|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Training the Whisper model for sequence to sequence speech recognition via teacher-student distillation. |
|
""" |
|
|
|
|
|
import logging |
|
import os |
|
import re |
|
import shutil |
|
import string |
|
import sys |
|
import time |
|
from dataclasses import dataclass, field |
|
from functools import partial |
|
from pathlib import Path |
|
from typing import Any, Callable, Dict, List, Optional, Union |
|
|
|
import datasets |
|
import evaluate |
|
import flax |
|
import jax |
|
import jax.numpy as jnp |
|
import numpy as np |
|
import optax |
|
import torch |
|
import transformers |
|
from datasets import ( |
|
DatasetDict, |
|
IterableDataset, |
|
IterableDatasetDict, |
|
concatenate_datasets, |
|
interleave_datasets, |
|
load_dataset, |
|
) |
|
from flax import jax_utils, traverse_util |
|
from flax.jax_utils import pad_shard_unpad, unreplicate |
|
from flax.serialization import from_bytes, to_bytes |
|
from flax.training import train_state |
|
from flax.training.common_utils import get_metrics, onehot, shard, shard_prng_key |
|
from huggingface_hub import create_repo, upload_folder, get_full_repo_name |
|
from jax.experimental.compilation_cache import compilation_cache as cc |
|
from optax._src import linear_algebra |
|
from torch.utils.data import DataLoader |
|
from torchdata.datapipes.iter import IterableWrapper |
|
from tqdm import tqdm |
|
from transformers import ( |
|
AddedToken, |
|
HfArgumentParser, |
|
Seq2SeqTrainingArguments, |
|
WhisperConfig, |
|
WhisperFeatureExtractor, |
|
WhisperProcessor, |
|
WhisperTokenizerFast, |
|
is_tensorboard_available, |
|
is_wandb_available, |
|
set_seed, |
|
) |
|
from transformers.modeling_flax_outputs import FlaxBaseModelOutput |
|
from transformers.models.whisper.english_normalizer import EnglishTextNormalizer |
|
from transformers.utils import check_min_version, send_example_telemetry |
|
from transformers.utils.versions import require_version |
|
|
|
from distil_whisper import FlaxWhisperForConditionalGeneration |
|
|
|
|
|
|
|
check_min_version("4.27.0.dev0") |
|
|
|
require_version( |
|
"datasets>=1.18.0", |
|
"To fix: pip install -r examples/flax/speech-recogintion/requirements.txt", |
|
) |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
@flax.struct.dataclass |
|
class ModelArguments: |
|
""" |
|
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. |
|
""" |
|
|
|
model_name_or_path: str = field( |
|
metadata={"help": ("Path to pretrained student model or model identifier from huggingface.co/models")} |
|
) |
|
teacher_model_name_or_path: str = field( |
|
metadata={"help": ("Path to pretrained teacher model or model identifier from huggingface.co/models")} |
|
) |
|
config_name: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "Pretrained config name or path if not the same as model_name"}, |
|
) |
|
tokenizer_name: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}, |
|
) |
|
feature_extractor_name: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "feature extractor name or path if not the same as model_name"}, |
|
) |
|
cache_dir: Optional[str] = field( |
|
default=None, |
|
metadata={"help": ("Where to store the pretrained models downloaded from huggingface.co")}, |
|
) |
|
use_fast_tokenizer: bool = field( |
|
default=True, |
|
metadata={"help": ("Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.")}, |
|
) |
|
model_revision: str = field( |
|
default="main", |
|
metadata={"help": ("The specific model version to use (can be a branch name, tag name or commit id).")}, |
|
) |
|
subfolder: str = field( |
|
default="", |
|
metadata={ |
|
"help": "In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can" |
|
"specify the folder name here." |
|
}, |
|
) |
|
use_auth_token: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": ( |
|
"Will use the token generated when running `transformers-cli login`" |
|
" (necessary to use this script with private models)." |
|
) |
|
}, |
|
) |
|
dtype: Optional[str] = field( |
|
default="float32", |
|
metadata={ |
|
"help": ( |
|
"Floating-point format in which the model weights should be initialized" |
|
" and trained. Choose one of `[float32, float16, bfloat16]`." |
|
) |
|
}, |
|
) |
|
load_with_scan_weights: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": "Whether the pre-trained checkpoint has its weights stored in scan format. Set to True for scanned " |
|
"weights, defaults to False for non-scan (unrolled) weights." |
|
}, |
|
) |
|
activation_dropout: float = field( |
|
default=0.0, |
|
metadata={"help": "The dropout ratio for activations inside the fully connected layer."}, |
|
) |
|
attention_dropout: float = field( |
|
default=0.0, |
|
metadata={"help": "The dropout ratio for the attention probabilities."}, |
|
) |
|
dropout: float = field( |
|
default=0.0, |
|
metadata={ |
|
"help": "The dropout probability for all fully connected layers in the embeddings, encoder, and pooler." |
|
}, |
|
) |
|
|
|
|
|
@flax.struct.dataclass |
|
class DataTrainingArguments: |
|
""" |
|
Arguments pertaining to what data we are going to input our model for training and eval. |
|
""" |
|
|
|
train_dataset_name: str = field( |
|
default=None, |
|
metadata={ |
|
"help": "The name of the training dataset to use (via the datasets library). Load and combine " |
|
"multiple datasets by separating dataset ids by a '+' symbol. For example, to load and combine " |
|
" librispeech and common voice, set `train_dataset_name='librispeech_asr+common_voice'`." |
|
}, |
|
) |
|
train_dataset_config_name: Optional[str] = field( |
|
default=None, |
|
metadata={ |
|
"help": "The configuration name of the training dataset to use (via the datasets library). Load and combine " |
|
"multiple datasets by separating dataset configs by a '+' symbol." |
|
}, |
|
) |
|
train_dataset_samples: str = field( |
|
default=None, |
|
metadata={ |
|
"help": "Number of samples in the training data. Load and combine " |
|
"multiple datasets by separating dataset samples by a '+' symbol." |
|
}, |
|
) |
|
eval_dataset_name: str = field( |
|
default=None, |
|
metadata={ |
|
"help": "The name of the evaluation dataset to use (via the datasets library). Defaults to the training dataset name if unspecified." |
|
}, |
|
) |
|
eval_dataset_config_name: Optional[str] = field( |
|
default=None, |
|
metadata={ |
|
"help": "The configuration name of the evaluation dataset to use (via the datasets library). Defaults to the training dataset config name if unspecified" |
|
}, |
|
) |
|
dataset_cache_dir: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "Path to cache directory for saving and loading datasets"}, |
|
) |
|
overwrite_cache: bool = field( |
|
default=False, |
|
metadata={"help": "Overwrite the cached training and evaluation sets"}, |
|
) |
|
preprocessing_num_workers: Optional[int] = field( |
|
default=None, |
|
metadata={"help": "The number of processes to use for the preprocessing."}, |
|
) |
|
max_train_samples: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"For debugging purposes or quicker training, truncate the number of" |
|
" training examples to this value if set." |
|
) |
|
}, |
|
) |
|
max_eval_samples: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"For debugging purposes or quicker training, truncate the number of" |
|
" evaluation examples to this value if set." |
|
) |
|
}, |
|
) |
|
audio_column_name: str = field( |
|
default="audio", |
|
metadata={"help": ("The name of the dataset column containing the audio data. Defaults to 'audio'")}, |
|
) |
|
train_text_column_name: str = field( |
|
default="whisper_transcript", |
|
metadata={ |
|
"help": ( |
|
"The name of the dataset column containing the text data. Defaults to" |
|
" 'whisper_transcript'which is the pseudo-labelled Whisper" |
|
" transcription data." |
|
) |
|
}, |
|
) |
|
eval_text_column_name: str = field( |
|
default="text", |
|
metadata={ |
|
"help": ( |
|
"The name of the dataset column containing the text data. Defaults to" |
|
" 'text', which is the original text data" |
|
) |
|
}, |
|
) |
|
max_duration_in_seconds: float = field( |
|
default=30.0, |
|
metadata={"help": ("Filter audio files that are longer than `max_duration_in_seconds` seconds")}, |
|
) |
|
min_duration_in_seconds: float = field( |
|
default=0.0, |
|
metadata={"help": ("Filter audio files that are shorter than `min_duration_in_seconds` seconds")}, |
|
) |
|
max_label_length: int = field( |
|
default=448, |
|
metadata={"help": "Truncate transcriptions that are longer `max_label_length` tokens."}, |
|
) |
|
pad_target_to_multiple_of: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"If set will pad the target sequence to a multiple of the provided" |
|
" value. This is important to avoid triggering recompilations on TPU." |
|
" If unspecified, will default to padding the targets to max length." |
|
) |
|
}, |
|
) |
|
preprocessing_only: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": ( |
|
"Whether to only do data preprocessing and skip training. This is" |
|
" especially useful when data preprocessing errors out in distributed" |
