) | |
# Cross-Attention Block | |
cross_attn_weights = None | |
if encoder_hidden_states is not None: | |
residual = self_attn_output | |
encoder_layer_norm_output = self.encoder_attn_layer_norm(self_attn_output) | |
encoder_layer_norm_output = with_sharding_constraint( | |
encoder_layer_norm_output, ("batch", "length", "embed") | |
) | |
cross_attn_output, cross_attn_weights = self.encoder_attn( | |
hidden_states=encoder_layer_norm_output, | |
key_value_states=encoder_hidden_states, | |
attention_mask=encoder_attention_mask, | |
) | |
cross_attn_output = self.dropout_layer(cross_attn_output, deterministic=deterministic) | |
cross_attn_output = residual + cross_attn_output | |
cross_attn_output = with_sharding_constraint(cross_attn_output, ("batch", "length", "embed")) | |
# Fully Connected | |
residual = cross_attn_output | |
post_layer_norm = self.final_layer_norm(cross_attn_output) | |
post_layer_norm = with_sharding_constraint(post_layer_norm, ("batch", "length", "embed")) | |
fc1_output = self.activation_fn(self.fc1(post_layer_norm)) | |
fc1_output = self.activation_dropout_layer(fc1_output, deterministic=deterministic) | |
fc1_output = with_sharding_constraint(fc1_output, ("batch", "length", "mlp")) | |
hidden_states = self.fc2(fc1_output) | |
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) | |
hidden_states = residual + hidden_states | |
hidden_states = with_sharding_constraint(hidden_states, ("batch", "length", "embed")) | |
outputs = (hidden_states,) | |
if output_attentions: | |
outputs += (self_attn_weights, cross_attn_weights) | |
if self.use_scan: | |
if all_hidden_states is not None: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
outputs = ( | |
outputs, | |
all_hidden_states, | |
) | |
return outputs | |
class FlaxWhisperDecoderLayerCollection(nn.Module): | |
config: WhisperConfig | |
dtype: jnp.dtype = jnp.float32 # the dtype of the computation | |
params_dtype: jnp.dtype = jnp.float32 | |
use_scan: bool = False | |
gradient_checkpointing: bool = False | |
def __call__( | |
self, | |
hidden_states, | |
attention_mask, | |
encoder_hidden_states: Optional[jnp.ndarray] = None, | |
encoder_attention_mask: Optional[jnp.ndarray] = None, | |
deterministic: bool = True, | |
init_cache: bool = False, | |
output_attentions: bool = False, | |
output_hidden_states: bool = False, | |
return_dict: bool = True, | |
): | |
# decoder layers | |
all_hidden_states = () if output_hidden_states else None | |
all_self_attns = () if output_attentions else None | |
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None | |
FlaxWhisperDecoderCheckpointLayer = ( | |
remat( | |
FlaxWhisperDecoderLayer, | |
static_argnums=(4, 5, 6), | |
prevent_cse=not self.use_scan, | |
) | |
if self.gradient_checkpointing | |
else FlaxWhisperDecoderLayer | |
) | |
if self.use_scan: | |
if output_attentions: | |
raise ValueError("Cannot use `scan` with `output_attentions` set to True") | |
input_hidden_states = hidden_states | |
hidden_states = (hidden_states,) | |
hidden_states, all_hidden_states = scan_with_axes( | |
FlaxWhisperDecoderCheckpointLayer, | |
variable_axes={"params": 0, "cache": 0}, | |
split_rngs={"params": True, "dropout": True}, | |
in_axes=( | |
nn.broadcast, | |
nn.broadcast, | |
nn.broadcast, | |
nn.broadcast, | |
nn.broadcast, | |
nn.broadcast, | |
nn.broadcast, | |
), | |
variable_carry="all_hidden_states", | |
length=self.config.decoder_layers, | |
)( | |
self.config, | |
dtype=self.dtype, | |
params_dtype=self.params_dtype, | |
use_scan=True, | |
name="FlaxDecoderScanLayers", | |
)( | |
hidden_states, | |
attention_mask, | |
encoder_hidden_states, | |
encoder_attention_mask, | |
init_cache, | |
output_attentions, | |
deterministic, | |
all_hidden_states, | |
) | |
hidden_states = hidden_states[0] | |
if output_hidden_states: | |
# if we're using scan we'll surely be training -> return hidden states as a tensor rather than tuple | |
all_hidden_states = jnp.vstack([input_hidden_states[None, ...], all_hidden_states[0]]) | |
else: | |
for layer_idx in range(self.config.decoder_layers): | |
if output_hidden_states: | |
all_hidden_states += (hidden_states,) | |
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) | |
dropout_probability = random.uniform(0, 1) | |
if not deterministic and (dropout_probability < self.config.decoder_layerdrop): | |
layer_outputs = (None, None, None) | |
else: | |
layer_outputs = FlaxWhisperDecoderCheckpointLayer( | |
self.config, | |
dtype=self.dtype, | |
params_dtype=self.params_dtype, | |
name=str(layer_idx), | |
)( | |
hidden_states, | |
attention_mask, | |
encoder_hidden_states, | |
encoder_attention_mask, | |
init_cache, | |
output_attentions, | |
deterministic, | |
) | |
hidden_states = layer_outputs[0] | |
if output_attentions: | |
all_self_attns += (layer_outputs[1],) | |
if encoder_hidden_states is not None: | |
all_cross_attentions += (layer_outputs[2],) | |
# add hidden states from the last decoder layer | |
if output_hidden_states: | |
all_hidden_states += (hidden_states,) | |
outputs = [ | |
hidden_states, | |
all_hidden_states, | |
all_self_attns, | |
all_cross_attentions, | |
] | |
if not return_dict: | |
return tuple(v for v in outputs if v is not None) | |
return FlaxBaseModelOutputWithPastAndCrossAttentions( | |
last_hidden_state=hidden_states, | |
hidden_states=all_hidden_states, | |
attentions=all_self_attns, | |
cross_attentions=all_cross_attentions, | |
) | |
class FlaxWhisperEncoder(nn.Module): | |
config: WhisperConfig | |
dtype: jnp.dtype = jnp.float32 | |
params_dtype: jnp.dtype = jnp.float32 | |
use_scan: bool = False | |
gradient_checkpointing: bool = False | |
def setup(self) -> None: | |
self.conv1 = Conv( | |
self.config.d_model, | |
kernel_size=(3,), | |
padding=1, | |