|
" training due to timeout. In this case, one should run the" |
|
" preprocessing in a non-distributed setup with" |
|
" `preprocessing_only=True` so that the cached datasets can" |
|
" consequently be loaded in distributed training" |
|
) |
|
}, |
|
) |
|
train_split_name: str = field( |
|
default="train", |
|
metadata={ |
|
"help": ("The name of the training data set split to use (via the datasets library). Defaults to 'train'") |
|
}, |
|
) |
|
eval_split_name: str = field( |
|
default="validation", |
|
metadata={ |
|
"help": ( |
|
"The name of the evaluation data set split to use (via the datasets" |
|
" library). Defaults to 'validation'" |
|
) |
|
}, |
|
) |
|
wandb_project: str = field( |
|
default="distil-whisper", |
|
metadata={"help": "The name of the wandb project."}, |
|
) |
|
wandb_name: str = field( |
|
default=None, |
|
metadata={"help": "The name of the wandb run."}, |
|
) |
|
wandb_job_type: str = field( |
|
default="distil-whisper", |
|
metadata={"help": "The name of the wandb job type."}, |
|
) |
|
wandb_dir: str = field( |
|
default=None, |
|
metadata={"help": "The absolute path to save the wandb logs."}, |
|
) |
|
save_code_to_wandb: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": ( |
|
"Whether to save main script to wandb. This is valuable for improving" |
|
" experiment reproducibility and to diff code across experiments in" |
|
" the UI." |
|
) |
|
}, |
|
) |
|
streaming: bool = field( |
|
default=True, |
|
metadata={"help": "Whether to use Datasets' streaming mode to load and the data."}, |
|
) |
|
trust_remote_code: bool = field( |
|
default=True, |
|
metadata={"help": "Whether to trust arbitrary python code for datasets on the Hugging Face Hub."}, |
|
) |
|
wer_threshold: float = field( |
|
default=None, |
|
metadata={ |
|
"help": "Filter training data with Whisper transcriptions that have greater than `wer_threshold` " |
|
"WER with the normalised transcriptions." |
|
}, |
|
) |
|
prefetch_size: int = field( |
|
default=0, |
|
metadata={"help": "Number of samples to pre-fetch if using an iterable dataset."}, |
|
) |
|
timestamp_probability: float = field( |
|
default=0.5, metadata={"help": "Probability for training on timestamped tokens if the data contains it."} |
|
) |
|
return_timestamps: bool = field( |
|
default=False, metadata={"help": "Whether or not to predict timestamps in the generation step."} |
|
) |
|
round_timestamps: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": "Whether or not to round the timestamp tokens to the nearest tenth of a second." |
|
"By default, Whisper predicts timestamps to the nearest hundredth of a second." |
|
"Reducing the timestamp precision to one tenth of a second simplifies the timestamp" |
|
"prediction task, at the expense of timestamp granularity." |
|
}, |
|
) |
|
condition_on_prev_probability: float = field( |
|
default=0.0, |
|
metadata={ |
|
"help": "Probability for conditioning on the previous text example. Defaults to 0.0 (i.e. no conditioning)." |
|
}, |
|
) |
|
preprocess_audio_features: bool = field( |
|
default=True, |
|
metadata={ |
|
"help": "Whether or not to pre-process the audio inputs to log-mel features in the training dataset. Set to False for datasets that contain pre-processed audio inputs." |
|
}, |
|
) |
|
|
|
|
|
@dataclass |
|
class FlaxSeq2SeqTrainingArguments(Seq2SeqTrainingArguments): |
|
use_scan: Optional[bool] = field( |
|
default=True, |
|
metadata={ |
|
"help": ( |
|
"Whether or not to use `scan_with_axes` over the encoder and decoder blocks. Using scan results " |
|
"in faster compile times and more efficient memory use during training, since all of the layers " |
|
"in the encoder/decoder are stacked, and we perform a lax.scan over the stacked block to index " |
|
"each layer. However, it results in slower inference time due to the overhead of stacking the " |
|
"layers this way. Thus, we **always** default to disabling scan for the inference step." |
|
) |
|
}, |
|
) |
|
freeze_encoder: Optional[bool] = field( |
|
default=False, |
|
metadata={ |
|
"help": ( |
|
"Whether to freeze the entire encoder model. Only recommended when the entire encoder has been " |
|
"copied from the teacher model." |
|
) |
|
}, |
|
) |
|
freeze_embeddings: Optional[bool] = field( |
|
default=False, |
|
metadata={"help": "Whether to freeze the decoder embedding tokens and positions."}, |
|
) |
|
temperature: Optional[float] = field( |
|
default=2.0, metadata={"help": "Temperature to anneal the logits when computing the softmax."} |
|
) |
|
ce_weight: Optional[float] = field( |
|
default=0.8, |
|
metadata={ |
|
"help": ( |
|
"Weighting assigned to the CE loss in the KD formulation. CE loss is " |
|
"computed from the student model predictions and pseudo-label targets." |
|
) |
|
}, |
|
) |
|
kl_weight: Optional[float] = field( |
|
default=1.0, |
|
metadata={ |
|
"help": ( |
|
"Weighting assigned to the KL loss in the KD formulation. KL loss is " |
|
"computed between the temperature smoothed teacher distribution and student distribution." |
|
) |
|
}, |
|
) |
|
mse_weight: Optional[float] = field( |
|
default=0.0, |
|
metadata={ |
|
"help": ( |
|
"Weighting assigned to the MSE loss in the KD formulation. MSE loss is " |
|
"computed between the teacher-student hidden states and attentions." |
|
) |
|
}, |
|
) |
|
precision: Optional[str] = field( |
|
default="half_mixed", |
|
metadata={ |
|
"help": ( |
|
"Precision with which run training, Can be one of `full`, `half_mixed` or `full_mixed`, the latter two" |
|
"of which enable *mixed-precision* training. **Note that this only specifies the dtype of the computation " |
|
"and optimizer state. It does not influence the dtype of model parameters.** An explanation of the three " |
|
"settings is provided below:" |
|
" 1. Full precision: forward pass, backward pass and optimiser states all in float32." |
|
" 2. Half mixed precision: forward pass in bfloat16, backward pass and optimiser states in float32. This " |
|
" corresponds to setting the dtype argument to bfloat16 when instantiating the model." |
|
" 3. Full mixed precision: forward pass, backward pass and optimiser states all in bfloat16. The dtype " |
|
" argument is set to bfloat16 for the forward pass, and the gradients computed with respect to the bfloat16 " |
|
" parameters in the backward pass (giving bfloat16 gradients). The new optimiser states and parameter " |
|
" updates are computed in float32 by upcasting the bfloat16 gradients and optimiser states to float32 " |
|
" prior to the optimiser update step. The optimiser states are returned in float32 (but not saved to " |
|
" memory) and then downcasted to bfloat16 (saved to memory) for the subsequent train step." |
|
"For further details, refer to https://github.com/deepmind/optax/discussions/336" |
|
) |
|
}, |
|
) |
|
compilation_cache: Optional[bool] = field( |
|
default=False, |
|
metadata={ |
|
"help": ( |
|
"Whether to enable the JAX (experimental) compilation cache. The compilation step is *cached* the " |
|
"first time it is run. Successive compilation steps for the same function utilise the cache to reduce" |
|
"the compilation time." |
|
) |
|
}, |
|
) |
|
save_train_state: Optional[bool] = field( |
|
default=False, |
|
metadata={ |
|
"help": "Whether or not to save the Flax Train State on each `save_steps` steps. Required if you intend" |
|
"to resume training from partial training runs. If False, only the model weights will be saved." |
|
"If True, both the model weights and Flax Train state will be saved." |
|
}, |
|
) |
|
|
|
|
|
def shift_tokens_right(label_ids: np.array, decoder_start_token_id: int) -> np.ndarray: |
|
""" |
|
Shift label ids one token to the right. |
|
""" |
|
shifted_label_ids = np.zeros_like(label_ids) |
|
shifted_label_ids[:, 1:] = label_ids[:, :-1] |
|
shifted_label_ids[:, 0] = decoder_start_token_id |
|
|
|
return shifted_label_ids |
|
|
|
|
|
@flax.struct.dataclass |
|
class FlaxDataCollatorSpeechSeq2SeqWithPadding: |
|
""" |
|
Data collator that will dynamically pad the inputs received. |
|
Args: |
|
processor ([`Wav2Vec2Processor`]) |
|
The processor used for proccessing the data. |
|
decoder_start_token_id (:obj: `int`) |
|
The start-of-sequence token id of the decoder. |
|
decoder_prev_token_id (:obj: `int`) |
|
The start-of-prompt token id of the decoder |
|
input_padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`): |
|
Select a strategy to pad the returned input sequences (according to the model's padding side and padding index) |
|
among: |
|
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single |
|
sequence if provided). |
|
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the |
|
maximum acceptable input length for the model if that argument is not provided. |
|
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of |
|
different lengths). |
|
target_padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`): |
|
Select a strategy to pad the returned target sequences (according to the model's padding side and padding index). |
|
See above for details. |
|
max_target_length (:obj:`int`, `optional`): |
|
Maximum length of the ``labels`` of the returned list and optionally padding length (see above). |
|
""" |
|
|
|
processor: Any |
|
decoder_start_token_id: int |
|
decoder_prev_token_id: int |
|
input_padding: Union[bool, str] = "max_length" |
|
target_padding: Union[bool, str] = "max_length" |
|
max_target_length: Optional[int] = None |
|
|
|
def __call__(self, features: List[Dict[str, Union[List[int], np.ndarray]]]) -> Dict[str, np.ndarray]: |
|
|
|
|
|
model_input_name = self.processor.model_input_names[0] |
|
|
|
|
|
input_features = {model_input_name: [feature[model_input_name] for feature in features]} |
|
label_features = {"input_ids": [feature["labels"] for feature in features]} |
|
|
|
|
|
batch = self.processor.feature_extractor.pad( |
|
input_features, |
|
padding=self.input_padding, |
|
return_tensors="np", |
|
) |
|
|
|
labels_batch = self.processor.tokenizer.pad( |
|
label_features, |
|
max_length=self.max_target_length, |
|
padding=self.target_padding, |
|
return_tensors="np", |
|
) |
|
|
|
|
|
|
|
labels = labels_batch["input_ids"] |
|
if set(np.unique(labels[:, 0])).issubset({self.decoder_start_token_id, self.decoder_prev_token_id}): |
|
decoder_input_ids = labels[:, :-1] |
|
labels = labels[:, 1:] |
|
labels_batch.attention_mask = labels_batch.attention_mask[:, 1:] |
|
else: |
|
decoder_input_ids = shift_tokens_right(labels, self.decoder_start_token_id) |
|
|
|
|
|
labels = np.ma.array(labels, mask=np.not_equal(labels_batch.attention_mask, 1)) |
|
labels = labels.filled(fill_value=-100) |
|
|
|
|
|
bos_index = np.argmax(labels == self.decoder_start_token_id, axis=1) |
|
bos_index = np.where(bos_index > 0, bos_index + 1, bos_index) |
|
prompt_mask = np.arange(labels.shape[1]) < bos_index[:, None] |
|
labels = np.where(prompt_mask, -100, labels) |
|
|
|
batch["labels"] = labels |
|
batch["decoder_input_ids"] = decoder_input_ids |
|
|
|
return batch |
|
|
|
|
|
def get_data_loader( |
|
seed: int, |
|
dataset: IterableDataset, |
|
batch_size: int, |
|
data_collator: FlaxDataCollatorSpeechSeq2SeqWithPadding, |
|
shuffle: bool = True, |
|
drop_last: bool = True, |
|
dataloader_num_workers: int = 0, |
|
skip_batches: int = 0, |
|
pin_memory: bool = True, |
|
prefetch_size: int = 0, |
|
) -> DataLoader: |
|
""" |
|
Returns batches of size `batch_size` from `dataset`. If `drop_last` is set to `False`, the final batch may be incomplete, |
|
and range in size from 1 to `batch_size`. Shuffle batches if `shuffle` is `True`. |
|
|
|
Args: |
|
seed (int): Numpy seed for generating pseudo random numbers. Used if shuffling the dataset. |
|
dataset (IterableDataset): streaming dataset from which to load the data. |
|
batch_size (int): how many samples per batch to load. |
|
data_collator (FlaxDataCollatorSpeechSeq2SeqWithPadding, optional): merges a list of samples to form a |
|
mini-batch of Tensor(s). Used when using batched loading from a map-style dataset. |
|
shuffle (bool, optional): set to `True` to have the batches reshuffled. |
|
drop_last (bool, optional): set to ``True`` to drop the last incomplete batch, |
|
if the dataset size is not divisible by the batch size. If ``False`` and |
|
the size of dataset is not divisible by the batch size, then the last batch |
|
will be smaller. (default: ``False``) |
|
dataloader_num_workers (int, optional): how many subprocesses to use for data |
|
loading. ``0`` means that the data will be loaded in the main process. |
|
(default: ``0``) |
|
skip_batches (int, optional): Efficiently skip the first `skip_batches`. |
|
pin_memory (bool, optional): If ``True``, the data loader will copy Tensors |
|
into device/CUDA pinned memory before returning them. If your data elements |
|
are a custom type, or your :attr:`collate_fn` returns a batch that is a custom type, |
|
see the example below. |
|
|
|
""" |
|
if shuffle: |
|
dataset = dataset.shuffle(seed) |
|
|
|
if skip_batches > 0: |
|
dataset = dataset.skip(skip_batches * batch_size) |
|
|
|
if prefetch_size > 0: |
|
dataset = IterableWrapper(dataset) |
|
dataset = dataset.prefetch(prefetch_size) |
|
|
|
data_loader = DataLoader( |
|
dataset, |
|
batch_size=batch_size, |
|
drop_last=drop_last, |
|
pin_memory=pin_memory, |
|
collate_fn=data_collator, |
|
num_workers=dataloader_num_workers, |
|
) |
|
|
|
return data_loader |
|
|
|
|
|
def sorted_checkpoints(output_dir=None, checkpoint_prefix="checkpoint", use_mtime=False) -> List[str]: |
|
ordering_and_checkpoint_path = [] |
|
|
|
glob_checkpoints = [str(x) for x in Path(output_dir).glob(f"{checkpoint_prefix}-*") if os.path.isdir(x)] |
|
|
|
for path in glob_checkpoints: |
|
if use_mtime: |
|
ordering_and_checkpoint_path.append((os.path.getmtime(path), path)) |
|
else: |
|
regex_match = re.match(f".*{checkpoint_prefix}-([0-9]+)", path) |
|
if regex_match is not None and regex_match.groups() is not None: |
|
ordering_and_checkpoint_path.append((int(regex_match.groups()[0]), path)) |
|
|
|
checkpoints_sorted = sorted(ordering_and_checkpoint_path) |
|
checkpoints_sorted = [checkpoint[1] for checkpoint in checkpoints_sorted] |
|
return checkpoints_sorted |
|
|
|
|
|
def rotate_checkpoints( |
|
save_total_limit=None, use_mtime=False, output_dir=None, checkpoint_prefix="checkpoint" |
|
) -> None: |
|
if save_total_limit is None or save_total_limit <= 0: |
|
return |
|
|
|
|
|
checkpoints_sorted = sorted_checkpoints( |
|
use_mtime=use_mtime, output_dir=output_dir, checkpoint_prefix=checkpoint_prefix |
|
) |
|
if len(checkpoints_sorted) <= save_total_limit: |
|
return |
|
|
|
number_of_checkpoints_to_delete = max(0, len(checkpoints_sorted) - save_total_limit) |
|
checkpoints_to_be_deleted = checkpoints_sorted[:number_of_checkpoints_to_delete] |
|
for checkpoint in checkpoints_to_be_deleted: |
|
logger.info(f"Deleting older checkpoint [{checkpoint}] due to args.save_total_limit") |
|
shutil.rmtree(checkpoint, ignore_errors=True) |
|
|
|
|
|
def to_fp32(t): |
|
return jax.tree_map(lambda x: x.astype(jnp.float32) if x.dtype == jnp.bfloat16 else x, t) |
|
|
|
|
|
def to_bf16(t): |
|
return jax.tree_map(lambda x: x.astype(jnp.bfloat16) if x.dtype == jnp.float32 else x, t) |
|
|
|
|
|
class TrainState(train_state.TrainState): |
|
dropout_rng: jnp.ndarray |
|
max_grad_norm: float |
|
|
|
def apply_gradients(self, *, grads, to_dtype: to_fp32, **kwargs): |
|
"""Updates `step`, `params`, `opt_state` and `**kwargs` in return value, clipping the |
|
gradients by the maximum grad norm. |
|
|
|
Note that internally this function calls `.tx.update()` followed by a call |
|
to `optax.apply_updates()` to update `params` and `opt_state`. |
|
|
|
Args: |
|
grads: Gradients that have the same pytree structure as `.params`. |
|
**kwargs: Additional dataclass attributes that should be `.replace()`-ed. |
|
|
|
Returns: |
|
An updated instance of `self` with `step` incremented by one, `params` |
|
and `opt_state` updated by applying `grads`, and additional attributes |
|
replaced as specified by `kwargs`. |
|
""" |
|
|
|
casted_max_grad_norm = to_dtype(self.max_grad_norm) |
|
g_norm = linear_algebra.global_norm(grads) |
|
g_norm = jnp.maximum(casted_max_grad_norm, g_norm) |
|
grads = jax.tree_map(lambda t: (t / g_norm) * casted_max_grad_norm, grads) |
|
|
|
|
|
|
|
updates, new_opt_state = self.tx.update(to_fp32(grads), to_fp32(self.opt_state), self.params) |
|
|
|
new_params = optax.apply_updates(self.params, updates) |
|
|
|
return self.replace( |
|
step=self.step + 1, |
|
params=new_params, |
|
opt_state=to_dtype(new_opt_state), |
|
**kwargs, |
|
) |
|
|
|
@classmethod |
|
def create(cls, *, apply_fn, params, tx, to_dtype: to_fp32, **kwargs): |
|
"""Creates a new instance with `step=0` and initialized `opt_state`.""" |
|
|
|
opt_state = tx.init(to_dtype(params)) |
|
return cls( |
|
step=0, |
|
apply_fn=apply_fn, |
|
params=params, |
|
tx=tx, |
|
opt_state=opt_state, |
|
**kwargs, |
|
) |
|
|
|
def replicate(self): |
|
return jax_utils.replicate(self).replace(dropout_rng=shard_prng_key(self.dropout_rng)) |
|
|
|
def unreplicate(self): |
|
return jax_utils.unreplicate(self) |
|
|
|
def save_state(self, output_dir, checkpoint_prefix="checkpoint"): |
|
step = int(jax.device_get(unreplicate(self.step))) |
|
serialized_state = to_bytes(self.unreplicate()) |
|
|
|
output_file = Path(os.path.join(output_dir, f"{checkpoint_prefix}-{step}", "train_state.msgpack")) |
|
output_file.parent.mkdir(exist_ok=True, parents=True) |
|
|
|
with output_file.open("wb") as f: |
|
f.write(serialized_state) |
|
|
|
logger.info(f"Flax train state saved in {output_file}") |
|
|
|
|
|
def save_hf_weights( |
|
student_state: TrainState, |
|
student_model: FlaxWhisperForConditionalGeneration, |
|
processor: WhisperProcessor, |
|
output_dir: str, |
|
cur_step: int, |
|
total_train_steps: int, |
|
use_scan: bool = True, |
|
checkpoint_prefix: str = "checkpoint", |
|
) -> None: |
|
|
|
student_state_params = unreplicate(student_state.params) |
|
student_state_params = student_model.convert_scan_to_unroll(student_state_params) |
|
student_params = jax.device_get(student_state_params) |