dtype=self.dtype, | |
params_dtype=self.params_dtype, | |
kernel_axes=("channels", "num_mel", "embed"), | |
) | |
self.conv2 = Conv( | |
self.config.d_model, | |
kernel_size=(3,), | |
strides=2, | |
padding=1, | |
dtype=self.dtype, | |
params_dtype=self.params_dtype, | |
kernel_axes=("channels", "embed", "num_mel"), | |
) | |
self.dropout_layer = nn.Dropout(rate=self.config.dropout) | |
self.layers = FlaxWhisperEncoderLayerCollection( | |
self.config, | |
dtype=self.dtype, | |
params_dtype=self.params_dtype, | |
use_scan=self.use_scan, | |
gradient_checkpointing=self.gradient_checkpointing, | |
) | |
self.embed_positions = Embed( | |
self.config.max_source_positions, | |
self.config.d_model, | |
dtype=self.dtype, | |
params_dtype=self.params_dtype, | |
) | |
self.layer_norm = LayerNorm(dtype=self.dtype, epsilon=1e-05, params_dtype=self.params_dtype) | |
def __call__( | |
self, | |
input_features: jnp.ndarray, | |
output_attentions: bool = False, | |
output_hidden_states: bool = False, | |
return_dict: bool = True, | |
deterministic: bool = True, | |
) -> Tuple[jnp.ndarray]: | |
if input_features.shape[1:] != ( | |
self.config.num_mel_bins, | |
self.config.max_source_positions * 2, | |
): | |
raise ValueError( | |
"input_features.shape[1:], must be equal to (self.config.num_mel_bins," | |
" self.config.max_source_positions * 2) (got" | |
f" {input_features.shape[1:]}, but should be" | |
f" ({self.config.num_mel_bins}," | |
f" {self.config.max_source_positions * 2}))" | |
) | |
input_features = input_features.transpose(0, 2, 1) | |
hidden_states = jax.nn.gelu(self.conv1(input_features), approximate=False) | |
hidden_states = with_sharding_constraint(hidden_states, ("batch", "embed", "num_mel")) | |
hidden_states = jax.nn.gelu(self.conv2(hidden_states), approximate=False) | |
hidden_states = with_sharding_constraint(hidden_states, ("batch", "length", "embed")) | |
embed_positions = self.embed_positions(jnp.arange(self.config.max_source_positions)) | |
# sinusoidal positional embeddings should not be trained | |
embed_positions = jax.lax.stop_gradient(embed_positions) | |
hidden_states = hidden_states + embed_positions | |
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) | |
outputs = self.layers( | |
hidden_states, | |
attention_mask=None, | |
deterministic=deterministic, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
last_hidden_states = outputs[0] | |
last_hidden_states = self.layer_norm(last_hidden_states) | |
# update the last element in `hidden_states` after applying `layernorm` above | |
hidden_states = None | |
if output_hidden_states: | |
hidden_states = outputs[1] | |
if self.use_scan: | |
hidden_states = jnp.vstack([hidden_states[:-1], last_hidden_states[None, ...]]) | |
else: | |
hidden_states = hidden_states[:-1] + (last_hidden_states,) | |
if not return_dict: | |
outputs = (last_hidden_states, hidden_states) + (outputs[2:] if output_hidden_states else outputs[1:]) | |
return tuple(v for v in outputs if v is not None) | |
return FlaxBaseModelOutput( | |
last_hidden_state=last_hidden_states, | |
hidden_states=hidden_states, | |
attentions=outputs.attentions, | |
) | |
class FlaxWhisperDecoder(nn.Module): | |
config: WhisperConfig | |
dtype: jnp.dtype = jnp.float32 | |
params_dtype: jnp.dtype = jnp.float32 | |
use_scan: bool = False | |
gradient_checkpointing: bool = False | |
def setup(self) -> None: | |
self.embed_tokens = Embed( | |
self.config.vocab_size, | |
self.config.d_model, | |
dtype=self.dtype, | |
params_dtype=self.params_dtype, | |
) | |
self.embed_positions = Embed( | |
self.config.max_target_positions, | |
self.config.d_model, | |
dtype=self.dtype, | |
params_dtype=self.params_dtype, | |
) | |
self.layers = FlaxWhisperDecoderLayerCollection( | |
self.config, | |
dtype=self.dtype, | |
params_dtype=self.params_dtype, | |
use_scan=self.use_scan, | |
gradient_checkpointing=self.gradient_checkpointing, | |
) | |
self.dropout_layer = nn.Dropout(rate=self.config.dropout) | |
self.layer_norm = LayerNorm(dtype=self.dtype, epsilon=1e-5, params_dtype=self.params_dtype) | |
def __call__( | |
self, | |
input_ids: jnp.ndarray, | |
attention_mask: jnp.ndarray, | |
position_ids: jnp.ndarray, | |
encoder_hidden_states: Optional[jnp.ndarray] = None, | |
freeze_embeddings: Optional[bool] = False, | |
init_cache: bool = False, | |
output_attentions: bool = False, | |
output_hidden_states: bool = False, | |
return_dict: bool = True, | |
deterministic: bool = True, | |
) -> Tuple[jnp.ndarray]: | |
input_embeds = self.embed_tokens(input_ids) | |
position_embeds = self.embed_positions(position_ids) | |
hidden_states = input_embeds + position_embeds | |
if freeze_embeddings: | |
hidden_states = jax.lax.stop_gradient(hidden_states) | |
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) | |
outputs = self.layers( | |
hidden_states, | |
attention_mask=attention_mask, | |
encoder_hidden_states=encoder_hidden_states, | |
deterministic=deterministic, | |
init_cache=init_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
last_hidden_states = outputs[0] | |
last_hidden_states = self.layer_norm(last_hidden_states) | |
# update the last element in `hidden_states` after applying `layernorm` above | |
hidden_states = None | |
if output_hidden_states: | |
hidden_states = outputs[1] | |
if self.use_scan: | |
hidden_states = jnp.vstack([hidden_states[:-1], last_hidden_states[None, ...]]) | |
else: | |
hidden_states = hidden_states[:-1] + (last_hidden_states,) | |
if not return_dict: | |
outputs = (last_hidden_states, hidden_states) + (outputs[2:] if output_hidden_states else outputs[1:]) | |
return tuple(v for v in outputs if v is not None) | |
return FlaxBaseModelOutputWithPastAndCrossAttentions( | |
last_hidden_state=last_hidden_states, | |
hidden_states=hidden_states, | |
attentions=outputs.attentions, | |
cross_attentions=outputs.cross_attentions, | |
) | |
class FlaxWhisperModule(nn.Module): | |
config: WhisperConfig | |
dtype: jnp.dtype = jnp.float32 | |
params_dtype: jnp.dtype = jnp.float32 | |
use_scan: bool = False | |
gradient_checkpointing: bool = False | |
def setup(self) -> None: | |
self.encoder = FlaxWhisperEncoder( | |
self.config, | |
dtype=self.dtype, | |
params_dtype=self.params_dtype, | |
use_scan=self.use_scan, | |
gradient_checkpointing=self.gradient_checkpointing, | |
) | |
self.decoder = FlaxWhisperDecoder( | |
self.config, | |
dtype=self.dtype, | |
params_dtype=self.params_dtype, | |
use_scan=self.use_scan, | |
gradient_checkpointing=self.gradient_checkpointing, | |
) | |
def __call__( | |
self, | |
input_features: jnp.ndarray, | |
decoder_input_ids: jnp.ndarray, | |
decoder_attention_mask: jnp.ndarray, | |
decoder_position_ids: jnp.ndarray, | |
output_attentions: bool = False, | |
output_hidden_states: bool = False, | |
freeze_encoder: bool = False, | |
freeze_embeddings: bool = False, | |
return_dict: bool = True, | |
deterministic: bool = True, | |
): | |
encoder_outputs = self.encoder( | |
input_features, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
deterministic=deterministic, | |
) | |
encoder_hidden_states = encoder_outputs[0] | |
if freeze_encoder: | |
encoder_hidden_states = jax.lax.stop_gradient(encoder_hidden_states) | |
decoder_outputs = self.decoder( | |
input_ids=decoder_input_ids, | |
attention_mask=decoder_attention_mask, | |
position_ids=decoder_position_ids, | |
encoder_hidden_states=encoder_hidden_states, | |
freeze_embeddings=freeze_embeddings, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
deterministic=deterministic, | |
) | |
if not return_dict: | |
return decoder_outputs + encoder_outputs | |
return FlaxSeq2SeqModelOutput( | |
last_hidden_state=decoder_outputs.last_hidden_state, | |
decoder_hidden_states=decoder_outputs.hidden_states, | |
decoder_attentions=decoder_outputs.attentions, | |
cross_attentions=decoder_outputs.cross_attentions, | |
encoder_last_hidden_state=encoder_outputs.last_hidden_state, | |
encoder_hidden_states=encoder_outputs.hidden_states, | |
encoder_attentions=encoder_outputs.attentions, | |
) | |
def _get_encoder_module(self): | |
return self.encoder | |
def _get_decoder_module(self): | |
return self.decoder | |
class FlaxWhisperPreTrainedModel(FlaxPreTrainedModel): | |
config_class = WhisperConfig | |
base_model_prefix: str = "model" | |
main_input_name = "input_features" | |
module_class: nn.Module = None | |
def __init__( | |
self, | |
config: WhisperConfig, | |
input_shape: Tuple[int, int, int] = None, | |
seed: int = 0, | |
dtype: jnp.dtype = jnp.float32, | |
params_dtype: jnp.dtype = jnp.float32, | |
_do_init: bool = True, | |
# Can only use_scan=True in init if loading scanned weights -> need to handle use_scan=True and unrolled weights | |
use_scan: bool = False, | |
gradient_checkpointing: bool = False, | |
**kwargs, | |
): | |
self.use_scan = use_scan | |
self.gradient_checkpointing = gradient_checkpointing | |
module = self.module_class( | |
config=config, | |
dtype=dtype, | |
params_dtype=params_dtype, | |
use_scan=use_scan, | |
gradient_checkpointing=gradient_checkpointing, | |
**kwargs, | |
) | |
if input_shape is None: | |
input_shape = (1, config.num_mel_bins, 2 * config.max_source_positions) | |
super().__init__( | |
config, | |
module, | |
input_shape=input_shape, | |
seed=seed, | |
dtype=dtype, | |
_do_init=_do_init, | |
) | |
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: | |
# init input tensors | |
input_features = jnp.zeros(input_shape, dtype="f4") | |
input_features = input_features.at[(..., -1)].set(self.config.eos_token_id) | |
decoder_input_ids = jnp.zeros((input_shape[0], 1), dtype="i4") | |
decoder_attention_mask = jnp.ones_like(decoder_input_ids) | |
batch_size, sequence_length = decoder_input_ids.shape | |
decoder_position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) | |
params_rng, dropout_rng = jax.random.split(rng) | |
rngs = {"params": params_rng, "dropout": dropout_rng} | |
random_params = self.module.init( | |
rngs, | |
input_features=input_features, | |
decoder_input_ids=decoder_input_ids, | |
decoder_attention_mask=decoder_attention_mask, | |
decoder_position_ids=decoder_position_ids, | |
)["params"] | |
if params is not None: | |
random_params = flatten_dict(unfreeze(random_params)) | |
params = flatten_dict(unfreeze(params)) | |
for missing_key in self._missing_keys: | |
params[missing_key] = random_params[missing_key] | |
self._missing_keys = set() | |
return freeze(unflatten_dict(params)) | |
else: | |
return random_params | |
def enable_gradient_checkpointing(self): | |
self.gradient_checkpointing = True | |
self._module = self.module_class( | |
config=self.config, | |
dtype=self.dtype, | |
use_scan=self.use_scan, | |
gradient_checkpointing=self.gradient_checkpointing, | |
) | |
def enable_scan(self): | |
self.use_scan = True | |
self._module = self.module_class( | |
config=self.config, | |
dtype=self.dtype, | |
use_scan=self.use_scan, | |
gradient_checkpointing=self.gradient_checkpointing, | |
) | |
init_fn = partial(self.init_weights, input_shape=self.input_shape) | |
params_shape_tree = jax.eval_shape(init_fn, self.key) | |
# get the shape of the parameters | |
self._params_shape_tree = params_shape_tree | |
# save required_params as set | |
self._required_params = set(flatten_dict(unfreeze(params_shape_tree)).keys()) | |
# initialize the parameters | |
if self._is_initialized: | |
self.params = self.convert_unroll_to_scan(self.params) | |
def disable_scan(self): | |
self.use_scan = False | |
self._module = self.module_class( | |