|
student_model.disable_scan() |
|
|
|
if cur_step != total_train_steps: |
|
output_dir = os.path.join(output_dir, f"{checkpoint_prefix}-{cur_step}") |
|
os.makedirs(output_dir, exist_ok=True) |
|
|
|
student_model.save_pretrained(output_dir, params=student_params) |
|
processor.save_pretrained(output_dir) |
|
|
|
|
|
if use_scan: |
|
student_model.enable_scan() |
|
|
|
|
|
def write_train_metric(summary_writer, train_metrics, train_time, step, logging_steps): |
|
summary_writer.scalar("train/time", train_time, step) |
|
|
|
train_metrics = get_metrics(train_metrics) |
|
for key, vals in train_metrics.items(): |
|
steps_arr = np.arange(0, step, logging_steps)[-len(vals) :] |
|
tag = f"train/{key}" |
|
for i, val in enumerate(vals): |
|
summary_writer.scalar(tag, val, steps_arr[i]) |
|
|
|
|
|
def write_eval_metric(summary_writer, eval_metrics, step, prefix="eval"): |
|
for metric_name, value in eval_metrics.items(): |
|
summary_writer.scalar(f"{prefix}/{metric_name}", value, step) |
|
|
|
|
|
def write_wandb_metric(wandb_logger, metrics, train_time, step, epoch, prefix="train"): |
|
log_metrics = {} |
|
for k, v in metrics.items(): |
|
log_metrics[f"{prefix}/{k}"] = v |
|
log_metrics[f"{prefix}/time"] = train_time |
|
log_metrics[f"{prefix}/epoch"] = epoch |
|
wandb_logger.log(log_metrics, step) |
|
|
|
|
|
def write_wandb_pred( |
|
wandb_logger, pred_str, label_str, norm_pred_str, norm_label_str, cur_step, prefix="eval", num_lines=200000 |
|
): |
|
|
|
cur_step_pretty = f"{int(cur_step // 1000)}k" if cur_step > 1000 else cur_step |
|
|
|
str_data = [[label_str[i], pred_str[i], norm_label_str[i], norm_pred_str[i]] for i in range(len(pred_str))] |
|
|
|
wandb_logger.log( |
|
{ |
|
f"predictions/{prefix.replace('/', '-')}-step-{cur_step_pretty}": wandb_logger.Table( |
|
columns=["Target", "Pred", "Norm Target", "Norm Pred"], data=str_data[:num_lines] |
|
) |
|
}, |
|
cur_step, |
|
) |
|
|
|
str_data = np.asarray(str_data) |
|
str_data_incorrect = str_data[str_data[:, -2] != str_data[:, -1]] |
|
|
|
wandb_logger.log( |
|
{ |
|
f"incorrect_predictions/{prefix.replace('/', '-')}-step-{cur_step_pretty}": wandb_logger.Table( |
|
columns=["Target", "Pred", "Norm Target", "Norm Pred"], data=str_data_incorrect[:num_lines] |
|
) |
|
}, |
|
cur_step, |
|
) |
|
|
|
|
|
def create_learning_rate_fn( |
|
num_train_steps: int, lr_scheduler_type: str, num_warmup_steps: int, learning_rate: float |
|
) -> Callable[[int], jnp.array]: |
|
"""Returns a linear warmup, linear_decay learning rate function.""" |
|
lr_scheduler_types = ("linear", "constant_with_warmup") |
|
|
|
if lr_scheduler_type not in lr_scheduler_types: |
|
raise ValueError( |
|
f"lr_scheduler_type of type {lr_scheduler_type} not supported, choose from {lr_scheduler_types}." |
|
) |
|
|
|
warmup_fn = optax.linear_schedule(init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps) |
|
decay_fn = optax.linear_schedule( |
|
init_value=learning_rate, |
|
end_value=0 if lr_scheduler_type == "linear" else learning_rate, |
|
transition_steps=num_train_steps - num_warmup_steps, |
|
) |
|
schedule_fn = optax.join_schedules(schedules=[warmup_fn, decay_fn], boundaries=[num_warmup_steps]) |
|
return schedule_fn |
|
|
|
|
|
def convert_dataset_str_to_list( |
|
dataset_names, |
|
dataset_config_names, |
|
splits=None, |
|
text_column_names=None, |
|
dataset_samples=None, |
|
default_split="train", |
|
): |
|
if isinstance(dataset_names, str): |
|
dataset_names = dataset_names.split("+") |
|
|
|
|
|
for i in range(len(dataset_names)): |
|
ds_name = dataset_names[i] |
|
dataset_names[i] = f"distil-whisper/{ds_name}" if "/" not in ds_name else ds_name |
|
|
|
dataset_config_names = dataset_config_names.split("+") |
|
splits = splits.split("+") if splits is not None else None |
|
text_column_names = text_column_names.split("+") if text_column_names is not None else None |
|
dataset_samples = dataset_samples.split("+") if dataset_samples is not None else None |
|
|
|
|
|
if len(dataset_names) != len(dataset_config_names): |
|
raise ValueError( |
|
f"Ensure one config is passed for each dataset, got {len(dataset_names)} datasets and" |
|
f" {len(dataset_config_names)} configs." |
|
) |
|
|
|
if splits is not None and len(splits) != len(dataset_names): |
|
raise ValueError( |
|
f"Ensure one split is passed for each dataset, got {len(dataset_names)} datasets and {len(splits)} splits." |
|
) |
|
|
|
if text_column_names is not None and len(text_column_names) != len(dataset_names): |
|
raise ValueError( |
|
f"Ensure one text column name is passed for each dataset, got {len(dataset_names)} datasets and" |
|
f" {len(text_column_names)} text column names." |
|
) |
|
|
|
if dataset_samples is not None: |
|
if len(dataset_samples) != len(dataset_names): |
|
raise ValueError( |
|
f"Ensure one sample is passed for each dataset, got {len(dataset_names)} datasets and " |
|
f"{len(dataset_samples)} samples." |
|
) |
|
dataset_samples = [float(ds_sample) for ds_sample in dataset_samples] |
|
else: |
|
dataset_samples = [None] * len(dataset_names) |
|
|
|
text_column_names = ( |
|
text_column_names if text_column_names is not None else ["text" for _ in range(len(dataset_names))] |
|
) |
|
splits = splits if splits is not None else [default_split for _ in range(len(dataset_names))] |
|
|
|
dataset_names_dict = [] |
|
for i, ds_name in enumerate(dataset_names): |
|
dataset_names_dict.append( |
|
{ |
|
"name": ds_name, |
|
"config": dataset_config_names[i], |
|
"split": splits[i], |
|
"text_column_name": text_column_names[i], |
|
"samples": dataset_samples[i], |
|
} |
|
) |
|
return dataset_names_dict |
|
|
|
|
|
def load_multiple_datasets( |
|
dataset_names: Union[List, str], |
|
dataset_config_names: Union[List, str], |
|
splits: Optional[Union[List, str]] = None, |
|
text_column_names: Optional[List] = None, |
|
sampling_rate: Optional[int] = 16000, |
|
stopping_strategy: Optional[str] = "first_exhausted", |
|
dataset_samples: Optional[Union[List, np.array]] = None, |
|
streaming: Optional[bool] = True, |
|
seed: Optional[int] = None, |
|
audio_column_name: Optional[str] = "audio", |
|
preprocess_audio_features: Optional[bool] = True, |
|
condition_on_prev_probability: Optional[float] = 0.0, |
|
**kwargs, |
|
) -> IterableDataset: |
|
dataset_names_dict = convert_dataset_str_to_list( |
|
dataset_names, dataset_config_names, splits, text_column_names, dataset_samples |
|
) |
|
|
|
if dataset_samples is not None: |
|
dataset_samples = [ds_dict["samples"] for ds_dict in dataset_names_dict] |
|
probabilities = np.array(dataset_samples) / np.sum(dataset_samples) |
|
else: |
|
probabilities = None |
|
|
|
all_datasets = [] |
|
|
|
for dataset_dict in tqdm(dataset_names_dict, desc="Combining datasets..."): |
|
dataset = load_dataset( |
|
dataset_dict["name"], |
|
dataset_dict["config"], |
|
split=dataset_dict["split"], |
|
streaming=streaming, |
|
**kwargs, |
|
) |
|
dataset_features = dataset.features.keys() |
|
columns_to_keep = {"text", "whisper_transcript"} |
|
|
|
if preprocess_audio_features: |
|
if audio_column_name not in dataset_features: |
|
raise ValueError( |
|
f"--audio_column_name '{audio_column_name}' not found in dataset" |
|
f" '{dataset_dict['name']}'. Make sure to set `--audio_column_name` to" |
|
f" the correct audio column - one of {', '.join(dataset_features)}." |
|
) |
|
else: |
|
|
|
dataset = dataset.cast_column("audio", datasets.features.Audio(sampling_rate)) |
|
columns_to_keep.add("audio") |
|
else: |
|
if "input_features" not in dataset_features: |
|
raise ValueError( |
|
"Input features column 'input_features' not found in dataset" |
|
f" '{dataset_dict['name']}'. Make sure to pre-process the dataset ahead of time with the 'input_features'" |
|
"column, or set `--preprocess_audio_features=True` to pre-process the audio features on the fly." |
|
) |
|
else: |
|
|
|
dataset = dataset.with_format("np") |
|
columns_to_keep.add("input_features") |
|
|
|
if dataset_dict["text_column_name"] not in dataset_features: |
|
raise ValueError( |
|
f"Text column name {dataset_dict['text_column_name']} not found in dataset" |
|
f" '{dataset_dict['name']}'. Make sure to set `--text_column_name` to the" |
|
f" correct text column - one of {', '.join(dataset_features)}." |
|
) |
|
|
|
|
|
if dataset_dict["text_column_name"] != "text": |
|
dataset = dataset.rename_column(dataset_dict["text_column_name"], "text") |
|
|
|
if "whisper_transcript" not in dataset_features: |
|
raise ValueError( |
|
f"Pseudo-label column `whisper_transcript` not found in dataset {dataset_dict['name']}. Ensure" |
|
"pseudo-labels are present in the dataset under this column name, or train directly on the text " |
|
"labels by setting `--use_pseudo_labels=False` and defining the appropriate `--text_column_name`." |
|
) |
|
|
|
if condition_on_prev_probability > 0: |
|
if "condition_on_prev" not in dataset_features: |
|
raise ValueError( |
|
f"Condition column name `condition_on_prev` not found in dataset '{dataset_dict['name']}'. Ensure " |
|
"pseudo-labels are present in the dataset under this column name." |