config=self.config, | |
dtype=self.dtype, | |
use_scan=self.use_scan, | |
gradient_checkpointing=self.gradient_checkpointing, | |
) | |
init_fn = partial(self.init_weights, input_shape=self.input_shape) | |
params_shape_tree = jax.eval_shape(init_fn, self.key) | |
# get the shape of the parameters | |
self._params_shape_tree = params_shape_tree | |
# save required_params as set | |
self._required_params = set(flatten_dict(unfreeze(params_shape_tree)).keys()) | |
# initialize the parameters | |
if self._is_initialized: | |
self.params = self.convert_scan_to_unroll(self.params) | |
def convert_unroll_to_scan(self, params: Union[Dict, FrozenDict]): | |
r""" | |
Convert a `PyTree` of unrolled model parameters to a scanned block of model parameters. This method can be used | |
to explicitly convert the model parameters to scanned format. This returns a new `params` tree and does not | |
convert the `params` in place. | |
To illustrate the workings of this method, take the Flax BERT model. The unrolled structure for the query | |
projection params is as follows: | |
('bert', 'encoder', 'layer', '0', 'self_attn', 'q_proj') ('bert', 'encoder', 'layer', '1', 'self_attn', | |
'q_proj') ... ('bert', 'encoder', 'layer', '23', 'self_attn', 'q_proj') | |
This method takes each of the `q_proj` matrices for layers (0, ..., 23) and stacks them into a single 'super' | |
matrix, giving a *single* block of weights for all 24 layers compatible with the scanned model: | |
('bert', 'encoder', 'layer', 'ScanLayers', 'self_attn', 'q_proj') | |
When enabling scan with _do_init=True (default), this method will be called automatically under the hood. With | |
_do_init=False, it will have to be called explicitly (see example below). | |
Arguments: | |
params (`Union[Dict, FrozenDict]`): | |
A `PyTree` of model parameters. | |
Examples: | |
```python | |
>>> from distil_whisper import FlaxWhisperForConditionalGeneration | |
>>> # Download model and configuration from huggingface.co | |
>>> model, params = FlaxWhisperModel.from_pretrained("openai/whisper-tiny.en", _do_init=False) | |
>>> # By default, the model params will be in unrolled format. To illustrate the use of this method, | |
>>> # we'll first convert to scan format and then back to unrolled | |
>>> model.enable_scan() | |
>>> params = model.convert_unroll_to_scan(params) | |
>>> # now convert back to unrolled | |
>>> model.disable_scan() | |
>>> params = model.convert_scan_to_unroll(params) | |
```""" | |
if isinstance(params, FrozenDict): | |
params = unfreeze(params) | |
params = flatten_dict(params, sep="/") | |
keys = list(params.keys()) | |
for k in keys: | |
# Identify all "unrolled" layers formed as part of the FlaxBertLayerCollection | |
# These params contain the identifier `layer` in their key | |
if "layers/0" in k: | |
if "decoder" in k: | |
block_prefix = "Decoder" | |
num_hidden_layers = self.config.decoder_layers | |
else: | |
block_prefix = "Encoder" | |
num_hidden_layers = self.config.encoder_layers | |
# Squash the keys for the N unrolled layers into one single key: | |
# (layer/0, ..., layer/N) -> layer/FlaxScanLayers | |
scan_key = k.replace("0", f"Flax{block_prefix}ScanLayers") | |
stacked_params = [] | |
# Iterate over the unrolled layers (1,...,N) | |
for i in range(num_hidden_layers): | |
# Stack the params for the N layers into one super block | |
# and remove the unrolled layer params on the fly | |
# -> no memory overhead for conversion! | |
unrolled_layer = params.pop(k.replace("0", str(i))) | |
stacked_params.append(unrolled_layer) | |
params[scan_key] = jnp.stack(stacked_params) | |
# Finally, unflatten the dict to restore the nested pytree structure | |
params = unflatten_dict(params, sep="/") | |
return params | |
def convert_scan_to_unroll(self, params: Union[Dict, FrozenDict]): | |
r""" | |
Convert a `PyTree` of scanned model parameters to an unrolled stack of model parameters. This method can be | |
used to explicitly convert the model parameters to unrolled format. This returns a new `params` tree and does | |
not convert the `params` in place. | |
To illustrate the workings of this method, take the Flax BERT model. The scanned structure for the query | |
projection (`q_proj`) params is a single, stacked matrix of parameters over all N layers: | |
('bert', 'encoder', 'layer', 'FlaxScanLayers', 'self_attn', 'q_proj') | |
This method slices each layer of the `q_proj` scanned matrix into single, standalone layers, and replaces the | |
scanned matrix of parameteres on the fly: | |
('bert', 'encoder', 'layer', '0', 'self_attn', 'q_proj') ('bert', 'encoder', 'layer', '1', 'self_attn', | |
'q_proj') ... ('bert', 'encoder', 'layer', 'N', 'self_attn', 'q_proj') | |
When enabling scan with _do_init=True (default), this method will be called automatically under the hood. With | |
_do_init=False, it will have to be called explicitly (see example below). | |
Arguments: | |
params (`Union[Dict, FrozenDict]`): | |
A `PyTree` of model parameters. | |
Examples: | |
```python | |
>>> from distil_whisper import FlaxWhisperForConditionalGeneration | |
>>> # Download model and configuration from huggingface.co | |
>>> model, params = FlaxWhisperModel.from_pretrained("openai/whisper-tiny.en", _do_init=False) | |
>>> # By default, the model params will be in unrolled format. To illustrate the use of this method, | |
>>> # we'll first convert to scan format and then back to unrolled | |
>>> model.enable_scan() | |
>>> params = model.convert_unroll_to_scan(params) | |
>>> # now convert back to unrolled | |
>>> model.disable_scan() | |
>>> params = model.convert_scan_to_unroll(params) | |
```""" | |
if isinstance(params, FrozenDict): | |
params = unfreeze(params) | |
params = flatten_dict(params, sep="/") | |
keys = list(params.keys()) | |
for k in keys: | |
# Identify all "scan" layers formed as part of the FlaxBertLayerCollection | |
# These params contain the identifier `FlaxScanLayers` in their key | |
if "FlaxEncoderScanLayers" in k: | |
# Remove the scan layer from the PyTree of params | |
scan_layer = params.pop(k) | |
# Unroll the key for the stacked scan matrix into N separate keys, indexed by layer number | |
# layer/FlaxScanLayers -> (layer/0, ..., layer/N) | |
for i in range(self.config.encoder_layers): | |
# Unstack the params for the i-th scan layer to unrolled | |
# and remove corresponding scan params on the fly | |
# -> no memory overhead for conversion! | |
unrolled_key = k.replace("FlaxEncoderScanLayers", str(i)) | |
params[unrolled_key], scan_layer = scan_layer[0], scan_layer[1:] | |
elif "FlaxDecoderScanLayers" in k: | |
# Remove the scan layer from the PyTree of params | |
scan_layer = params.pop(k) | |
# Unroll the key for the stacked scan matrix into N separate keys, indexed by layer number | |
# layer/FlaxScanLayers -> (layer/0, ..., layer/N) | |
for i in range(self.config.decoder_layers): | |
# Unstack the params for the i-th scan layer to unrolled | |
# and remove corresponding scan params on the fly | |
# -> no memory overhead for conversion! | |
unrolled_key = k.replace("FlaxDecoderScanLayers", str(i)) | |
params[unrolled_key], scan_layer = scan_layer[0], scan_layer[1:] | |
params = unflatten_dict(params, sep="/") | |
return params | |
# Copied from transformers.models.whisper.modeling_flax_whisper.FlaxWhisperPreTrainedModel.init_cache | |
def init_cache(self, batch_size, max_length, encoder_outputs): | |
r""" | |
Args: | |
batch_size (`int`): | |
batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache. | |
max_length (`int`): | |
maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized | |
cache. | |
encoder_outputs (`Union[FlaxBaseModelOutput, tuple(tuple(jnp.ndarray)]`): | |
`encoder_outputs` consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: | |
`attentions`). `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) | |
is a sequence of hidden-states at the output of the last layer of the encoder. Used in the | |
cross-attention of the decoder. | |
""" | |
# init input variables to retrieve cache | |
decoder_input_ids = jnp.ones((batch_size, max_length), dtype="i4") | |
decoder_attention_mask = jnp.ones_like(decoder_input_ids) | |
decoder_position_ids = jnp.broadcast_to( | |
jnp.arange(jnp.atleast_2d(decoder_input_ids).shape[-1]), | |
decoder_input_ids.shape, | |
) | |
def _decoder_forward( | |
module, | |
decoder_input_ids, | |
decoder_attention_mask, | |
decoder_position_ids, | |
**kwargs, | |
): | |
decoder_module = module._get_decoder_module() | |
return decoder_module( | |
decoder_input_ids, | |
decoder_attention_mask, | |
decoder_position_ids, | |
**kwargs, | |
) | |
init_variables = self.module.init( | |
jax.random.PRNGKey(0), | |
decoder_input_ids=decoder_input_ids, | |
decoder_attention_mask=decoder_attention_mask, | |
decoder_position_ids=decoder_position_ids, | |
encoder_hidden_states=encoder_outputs[0], | |
init_cache=True, | |
method=_decoder_forward, # we only need to call the decoder to init the cache | |
) | |
return unfreeze(init_variables["cache"]) | |
def encode( | |
self, | |
input_features: jnp.ndarray, | |
attention_mask: Optional[jnp.ndarray] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
train: bool = False, | |
params: dict = None, | |
dropout_rng: PRNGKey = None, | |
**kwargs, | |
): | |
r""" | |
Returns: | |
Example: | |
```python | |
>>> from transformers import WhisperProcessor, FlaxWhisperForConditionalGeneration | |
>>> from datasets import load_dataset | |
>>> processor = WhisperProcessor.from_pretrained("openai/whisper-tiny.en") | |
>>> model = FlaxWhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en", from_pt=True) | |
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") | |
>>> inputs = processor(ds[0]["audio"]["array"], return_tensors="np") | |
>>> input_features = inputs.input_features | |
>>> encoder_outputs = model.encode(input_features=input_features) | |
```""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.return_dict | |
# Handle any PRNG if needed | |
rngs = {} | |
if dropout_rng is not None: | |
rngs["dropout"] = dropout_rng | |
def _encoder_forward(module, input_features, **kwargs): | |
encode_module = module._get_encoder_module() | |
return encode_module(input_features, **kwargs) | |
return self.module.apply( | |
{"params": params or self.params}, | |
input_features=jnp.array(input_features, dtype="f4"), | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
deterministic=not train, | |
rngs=rngs, | |
method=_encoder_forward, | |
) | |
def decode( | |
self, | |
decoder_input_ids, | |
encoder_outputs, | |
encoder_attention_mask: Optional[jnp.ndarray] = None, | |
decoder_attention_mask: Optional[jnp.ndarray] = None, | |
decoder_position_ids: Optional[jnp.ndarray] = None, | |
freeze_embeddings: Optional[bool] = None, | |
past_key_values: dict = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
train: bool = False, | |
params: dict = None, | |
dropout_rng: PRNGKey = None, | |
): | |
r""" | |
Returns: | |
Example: | |
```python | |
>>> from transformers import WhisperProcessor, FlaxWhisperForConditionalGeneration | |
>>> from datasets import load_dataset | |
>>> processor = WhisperProcessor.from_pretrained("openai/whisper-tiny.en") | |
>>> model = FlaxWhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en", from_pt=True) | |
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") | |
>>> inputs = processor(ds[0]["audio"]["array"], return_tensors="np") | |
>>> input_features = inputs.input_features | |