|
) |
|
else: |
|
columns_to_keep.add("condition_on_prev") |
|
|
|
dataset_features = dataset.features.keys() |
|
dataset = dataset.remove_columns(set(dataset_features - columns_to_keep)) |
|
all_datasets.append(dataset) |
|
|
|
if len(all_datasets) == 1: |
|
|
|
return all_datasets[0] |
|
|
|
if streaming: |
|
interleaved_dataset = interleave_datasets( |
|
all_datasets, |
|
stopping_strategy=stopping_strategy, |
|
probabilities=probabilities, |
|
seed=seed, |
|
) |
|
else: |
|
interleaved_dataset = concatenate_datasets(all_datasets) |
|
|
|
return interleaved_dataset |
|
|
|
|
|
def get_layers_to_supervise(student_layers: int, teacher_layers: int) -> dict: |
|
"""Helper function to map the student layer i to the teacher layer j whose output we'd like them to emulate. Used |
|
for MSE loss terms in distillation (hidden-states and activations). Student layers are paired with teacher layers |
|
in equal increments, e.g. for a 12-layer model distilled to a 3-layer model, student layer 0 emulates teacher layer |
|
3 (such that it behaves like the first 4 teacher layers), student layer 1 emulates teacher layer 7, and student layer |
|
2 emulates teacher layer 11. This mapping is summarised by the dictionary: {0: 3, 1: 7, 2: 11}, which is precisely |
|
the output of this function for the arguments (student_layers=3, teacher_layers=12).""" |
|
layer_intervals = np.linspace(teacher_layers // student_layers - 1, teacher_layers - 1, student_layers, dtype=int) |
|
layer_intervals[-1] = teacher_layers - 1 |
|
layer_map = {} |
|
|
|
for student_layer, teacher_layer in enumerate(layer_intervals): |
|
layer_map[student_layer] = teacher_layer |
|
|
|
return layer_map |
|
|
|
|
|
class FlaxWhisperFeatureExtractor(WhisperFeatureExtractor): |
|
def _np_extract_fbank_features(self, waveform: np.array) -> np.ndarray: |
|
""" |
|
Compute the log-mel spectrogram of the provided audio using torch filters. Using the torch implementation |
|
computes stft filter banks approx 5x faster than its numpy counterpart, which is the native implementation |
|
in transformers, and matches to within 1e-5 abs tolerance. |
|
""" |
|
waveform = torch.from_numpy(waveform).type(torch.float32) |
|
|
|
window = torch.hann_window(self.n_fft) |
|
stft = torch.stft(waveform, self.n_fft, self.hop_length, window=window, return_complex=True) |
|
magnitudes = stft[..., :-1].abs() ** 2 |
|
|
|
mel_filters = torch.from_numpy(self.mel_filters).type(torch.float32) |
|
mel_spec = mel_filters.T @ magnitudes |
|
|
|
log_spec = torch.clamp(mel_spec, min=1e-10).log10() |
|
log_spec = torch.maximum(log_spec, log_spec.max() - 8.0) |
|
log_spec = (log_spec + 4.0) / 4.0 |
|
return log_spec.numpy() |
|
|
|
|
|
def main(): |
|
|
|
|
|
|
|
|
|
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, FlaxSeq2SeqTrainingArguments)) |
|
|
|
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): |
|
|
|
|
|
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) |
|
else: |
|
model_args, data_args, training_args = parser.parse_args_into_dataclasses() |
|
|
|
|
|
|
|
send_example_telemetry("run_flax_speech_recognition_seq2seq", model_args, data_args, framework="flax") |
|
|
|
|
|
|
|
has_tensorboard = is_tensorboard_available() |
|
if has_tensorboard: |
|
if jax.process_index() == 0: |
|
try: |
|
from flax.metrics.tensorboard import SummaryWriter |
|
|
|
summary_writer = SummaryWriter(log_dir=os.path.join(Path(training_args.output_dir), "runs")) |
|
except ImportError as ie: |
|
has_tensorboard = False |
|
logger.warning( |
|
"Unable to display metrics through TensorBoard because some package" f" are not installed: {ie}" |
|
) |
|
else: |
|
logger.warning( |
|
"Unable to display metrics through TensorBoard because the package is not" |
|
" installed: Please run `pip install tensorboard` to enable." |
|
) |
|
|
|
|
|
has_wandb = is_wandb_available() |
|
if has_wandb: |
|
import wandb as wandb_logger |
|
|
|
|
|
if jax.process_index() == 0: |
|
wandb_logger.init( |
|
project=data_args.wandb_project, |
|
name=data_args.wandb_name, |
|
job_type=data_args.wandb_job_type, |
|
dir=data_args.wandb_dir, |
|
save_code=data_args.save_code_to_wandb, |
|
) |
|
else: |
|
logger.warning("Wandb logging requires wandb to be installed. Run `pip install wandb` to enable.") |
|
|
|
|
|
|
|
logging.basicConfig( |
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
|
datefmt="%m/%d/%Y %H:%M:%S", |
|
handlers=[logging.StreamHandler(sys.stdout)], |
|
) |
|
|
|
|
|
logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR) |
|
if jax.process_index() == 0: |
|
datasets.utils.logging.set_verbosity_warning() |
|
transformers.utils.logging.set_verbosity_info() |
|
else: |
|
datasets.utils.logging.set_verbosity_error() |
|
transformers.utils.logging.set_verbosity_error() |
|
|
|
logger.info("Training/evaluation parameters %s", training_args) |
|
|
|
|
|
if ( |
|
os.path.exists(training_args.output_dir) |
|
and os.listdir(training_args.output_dir) |
|
and training_args.do_train |
|
and not training_args.overwrite_output_dir |
|
): |
|
raise ValueError( |
|
f"Output directory ({training_args.output_dir}) already exists and is not" |
|
" empty. Use `--overwrite_output_dir` to overcome." |
|
) |
|
|
|
|
|
if training_args.push_to_hub: |
|
if training_args.hub_model_id is None: |
|
repo_name = get_full_repo_name( |
|
Path(training_args.output_dir).absolute().name, |
|
token=training_args.hub_token, |
|
) |
|
else: |
|
repo_name = training_args.hub_model_id |
|
create_repo(repo_name, exist_ok=True, token=training_args.hub_token) |
|
|
|
if training_args.compilation_cache: |
|
cc.initialize_cache(os.path.join(model_args.cache_dir, "jax_cache")) |
|
|
|
|
|
raw_datasets = IterableDatasetDict() if data_args.streaming else DatasetDict() |
|
|
|
|
|
set_seed(training_args.seed) |
|
|
|
if training_args.do_train: |
|
raw_datasets["train"] = load_multiple_datasets( |
|
data_args.train_dataset_name, |
|
data_args.train_dataset_config_name, |
|
splits=data_args.train_split_name, |
|
streaming=data_args.streaming, |
|
dataset_samples=data_args.train_dataset_samples, |
|
seed=training_args.seed, |
|
cache_dir=data_args.dataset_cache_dir, |
|
token=True if model_args.use_auth_token else None, |
|
preprocess_audio_features=data_args.preprocess_audio_features, |
|
condition_on_prev_probability=data_args.condition_on_prev_probability, |
|
trust_remote_code=data_args.trust_remote_code, |
|
) |
|
|
|
raw_datasets_train_features = raw_datasets["train"].features.keys() |
|
|
|
if training_args.do_eval: |
|
dataset_names_dict = convert_dataset_str_to_list( |
|
data_args.eval_dataset_name if data_args.eval_dataset_name else data_args.train_dataset_name, |
|
data_args.eval_dataset_config_name |
|
if data_args.eval_dataset_config_name |
|
else data_args.train_dataset_config_name, |
|
splits=data_args.eval_split_name, |
|
text_column_names=data_args.eval_text_column_name, |
|
) |
|
all_eval_splits = [] |
|
if len(dataset_names_dict) == 1: |
|
|
|
dataset_dict = dataset_names_dict[0] |
|
all_eval_splits.append("eval") |
|
raw_datasets["eval"] = load_dataset( |
|
dataset_dict["name"], |
|
dataset_dict["config"], |
|
split=dataset_dict["split"], |
|
cache_dir=data_args.dataset_cache_dir, |
|
token=True if model_args.use_auth_token else None, |
|
streaming=data_args.streaming, |
|
trust_remote_code=data_args.trust_remote_code, |
|
) |
|
else: |
|
|
|
for dataset_dict in dataset_names_dict: |
|
if dataset_dict["name"] == "esb/diagnostic-dataset": |
|
|
|
pretty_name = f"{dataset_dict['config']}-diagnostic/{dataset_dict['split']}" |
|
else: |
|
pretty_name = f"{dataset_dict['name'].split('/')[-1]}/{dataset_dict['split'].replace('.', '-')}" |
|
all_eval_splits.append(pretty_name) |
|
raw_datasets[pretty_name] = load_dataset( |
|
dataset_dict["name"], |
|
dataset_dict["config"], |
|
split=dataset_dict["split"], |
|
cache_dir=data_args.dataset_cache_dir, |
|
token=True if model_args.use_auth_token else None, |
|
streaming=data_args.streaming, |
|
trust_remote_code=data_args.trust_remote_code, |
|
) |
|
features = raw_datasets[pretty_name].features.keys() |
|
if "text" not in features: |
|
raw_datasets[pretty_name] = raw_datasets[pretty_name].rename_column( |
|
dataset_dict["text_column_name"], "text" |
|
) |
|
raw_datasets[pretty_name] = raw_datasets[pretty_name].remove_columns( |
|
set(raw_datasets[pretty_name].features.keys()) - {"audio", "text"} |
|
) |
|
|
|
if not training_args.do_train and not training_args.do_eval: |
|
raise ValueError( |
|
"Cannot not train and not do evaluation. At least one of training or evaluation has to be performed." |
|
) |
|
|
|
|
|
config = WhisperConfig.from_pretrained( |
|
(model_args.config_name if model_args.config_name else model_args.model_name_or_path), |
|
cache_dir=model_args.cache_dir, |
|
revision=model_args.model_revision, |
|
token=True if model_args.use_auth_token else None, |
|
) |
|
feature_extractor = FlaxWhisperFeatureExtractor.from_pretrained( |
|
(model_args.feature_extractor_name if model_args.feature_extractor_name else model_args.model_name_or_path), |
|
cache_dir=model_args.cache_dir, |