>>> encoder_outputs = model.encode(input_features=input_features) | |
>>> decoder_start_token_id = model.config.decoder_start_token_id | |
>>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id | |
>>> outputs = model.decode(decoder_input_ids, encoder_outputs) | |
>>> last_decoder_hidden_states = outputs.last_hidden_state | |
```""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.return_dict | |
encoder_hidden_states = encoder_outputs[0] | |
batch_size, sequence_length = decoder_input_ids.shape | |
if decoder_position_ids is None: | |
if past_key_values is not None: | |
raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.") | |
if decoder_attention_mask is not None: | |
decoder_position_ids = (decoder_attention_mask.cumsum(-1) * decoder_attention_mask) - 1 | |
else: | |
decoder_position_ids = jnp.broadcast_to( | |
jnp.arange(sequence_length)[None, :], (batch_size, sequence_length) | |
) | |
if decoder_attention_mask is None: | |
decoder_attention_mask = jnp.ones((batch_size, sequence_length)) | |
# Handle any PRNG if needed | |
rngs = {} | |
if dropout_rng is not None: | |
rngs["dropout"] = dropout_rng | |
inputs = {"params": params or self.params} | |
# if past_key_values are passed then cache is already initialized a private flag init_cache has to be | |
# passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that | |
# it can be changed by FlaxWhisperAttention module | |
if past_key_values: | |
inputs["cache"] = past_key_values | |
mutable = ["cache"] | |
else: | |
mutable = False | |
def _decoder_forward( | |
module, | |
decoder_input_ids, | |
decoder_attention_mask, | |
decoder_position_ids, | |
**kwargs, | |
): | |
decoder_module = module._get_decoder_module() | |
return decoder_module( | |
input_ids=decoder_input_ids, | |
attention_mask=decoder_attention_mask, | |
position_ids=decoder_position_ids, | |
**kwargs, | |
) | |
outputs = self.module.apply( | |
inputs, | |
decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), | |
decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), | |
decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"), | |
encoder_hidden_states=encoder_hidden_states, | |
freeze_embeddings=freeze_embeddings, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
deterministic=not train, | |
rngs=rngs, | |
mutable=mutable, | |
method=_decoder_forward, | |
) | |
# add updated cache to model output | |
if past_key_values is not None and return_dict: | |
outputs, past = outputs | |
outputs["past_key_values"] = unfreeze(past["cache"]) | |
return outputs | |
elif past_key_values is not None and not return_dict: | |
outputs, past = outputs | |
outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:] | |
return outputs | |
def __call__( | |
self, | |
input_features: jnp.ndarray, | |
decoder_input_ids: jnp.ndarray, | |
attention_mask: Optional[jnp.ndarray] = None, | |
decoder_attention_mask: Optional[jnp.ndarray] = None, | |
position_ids: Optional[jnp.ndarray] = None, | |
decoder_position_ids: Optional[jnp.ndarray] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
freeze_encoder: Optional[bool] = None, | |
freeze_embeddings: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
train: bool = False, | |
params: dict = None, | |
dropout_rng: PRNGKey = None, | |
): | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.return_dict | |
# prepare decoder inputs | |
if decoder_position_ids is None: | |
if decoder_attention_mask is not None: | |
decoder_position_ids = (decoder_attention_mask.cumsum(-1) * decoder_attention_mask) - 1 | |
else: | |
batch_size, sequence_length = decoder_input_ids.shape | |
decoder_position_ids = jnp.broadcast_to( | |
jnp.arange(sequence_length)[None, :], (batch_size, sequence_length) | |
) | |
if decoder_attention_mask is None: | |
decoder_attention_mask = jnp.ones_like(decoder_input_ids) | |
# Handle any PRNG if needed | |
rngs = {"dropout": dropout_rng} if dropout_rng is not None else {} | |
return self.module.apply( | |
{"params": params or self.params}, | |
input_features=jnp.array(input_features, dtype="f4"), | |
decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), | |
decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), | |
decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"), | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
freeze_encoder=freeze_encoder, | |
freeze_embeddings=freeze_embeddings, | |
return_dict=return_dict, | |
deterministic=not train, | |
rngs=rngs, | |
) | |
class FlaxWhisperModel(FlaxWhisperPreTrainedModel): | |
config: WhisperConfig | |
dtype: jnp.dtype = jnp.float32 # the dtype of the computation | |
params_dtype: jnp.dtype = jnp.float32 | |
module_class = FlaxWhisperModule | |
append_call_sample_docstring(FlaxWhisperModel, _CHECKPOINT_FOR_DOC, FlaxSeq2SeqModelOutput, _CONFIG_FOR_DOC) | |
class FlaxWhisperForConditionalGenerationModule(nn.Module): | |
config: WhisperConfig | |
dtype: jnp.dtype = jnp.float32 | |
params_dtype: jnp.dtype = jnp.float32 | |
use_scan: bool = False | |
gradient_checkpointing: bool = False | |
def setup(self) -> None: | |
self.model = FlaxWhisperModule( | |
config=self.config, | |
dtype=self.dtype, | |
params_dtype=self.params_dtype, | |
use_scan=self.use_scan, | |
gradient_checkpointing=self.gradient_checkpointing, | |
) | |
self.lm_head = DenseGeneral( | |
self.config.vocab_size, | |
use_bias=False, | |
dtype=self.dtype, | |
params_dtype=self.params_dtype, | |
kernel_axes=("embed", "vocab"), | |
) | |
def _get_encoder_module(self): | |
return self.model.encoder | |
def _get_decoder_module(self): | |
return self.model.decoder | |
def __call__( | |
self, | |
input_features, | |
decoder_input_ids, | |
decoder_attention_mask: jnp.ndarray = None, | |
decoder_position_ids: jnp.ndarray = None, | |
position_ids: jnp.ndarray = None, | |