|
revision=model_args.model_revision, |
|
token=True if model_args.use_auth_token else None, |
|
) |
|
tokenizer = WhisperTokenizerFast.from_pretrained( |
|
(model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path), |
|
cache_dir=model_args.cache_dir, |
|
use_fast=model_args.use_fast_tokenizer, |
|
revision=model_args.model_revision, |
|
token=True if model_args.use_auth_token else None, |
|
) |
|
|
|
|
|
timestamps = [AddedToken("<|%.2f|>" % (i * 0.02), lstrip=False, rstrip=False) for i in range(1500 + 1)] |
|
tokenizer.add_tokens(timestamps) |
|
|
|
config.update( |
|
{ |
|
"activation_dropout": model_args.activation_dropout, |
|
"attention_dropout": model_args.attention_dropout, |
|
"dropout": model_args.dropout, |
|
} |
|
) |
|
|
|
if training_args.precision == "full_mixed": |
|
|
|
dtype = jnp.bfloat16 |
|
to_dtype = to_bf16 |
|
elif training_args.precision == "half_mixed" or model_args.dtype == "bfloat16": |
|
|
|
dtype = jnp.bfloat16 |
|
to_dtype = to_fp32 |
|
else: |
|
if training_args.precision != "full": |
|
raise ValueError( |
|
f"`precision` should be one of: `full`, `half_mixed` or `full_mixed`, got {training_args.precision}" |
|
) |
|
|
|
dtype = jnp.float32 |
|
to_dtype = to_fp32 |
|
|
|
student_model, student_params = FlaxWhisperForConditionalGeneration.from_pretrained( |
|
model_args.model_name_or_path, |
|
config=config, |
|
dtype=dtype, |
|
cache_dir=model_args.cache_dir, |
|
revision=model_args.model_revision, |
|
subfolder=model_args.subfolder, |
|
token=True if model_args.use_auth_token else None, |
|
_do_init=False, |
|
use_scan=model_args.load_with_scan_weights, |
|
) |
|
|
|
teacher_model, teacher_params = FlaxWhisperForConditionalGeneration.from_pretrained( |
|
model_args.teacher_model_name_or_path, |
|
|
|
dtype=dtype, |
|
cache_dir=model_args.cache_dir, |
|
|
|
token=True if model_args.use_auth_token else None, |
|
_do_init=False, |
|
) |
|
|
|
if student_model.config.decoder_start_token_id is None or teacher_model.config.decoder_start_token_id is None: |
|
raise ValueError( |
|
f"Make sure that `config.decoder_start_token_id` is correctly defined for both the " |
|
f"student and teacher model. Got {student_model.config.decoder_start_token_id} for the " |
|
f"student and {teacher_model.config.decoder_start_token_id} for the teacher." |
|
) |
|
|
|
|
|
if training_args.use_scan: |
|
student_model.enable_scan() |
|
student_params = student_model.convert_unroll_to_scan(student_params) |
|
|
|
teacher_model.enable_scan() |
|
teacher_params = teacher_model.convert_unroll_to_scan(teacher_params) |
|
|
|
if training_args.gradient_checkpointing: |
|
student_model.enable_gradient_checkpointing() |
|
teacher_model.enable_gradient_checkpointing() |
|
|
|
if hasattr(teacher_model.generation_config, "is_multilingual") and teacher_model.generation_config.is_multilingual: |
|
|
|
is_multilingual = True |
|
tokenizer.set_prefix_tokens(language="English", task="transcribe", predict_timestamps=False) |
|
student_model.generation_config.update( |
|
**{ |
|
"language": "<|en|>", |
|
"task": "transcribe", |
|
} |
|
) |
|
else: |
|
is_multilingual = False |
|
|
|
|
|
|
|
max_input_length = int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate) |
|
min_input_length = int(data_args.min_duration_in_seconds * feature_extractor.sampling_rate) |
|
max_label_length = ( |
|
data_args.max_label_length if data_args.max_label_length is not None else student_model.config.max_length |
|
) |
|
audio_column_name = data_args.audio_column_name |
|
num_workers = data_args.preprocessing_num_workers |
|
dataloader_num_workers = training_args.dataloader_num_workers |
|
dataloader_prefetch_size = data_args.prefetch_size |
|
preprocess_audio_features = data_args.preprocess_audio_features |
|
train_text_column_name = data_args.train_text_column_name |
|
eval_text_column_name = "text" |
|
model_input_name = feature_extractor.model_input_names[0] |
|
normalizer = EnglishTextNormalizer(tokenizer.english_spelling_normalizer) |
|
wer_threshold = data_args.wer_threshold |
|
|
|
language = "English" if is_multilingual else None |
|
task = "transcribe" if is_multilingual else None |
|
|
|
timestamp_probability = data_args.timestamp_probability |
|
round_timestamps = data_args.round_timestamps |
|
timestamp_ids = tokenizer.timestamp_ids() |
|
timestamp_begin = tokenizer.all_special_ids[-1] |
|
timestamp_position = 3 if is_multilingual else 1 |
|
decoder_eot_token_id = tokenizer.eos_token_id |
|
decoder_prev_token_id = tokenizer.all_special_ids[-3] |
|
prompt_cutoff_length = max_label_length // 2 |
|
|
|
condition_on_prev_probability = data_args.condition_on_prev_probability |
|
|
|
|
|
|
|
sampling_rate = feature_extractor.sampling_rate |
|
raw_datasets = raw_datasets.cast_column( |
|
data_args.audio_column_name, |
|
datasets.features.Audio(sampling_rate=sampling_rate), |
|
) |
|
|
|
if training_args.do_train and data_args.max_train_samples is not None: |
|
raw_datasets["train"] = ( |
|
raw_datasets["train"].take(data_args.max_train_samples) |
|
if data_args.streaming |
|
else raw_datasets["train"].select(range(data_args.max_train_samples)) |
|
) |
|
|
|
if training_args.do_eval and data_args.max_eval_samples is not None: |
|
for eval_split in all_eval_splits: |
|
raw_datasets[eval_split] = ( |
|
raw_datasets[eval_split].take(data_args.max_eval_samples) |
|
if data_args.streaming |
|
else raw_datasets[eval_split].select(range(data_args.max_eval_samples)) |
|
) |
|
|
|
def is_wer_in_range(ground_truth, whisper_transcript): |
|
norm_ground_truth = normalizer(ground_truth) |
|
if isinstance(whisper_transcript, (np.ndarray, list)): |
|
whisper_transcript = tokenizer.decode(whisper_transcript, skip_special_tokens=True) |
|
if len(norm_ground_truth) > 0 and whisper_transcript: |
|
if whisper_transcript.upper() == whisper_transcript: |
|
|
|
return False |
|
else: |
|
norm_whisper_transcript = normalizer(whisper_transcript) |
|
wer = 100 * metric.compute(predictions=[norm_whisper_transcript], references=[norm_ground_truth]) |
|
return wer < wer_threshold |
|
else: |
|
|
|
return False |
|
|
|
filter_by_wer_threshold = partial( |
|
raw_datasets["train"].filter, |
|
function=is_wer_in_range, |
|
input_columns=["text", "whisper_transcript"], |
|
) |
|
|
|
if wer_threshold is not None: |
|
raw_datasets["train"] = ( |
|
filter_by_wer_threshold(num_proc=num_workers, desc="filtering train dataset by wer") |
|
if not data_args.streaming |
|
else filter_by_wer_threshold() |
|
) |
|
|
|
def has_timestamp_tokens(input_str): |
|
""" |
|
Identify whether the input string contains timestamp tokens, of the form <|0.00|>, by searching for |
|
pairs of left and right-angle brackets. |
|
""" |
|
return bool(re.search("\<[^\>]*\>", input_str)) |
|
|
|
def round_timestamp_tokens(input_str: str, ndigits: int = 1): |
|
timestamps = re.findall("\<[^\>]*\>", input_str, re.DOTALL) |
|
for token in timestamps: |
|
|
|
time_digit = token[2:-2] |
|
|
|
time_digit = round(float(time_digit), ndigits=ndigits) |
|
|
|
input_str = input_str.replace(token, "<|{:.2f}|>".format(time_digit)) |
|
return input_str |
|
|
|
def prepare_train_dataset(batch): |
|
|
|
|
|
if preprocess_audio_features: |
|
sample = batch[audio_column_name] |
|
inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"]) |
|
batch["input_features"] = inputs.input_features[0] |
|
batch["input_length"] = len(sample["array"]) |
|
|
|
|
|
input_str = batch[train_text_column_name] |
|
|
|
if isinstance(input_str, str): |
|
|
|
if input_str.startswith("<|startoftranscript|>") or input_str.startswith("<|startofprev|>"): |
|
|
|
batch["labels"] = tokenizer(input_str, add_special_tokens=False).input_ids |
|
return batch |
|
|
|
has_timestamps = has_timestamp_tokens(input_str) |
|
|
|
if has_timestamps: |
|
predict_timestamps = bool(np.random.binomial(1, timestamp_probability)) |
|
if not predict_timestamps: |
|
|
|
input_str = tokenizer._filter_timestamp_ids(input_str) |
|
elif round_timestamps: |
|
input_str = round_timestamp_tokens(input_str) |
|
else: |
|
predict_timestamps = False |
|
|
|
tokenizer.set_prefix_tokens(language=language, task=task, predict_timestamps=predict_timestamps) |
|
token_ids = tokenizer(input_str).input_ids |
|
else: |
|
|
|
|
|
token_ids = [token for token in input_str if token != decoder_eot_token_id] |
|
token_ids = token_ids + [decoder_eot_token_id] |
|
|
|
has_timestamps = len(set(token_ids) & set(timestamp_ids)) > 0 |
|
if has_timestamps: |
|
|
|
predict_timestamps = bool(np.random.binomial(1, timestamp_probability)) |
|
if not predict_timestamps: |
|
|
|
token_ids = [token for token in token_ids if token < timestamp_begin] |
|
token_ids.insert(timestamp_position, timestamp_begin) |
|
condition_on_prev = bool(np.random.binomial(1, condition_on_prev_probability)) |
|
if condition_on_prev and batch["condition_on_prev"] is not None: |
|
prev_ids = list(batch["condition_on_prev"]) |
|
if has_timestamps and not predict_timestamps: |
|
|
|
prev_ids = [token for token in prev_ids if token < timestamp_begin] |
|
|
|
if len(prev_ids) > prompt_cutoff_length: |
|
prev_ids = prev_ids[-prompt_cutoff_length + 1:] |
|
prev_ids = [decoder_prev_token_id] + prev_ids |
|
|
|
if len(prev_ids + token_ids) > max_label_length: |
|
trim_length = len(prev_ids + token_ids) - max_label_length + 1 |
|
prev_ids = prev_ids[trim_length:] |
|
prev_ids = [decoder_prev_token_id] + prev_ids |
|
token_ids = prev_ids + token_ids |
|
|
|
batch["labels"] = token_ids |
|
return batch |
|
|
|
def prepare_eval_dataset(batch): |
|
|
|
sample = batch[audio_column_name] |
|
inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"]) |
|
|
|
batch[model_input_name] = inputs.get(model_input_name)[0] |
|
batch["input_length"] = len(sample["array"]) |
|
|
|
|
|
input_str = batch[eval_text_column_name] |
|
batch["labels"] = tokenizer(input_str).input_ids |
|
return batch |
|
|
|
vectorized_datasets = IterableDatasetDict() if data_args.streaming else DatasetDict() |
|
if training_args.do_train: |
|
raw_datasets_train_features = list(set(raw_datasets_train_features) - {"input_features"}) |
|
map_fn_train = partial( |
|
raw_datasets["train"].map, function=prepare_train_dataset, remove_columns=raw_datasets_train_features |
|
) |
|
vectorized_datasets["train"] = ( |
|
map_fn_train(num_proc=num_workers, desc="preprocess train dataset") |
|
if not data_args.streaming |
|
else map_fn_train() |
|
) |
|
if training_args.do_eval: |
|
for eval_split in all_eval_splits: |
|
raw_datasets_eval_features = list(raw_datasets[eval_split].features.keys()) |
|
map_fn_eval = partial( |
|
raw_datasets[eval_split].map, function=prepare_eval_dataset, remove_columns=raw_datasets_eval_features |
|
) |
|
vectorized_datasets[eval_split] = ( |
|
map_fn_eval(num_proc=num_workers, desc="preprocess eval dataset") |
|
if not data_args.streaming |
|
else map_fn_eval() |
|
) |
|
|
|
|
|
def is_audio_in_length_range(length): |
|
return min_input_length < length < max_input_length |
|
|
|
filter_by_audio_fn = partial( |
|
vectorized_datasets.filter, function=is_audio_in_length_range, input_columns=["input_length"] |
|
) |
|
if preprocess_audio_features: |
|
vectorized_datasets = ( |
|
filter_by_audio_fn(num_proc=num_workers, desc="filtering train dataset by audio length") |
|
if not data_args.streaming |
|
else filter_by_audio_fn() |
|
) |
|
|
|
|
|
def is_labels_in_length_range(labels): |
|
return 0 < len(labels) <= max_label_length |
|
|
|
filter_by_labels_fn = partial( |
|
vectorized_datasets.filter, function=is_labels_in_length_range, input_columns=["labels"] |
|
) |
|
vectorized_datasets = ( |
|
filter_by_labels_fn(num_proc=num_workers, desc="filtering train dataset") |
|
if not data_args.streaming |
|
else filter_by_labels_fn() |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
if data_args.preprocessing_only: |
|
cache = {k: v.cache_files for k, v in vectorized_datasets.items()} |
|
logger.info(f"Data preprocessing finished. Files cached at {cache}.") |
|
return |
|
|
|
|
|
metric = evaluate.load("wer") |
|
|
|
all_punctuation = list(string.punctuation.replace("'", "")) |
|
return_timestamps = data_args.return_timestamps if data_args.timestamp_probability > 0 else False |
|
|
|
def compute_metrics(preds, labels): |
|
|
|
for idx in range(len(labels)): |
|
labels[idx][labels[idx] == -100] = tokenizer.pad_token_id |
|
|
|
pred_str = tokenizer.batch_decode(preds, skip_special_tokens=True, decode_with_timestamps=return_timestamps) |
|
|
|
label_str = tokenizer.batch_decode(labels, skip_special_tokens=True) |
|
|
|
|
|
spaced_pred_str = [ |
|
pred_str[i].replace(punctuation, f" {punctuation} ") |
|
for punctuation in all_punctuation |
|
for i in range(len(pred_str)) |
|
] |
|
spaced_label_str = [ |
|
label_str[i].replace(punctuation, f" {punctuation} ") |
|
for punctuation in all_punctuation |
|
for i in range(len(label_str)) |
|
] |
|
wer_ortho = 100 * metric.compute(predictions=spaced_pred_str, references=spaced_label_str) |
|
|
|
|
|
norm_pred_str = [normalizer(pred) for pred in pred_str] |
|
norm_label_str = [normalizer(label) for label in label_str] |
|
|
|
pred_str = [pred_str[i] for i in range(len(norm_pred_str)) if len(norm_label_str[i]) > 0] |
|
label_str = [label_str[i] for i in range(len(norm_label_str)) if len(norm_label_str[i]) > 0] |
|
|
|
norm_pred_str = [norm_pred_str[i] for i in range(len(norm_pred_str)) if len(norm_label_str[i]) > 0] |
|
norm_label_str = [norm_label_str[i] for i in range(len(norm_label_str)) if len(norm_label_str[i]) > 0] |
|
|
|
wer = 100 * metric.compute(predictions=norm_pred_str, references=norm_label_str) |
|
|
|
return {"wer": wer, "wer_ortho": wer_ortho}, pred_str, label_str, norm_pred_str, norm_label_str |
|
|
|
|
|
feature_extractor.save_pretrained(training_args.output_dir) |
|
tokenizer.save_pretrained(training_args.output_dir) |
|
config.save_pretrained(training_args.output_dir) |
|
student_model.generation_config.save_pretrained( |
|
training_args.output_dir |
|
) |
|
|
|
processor = WhisperProcessor.from_pretrained(training_args.output_dir) |
|
|
|
data_collator = FlaxDataCollatorSpeechSeq2SeqWithPadding( |
|
processor=processor, |
|
decoder_start_token_id=student_model.config.decoder_start_token_id, |
|
decoder_prev_token_id=tokenizer.all_special_ids[-3], |
|
input_padding="longest", |
|
target_padding="max_length", |
|
max_target_length=max_label_length, |
|
) |
|
|
|
|
|
rng = jax.random.PRNGKey(training_args.seed) |
|
rng, dropout_rng = jax.random.split(rng) |
|
|
|
|
|
train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count() |
|
gradient_accumulation_steps = int(training_args.gradient_accumulation_steps) |
|
per_device_eval_batch_size = int(training_args.per_device_eval_batch_size) |
|
eval_batch_size = per_device_eval_batch_size * jax.device_count() |
|
|
|
if not data_args.streaming and training_args.max_steps < 0: |
|
num_epochs = int(training_args.num_train_epochs) |
|
steps_per_epoch = len(vectorized_datasets["train"]) // train_batch_size |
|
total_train_steps = steps_per_epoch * num_epochs |
|
elif training_args.max_steps > 0: |
|
logger.info("max_steps is given, it will override any value given in num_train_epochs") |
|
total_train_steps = int(training_args.max_steps) |
|
|
|
num_epochs = sys.maxsize |
|
steps_per_epoch = total_train_steps |
|
else: |
|
raise ValueError("max_steps must be specified when training with a streaming (iterable) dataset") |
|
|
|
if training_args.eval_steps is None: |
|
logger.info( |
|
f"eval_steps is not set, evaluating at the end of {'each epoch' if not data_args.streaming else 'training'}" |
|
) |
|
eval_steps = steps_per_epoch |
|
else: |
|
eval_steps = training_args.eval_steps |
|
|
|
|
|
linear_decay_lr_schedule_fn = create_learning_rate_fn( |
|
total_train_steps * gradient_accumulation_steps, |
|
training_args.lr_scheduler_type, |
|
training_args.warmup_steps * gradient_accumulation_steps, |
|
training_args.learning_rate, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
def decay_mask_fn(params): |
|
flat_params = traverse_util.flatten_dict(params) |
|
|
|
layer_norm_candidates = [ |
|
"layer_norm", |
|
"self_attn_layer_norm", |
|
"final_layer_norm", |
|
"encoder_attn_layer_norm", |
|
] |
|
layer_norm_named_params = { |
|
layer[-2:] |
|
for layer_norm_name in layer_norm_candidates |
|
for layer in flat_params.keys() |
|
if layer_norm_name in "".join(layer).lower() |
|
} |
|
flat_mask = {path: path[-1] != "bias" and path[-2:] not in layer_norm_named_params for path in flat_params} |
|
return traverse_util.unflatten_dict(flat_mask) |
|
|
|
|
|
adamw = optax.adamw( |
|
learning_rate=linear_decay_lr_schedule_fn, |
|
b1=training_args.adam_beta1, |
|
b2=training_args.adam_beta2, |
|
eps=training_args.adam_epsilon, |
|
weight_decay=training_args.weight_decay, |
|
mask=decay_mask_fn, |
|
) |
|
|
|
if gradient_accumulation_steps > 1: |
|
|
|
adamw = optax.MultiSteps(adamw, every_k_schedule=gradient_accumulation_steps) |
|
|
|
share_hidden_states = training_args.freeze_encoder and student_model.config.d_model == teacher_model.config.d_model |
|
encoder_layer_mapping = get_layers_to_supervise( |
|
student_model.config.encoder_layers, teacher_model.config.encoder_layers |
|
) |
|
decoder_layer_mapping = get_layers_to_supervise( |
|
student_model.config.decoder_layers, teacher_model.config.decoder_layers |
|
) |
|
|
|
|
|
student_state = TrainState.create( |
|
apply_fn=student_model.decode if share_hidden_states else student_model.__call__, |
|
params=student_params, |
|
tx=adamw, |
|
to_dtype=to_dtype, |
|
dropout_rng=dropout_rng, |
|
max_grad_norm=training_args.max_grad_norm, |
|
) |
|
|
|
if training_args.resume_from_checkpoint is not None: |
|
if os.path.isfile(os.path.join(training_args.resume_from_checkpoint, "train_state.msgpack")): |
|
logger.info( |
|
f"Checkpoint detected, resuming training at {training_args.resume_from_checkpoint}. To avoid " |
|
"this behavior, omit the resume_from_checkpoint argument." |
|
) |
|
with Path(os.path.join(training_args.resume_from_checkpoint, "train_state.msgpack")).open("rb") as f: |
|
student_state = from_bytes(student_state, f.read()) |
|
else: |
|
logger.warning( |
|