attention_mask: jnp.ndarray = None, | |
output_attentions: bool = False, | |
output_hidden_states: bool = False, | |
freeze_encoder: bool = False, | |
freeze_embeddings: bool = False, | |
return_dict: bool = True, | |
deterministic: bool = True, | |
): | |
outputs = self.model( | |
input_features=input_features, | |
decoder_input_ids=decoder_input_ids, | |
decoder_attention_mask=decoder_attention_mask, | |
decoder_position_ids=decoder_position_ids, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
freeze_encoder=freeze_encoder, | |
freeze_embeddings=freeze_embeddings, | |
return_dict=return_dict, | |
deterministic=deterministic, | |
) | |
hidden_states = outputs[0] | |
if self.config.tie_word_embeddings: | |
shared_embedding = self.model.decoder.embed_tokens.variables["params"]["embedding"] | |
lm_logits = self.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states) | |
else: | |
lm_logits = self.lm_head(hidden_states) | |
if not return_dict: | |
output = (lm_logits,) + outputs[1:] | |
return output | |
return FlaxSeq2SeqLMOutput( | |
logits=lm_logits, | |
decoder_hidden_states=outputs.decoder_hidden_states, | |
decoder_attentions=outputs.decoder_attentions, | |
cross_attentions=outputs.cross_attentions, | |
encoder_last_hidden_state=outputs.encoder_last_hidden_state, | |
encoder_hidden_states=outputs.encoder_hidden_states, | |
encoder_attentions=outputs.encoder_attentions, | |
) | |
class FlaxWhisperForConditionalGeneration(FlaxWhisperPreTrainedModel): | |
module_class = FlaxWhisperForConditionalGenerationModule | |
def decode( | |
self, | |
decoder_input_ids, | |
encoder_outputs, | |
encoder_attention_mask: Optional[jnp.ndarray] = None, | |
decoder_attention_mask: Optional[jnp.ndarray] = None, | |
decoder_position_ids: Optional[jnp.ndarray] = None, | |
freeze_embeddings: Optional[bool] = None, | |
past_key_values: dict = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
train: bool = False, | |
params: dict = None, | |
dropout_rng: PRNGKey = None, | |
): | |
r""" | |
Returns: | |
Example: | |
```python | |
>>> from transformers import WhisperProcessor, FlaxWhisperForConditionalGeneration | |
>>> from datasets import load_dataset | |
>>> processor = WhisperProcessor.from_pretrained("openai/whisper-tiny.en") | |
>>> model = FlaxWhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en", from_pt=True) | |
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") | |
>>> inputs = processor(ds[0]["audio"]["array"], return_tensors="np") | |
>>> input_features = inputs.input_features | |
>>> encoder_outputs = model.encode(input_features=input_features) | |
>>> decoder_start_token_id = model.config.decoder_start_token_id | |
>>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id | |
>>> outputs = model.decode(decoder_input_ids, encoder_outputs) | |
>>> last_decoder_hidden_states = outputs.last_hidden_state | |
```""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.return_dict | |
encoder_hidden_states = encoder_outputs[0] | |
batch_size, sequence_length = decoder_input_ids.shape | |
if decoder_position_ids is None: | |
if past_key_values is not None: | |
raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.") | |
if decoder_attention_mask is not None: | |
decoder_position_ids = (decoder_attention_mask.cumsum(-1) * decoder_attention_mask) - 1 | |
else: | |
decoder_position_ids = jnp.broadcast_to( | |
jnp.arange(sequence_length)[None, :], (batch_size, sequence_length) | |
) | |
if decoder_attention_mask is None: | |
decoder_attention_mask = jnp.ones((batch_size, sequence_length), dtype="i4") | |
# Handle any PRNG if needed | |
rngs = {} | |
if dropout_rng is not None: | |
rngs["dropout"] = dropout_rng | |
inputs = {"params": params or self.params} | |
# if past_key_values are passed then cache is already initialized a private flag init_cache has to be | |
# passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that | |
# it can be changed by FlaxWhisperAttention module | |
if past_key_values: | |
inputs["cache"] = past_key_values | |
mutable = ["cache"] | |
else: | |
mutable = False | |
def _decoder_forward( | |
module, | |
decoder_input_ids, | |
decoder_attention_mask, | |
decoder_position_ids, | |
**kwargs, | |
): | |
decoder_module = module._get_decoder_module() | |
outputs = decoder_module( | |
input_ids=decoder_input_ids, | |
attention_mask=decoder_attention_mask, | |
position_ids=decoder_position_ids, | |
**kwargs, | |
) | |
hidden_states = outputs[0] | |
if self.config.tie_word_embeddings: | |
shared_embedding = module.model.decoder.embed_tokens.variables["params"]["embedding"] | |
lm_logits = module.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states) | |
else: | |
lm_logits = module.lm_head(hidden_states) | |
return lm_logits, outputs | |
outputs = self.module.apply( | |
inputs, | |
decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), | |
decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), | |
decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"), | |
encoder_hidden_states=encoder_hidden_states, | |
freeze_embeddings=freeze_embeddings, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
deterministic=not train, | |
rngs=rngs, | |
mutable=mutable, | |
method=_decoder_forward, | |
) | |
if past_key_values is None: | |
lm_logits, decoder_outputs = outputs | |
else: | |
(lm_logits, decoder_outputs), past = outputs | |
if return_dict: | |
outputs = FlaxCausalLMOutputWithCrossAttentions( | |
logits=lm_logits, | |
hidden_states=decoder_outputs.hidden_states, | |
attentions=decoder_outputs.attentions, | |
cross_attentions=decoder_outputs.cross_attentions, | |
) | |
else: | |
outputs = (lm_logits,) + decoder_outputs[1:] | |
# add updated cache to model output | |
if past_key_values is not None and return_dict: | |
outputs["past_key_values"] = unfreeze(past["cache"]) | |
return outputs | |
elif past_key_values is not None and not return_dict: | |
outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:] | |
return outputs | |
def generate( | |
self, | |
input_features, | |
generation_config=None, | |
logits_processor=None, | |
return_timestamps=None, | |
task=None, | |
language=None, | |
is_multilingual=None, | |
**kwargs, | |
): | |
if generation_config is None: | |
generation_config = self.generation_config | |
if return_timestamps is not None: | |
generation_config.return_timestamps = return_timestamps | |
if task is not None: | |
generation_config.task = task | |
if is_multilingual is not None: | |
generation_config.is_multilingual = is_multilingual | |
if language is not None: | |
generation_config.language = language | |
if kwargs is not None and "decoder_input_ids" in kwargs: | |
decoder_input_length = len(kwargs["decoder_input_ids"]) | |
else: | |
decoder_input_length = 1 | |
forced_decoder_ids = [] | |
if hasattr(generation_config, "is_multilingual") and generation_config.is_multilingual: | |
if hasattr(generation_config, "language"): | |
forced_decoder_ids.append((1, generation_config.lang_to_id[generation_config.language])) | |
else: | |
forced_decoder_ids.append((1, None)) | |
if hasattr(generation_config, "task"): | |
forced_decoder_ids.append((2, generation_config.task_to_id[generation_config.task])) | |
else: | |
forced_decoder_ids.append((2, generation_config.task_to_id["transcribe"])) | |
if ( | |
hasattr(generation_config, "return_timestamps") and generation_config.return_timestamps | |
) or return_timestamps: | |
logits_processor = [ | |
FlaxWhisperTimeStampLogitsProcessor(generation_config, self.config, decoder_input_length) | |
] | |
else: | |
if forced_decoder_ids and forced_decoder_ids[-1][0] != generation_config.no_timestamps_token_id: | |
idx = forced_decoder_ids[-1][0] + 1 if forced_decoder_ids else 1 | |
forced_decoder_ids.append((idx, generation_config.no_timestamps_token_id)) | |
if len(forced_decoder_ids) > 0: | |
generation_config.forced_decoder_ids = forced_decoder_ids | |
return super().generate( | |
input_features, | |
generation_config, | |
logits_processor=logits_processor, | |
**kwargs, | |
) | |
def pipeline_generate( | |
self, | |
input_features, | |
forced_decoder_ids, | |
return_timestamps=False, | |
generation_config=None, | |
**kwargs, | |
): | |
if generation_config is None: | |
generation_config = self.generation_config | |
# override the generation config forced decoder ids in preference of the ones we have set | |
generation_config.forced_decoder_ids = None | |
logits_processor = FlaxLogitsProcessorList() | |
logits_processor.append(FlaxStaticForceTokensLogitsProcessor(forced_decoder_ids)) | |
if hasattr(generation_config, "return_timestamps") and return_timestamps: | |
logits_processor.append(FlaxWhisperTimeStampLogitsProcessor(generation_config, self.config, 1)) | |
return super().generate( | |
input_features, | |
generation_config, | |
logits_processor=logits_processor, | |
**kwargs, | |
) | |
def prepare_inputs_for_generation( | |
self, | |
decoder_input_ids, | |
max_length, | |
attention_mask: Optional[jax.Array] = None, | |
decoder_attention_mask: Optional[jax.Array] = None, | |
encoder_outputs=None, | |
**kwargs, | |
): | |
# initializing the cache | |
batch_size, seq_length = decoder_input_ids.shape | |
past_key_values = self.init_cache(batch_size, max_length, encoder_outputs) | |
# Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length. | |
# But since the decoder uses a causal mask, those positions are masked anyways. | |
# Thus we can create a single static attention_mask here, which is more efficient for compilation | |
extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4") | |
if decoder_attention_mask is not None: | |
position_ids = decoder_attention_mask.cumsum(-1) - 1 | |
extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, decoder_attention_mask, (0, 0)) | |
else: | |
position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length)) | |
return { | |
"past_key_values": past_key_values, | |
"encoder_outputs": encoder_outputs, | |
"encoder_attention_mask": attention_mask, | |
"decoder_attention_mask": extended_attention_mask, | |
"decoder_position_ids": position_ids, | |
} | |
def update_inputs_for_generation(self, model_outputs, model_kwargs): | |
model_kwargs["past_key_values"] = model_outputs.past_key_values | |
model_kwargs["decoder_position_ids"] = model_kwargs["decoder_position_ids"][:, -1:] + 1 | |
return model_kwargs | |
FLAX_WHISPER_CONDITIONAL_GENERATION_DOCSTRING = r""" | |
Returns: | |
Transcription example: | |
```python | |
>>> from transformers import WhisperProcessor, FlaxWhisperForConditionalGeneration | |
>>> from datasets import load_dataset | |
>>> processor = WhisperProcessor.from_pretrained("openai/whisper-tiny.en") | |
>>> model = FlaxWhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en", from_pt=True) | |
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") | |
>>> inputs = processor(ds[0]["audio"]["array"], return_tensors="np") | |
>>> input_features = inputs.input_features | |
>>> generated_ids = model.generate(input_ids=input_features) | |
>>> transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
>>> transcription | |
' Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel.' | |
``` | |
""" | |
overwrite_call_docstring( | |
FlaxWhisperForConditionalGeneration, | |
WHISPER_INPUTS_DOCSTRING + FLAX_WHISPER_CONDITIONAL_GENERATION_DOCSTRING, | |
) | |
append_replace_return_docstrings( | |
FlaxWhisperForConditionalGeneration, | |
output_type=FlaxSeq2SeqLMOutput, | |
config_class=_CONFIG_FOR_DOC, | |
) | |