f"Checkpoint {training_args.resume_from_checkpoint} not detected, training from scratch. Ensure " |
|
f"you pass the path to a folder with a valid checkpoint for your model." |
|
) |
|
|
|
|
|
def cross_entropy_loss(logits, labels, label_smoothing_factor=0.0): |
|
""" |
|
The label smoothing implementation is adapted from Flax's official example: |
|
https://github.com/google/flax/blob/87a211135c6a377c8f29048a1cac3840e38b9da4/examples/wmt/train.py#L104 |
|
""" |
|
vocab_size = logits.shape[-1] |
|
confidence = 1.0 - label_smoothing_factor |
|
low_confidence = (1.0 - confidence) / (vocab_size - 1) |
|
normalizing_constant = -( |
|
confidence * jnp.log(confidence) + (vocab_size - 1) * low_confidence * jnp.log(low_confidence + 1e-20) |
|
) |
|
|
|
soft_labels = onehot(labels, vocab_size, on_value=confidence, off_value=low_confidence) |
|
|
|
loss = optax.softmax_cross_entropy(logits, soft_labels) |
|
loss = loss - normalizing_constant |
|
|
|
|
|
padding = labels >= 0 |
|
loss = loss * padding |
|
loss = loss.sum() |
|
num_labels = padding.sum() |
|
return loss, num_labels |
|
|
|
|
|
def kl_divergence(target_distribution, log_predicted_distribution, labels, eps=1e-20): |
|
divergence = -target_distribution * (log_predicted_distribution - jnp.log(target_distribution + eps)) |
|
|
|
padding_mask = labels >= 0 |
|
padding_mask = jnp.expand_dims(padding_mask, axis=-1) |
|
divergence = (divergence * padding_mask).sum() |
|
return to_dtype(divergence) |
|
|
|
def mean_square_error_loss(student_outputs, teacher_outputs): |
|
mse = dtype(0.0) |
|
|
|
|
|
mse += jnp.mean( |
|
jnp.square(teacher_outputs.encoder_hidden_states[0] - student_outputs.encoder_hidden_states[0]) |
|
) |
|
|
|
for student_layer_id, teacher_layer_id in encoder_layer_mapping.items(): |
|
|
|
student_hidden_state = student_outputs.encoder_hidden_states[student_layer_id + 1] |
|
teacher_hidden_state = teacher_outputs.encoder_hidden_states[teacher_layer_id + 1] |
|
mse += jnp.mean(jnp.square(teacher_hidden_state - student_hidden_state)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
mse += jnp.mean( |
|
jnp.square(teacher_outputs.decoder_hidden_states[0] - student_outputs.decoder_hidden_states[0]) |
|
) |
|
|
|
for student_layer_id, teacher_layer_id in decoder_layer_mapping.items(): |
|
|
|
student_hidden_state = student_outputs.decoder_hidden_states[student_layer_id + 1] |
|
teacher_hidden_state = teacher_outputs.decoder_hidden_states[teacher_layer_id + 1] |
|
mse += jnp.mean(jnp.square(teacher_hidden_state - student_hidden_state)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return to_dtype(mse) |
|
|
|
|
|
def train_step( |
|
student_state, |
|
teacher_params, |
|
batch, |
|
freeze_encoder, |
|
freeze_embeddings, |
|
share_hidden_states, |
|
temperature=2.0, |
|
label_smoothing_factor=0.0, |
|
): |
|
dropout_rng, new_dropout_rng = jax.random.split(student_state.dropout_rng) |
|
|
|
def compute_loss(student_params): |
|
labels = batch.pop("labels") |
|
output_hidden_states = not share_hidden_states and training_args.mse_weight > 0.0 |
|
|
|
teacher_outputs = teacher_model( |
|
**batch, |
|
params=teacher_params, |
|
freeze_encoder=True, |
|
output_hidden_states=output_hidden_states, |
|
train=False, |
|
) |
|
|
|
if share_hidden_states: |
|
|
|
|
|
encoder_hidden_states = jax.lax.stop_gradient(teacher_outputs.encoder_last_hidden_state) |
|
encoder_outputs = FlaxBaseModelOutput(last_hidden_state=encoder_hidden_states) |
|
|
|
student_outputs = student_state.apply_fn( |
|
decoder_input_ids=batch["decoder_input_ids"], |
|
encoder_outputs=encoder_outputs, |
|
freeze_embeddings=freeze_embeddings, |
|
params=student_params, |
|
dropout_rng=dropout_rng, |
|
train=True, |
|
) |
|
else: |
|
|
|
student_outputs = student_state.apply_fn( |
|
**batch, |
|
params=student_params, |
|
dropout_rng=dropout_rng, |
|
freeze_encoder=freeze_encoder, |
|
freeze_embeddings=freeze_embeddings, |
|
output_hidden_states=output_hidden_states, |
|
train=True, |
|
) |
|
|
|
|
|
ce_loss, num_labels = cross_entropy_loss( |
|
student_outputs.logits, labels, label_smoothing_factor=label_smoothing_factor |
|
) |
|
|
|
|
|
teacher_distribution = jax.nn.softmax(teacher_outputs.logits / temperature, axis=-1) |
|
|
|
teacher_distribution = jax.lax.stop_gradient(teacher_distribution) |
|
|
|
student_distribution = jax.nn.log_softmax(student_outputs.logits / temperature, axis=-1) |
|
|
|
kl_loss = kl_divergence(teacher_distribution, student_distribution, labels) * temperature**2 |
|
|
|
|
|
mse_loss = ( |
|
mean_square_error_loss(student_outputs, teacher_outputs) |
|
if output_hidden_states |
|
else jnp.zeros_like(kl_loss) |
|
) |
|
|
|
|
|
loss = ( |
|
training_args.ce_weight * ce_loss |
|
+ training_args.kl_weight * kl_loss |
|
+ training_args.mse_weight * mse_loss |
|
) |
|
|
|
return loss, (ce_loss, kl_loss, mse_loss, num_labels) |
|
|
|
grad_fn = jax.value_and_grad(compute_loss, has_aux=True) |
|
(loss, (ce_loss, kl_loss, mse_loss, num_labels)), grad = grad_fn(to_dtype(student_state.params)) |
|
|
|
|
|
loss = jax.lax.psum(loss, "batch") |
|
num_labels = jax.lax.psum(num_labels, "batch") |
|
loss = jax.tree_util.tree_map(lambda x: x / num_labels, loss) |
|
|
|
|
|
grad = jax.lax.psum(grad, "batch") |
|
grad = jax.tree_util.tree_map(lambda x: x / num_labels, grad) |
|
new_state = student_state.apply_gradients(grads=grad, dropout_rng=new_dropout_rng, to_dtype=to_dtype) |
|
|
|
|
|
ce_loss = jax.lax.psum(ce_loss, "batch") |
|
ce_loss = jax.tree_util.tree_map(lambda x: x / num_labels, ce_loss) |
|
|
|
kl_loss = jax.lax.psum(kl_loss, "batch") |
|
kl_loss = jax.tree_util.tree_map(lambda x: x / num_labels, kl_loss) |
|
|
|
mse_loss = jax.lax.psum(mse_loss, "batch") |
|
mse_loss = jax.tree_util.tree_map(lambda x: x / num_labels, mse_loss) |
|
|
|
metrics = { |
|
"loss": loss, |
|
"learning_rate": linear_decay_lr_schedule_fn(student_state.step), |
|
"ce_loss": ce_loss, |
|
"kl_loss": kl_loss, |
|
"mse_loss": mse_loss, |
|
} |
|
return new_state, metrics |
|
|
|
|
|
def eval_step(student_params, teacher_params, batch): |
|
labels = batch.pop("labels") |
|
output_hidden_states = not share_hidden_states and training_args.mse_weight > 0 |
|
|
|
student_outputs = student_model( |
|
**batch, |
|
params=student_params, |
|
output_hidden_states=output_hidden_states, |
|
train=False, |
|
) |
|
student_distribution = jax.nn.log_softmax(student_outputs.logits, axis=-1) |
|
|
|
ce_loss, num_labels = cross_entropy_loss(student_outputs.logits, labels) |
|
|
|
teacher_outputs = teacher_model( |
|
**batch, |
|
params=teacher_params, |
|
output_hidden_states=output_hidden_states, |
|
train=False, |
|
) |
|
teacher_distribution = jax.nn.softmax(teacher_outputs.logits, axis=-1) |
|
|
|
kl_loss = kl_divergence(teacher_distribution, student_distribution, labels) |
|
|
|
mse_loss = ( |
|
mean_square_error_loss(student_outputs, teacher_outputs) |
|
if output_hidden_states |
|
else jnp.zeros_like(kl_loss) |
|
) |
|
|
|
loss = ( |
|
training_args.ce_weight * ce_loss + training_args.kl_weight * kl_loss + training_args.mse_weight * mse_loss |
|
) |
|
|
|
loss = jax.lax.psum(loss, "batch") |
|
num_labels = jax.lax.psum(num_labels, "batch") |
|
loss = jax.tree_util.tree_map(lambda x: x / num_labels, loss) |
|
|
|
|
|
ce_loss = jax.lax.psum(ce_loss, "batch") |
|
ce_loss = jax.tree_util.tree_map(lambda x: x / num_labels, ce_loss) |
|
|
|
kl_loss = jax.lax.psum(kl_loss, "batch") |
|
kl_loss = jax.tree_util.tree_map(lambda x: x / num_labels, kl_loss) |
|
|
|
mse_loss = jax.lax.psum(mse_loss, "batch") |
|
mse_loss = jax.tree_util.tree_map(lambda x: x / num_labels, mse_loss) |
|
|
|
metrics = {"loss": loss, "ce_loss": ce_loss, "kl_loss": kl_loss, "mse_loss": mse_loss} |
|
return metrics |
|
|
|
|
|
num_beams = ( |
|
training_args.generation_num_beams |
|
if training_args.generation_num_beams is not None |
|
else student_model.config.num_beams |
|
) |
|
|
|
|
|
gen_kwargs = { |
|
"max_length": max_label_length, |
|
"num_beams": num_beams, |
|
"return_timestamps": return_timestamps, |
|
} |
|
|
|
if is_multilingual: |
|
|
|
gen_kwargs.update({"language": "<|en|>", "task": "transcribe"}) |
|
|
|
def generate_step(student_params, batch): |
|
output_ids = student_model.generate( |
|
batch[model_input_name], |
|
attention_mask=batch.get("attention_mask"), |
|
params=student_params, |
|
**gen_kwargs, |
|
) |
|
return output_ids.sequences |
|
|
|
|
|
student_state = student_state.replicate() |
|
|
|
|
|
teacher_params = jax_utils.replicate(teacher_params) |
|
|
|
|
|
p_train_step = jax.pmap( |
|
train_step, |
|
"batch", |
|
in_axes=(0, 0, 0, None, None, None, None, None), |
|
donate_argnums=(0,), |
|
static_broadcasted_argnums=(3, 4, 5), |
|
) |
|
p_eval_step = jax.pmap(eval_step, "batch") |
|
p_generate_step = jax.pmap(generate_step, "batch") |
|
|
|
logger.info("***** Running training *****") |
|
logger.info(f" Num examples = {total_train_steps * train_batch_size * gradient_accumulation_steps}") |
|
logger.info(" Instantaneous batch size per device =" f" {training_args.per_device_train_batch_size}") |
|
logger.info(" Gradient accumulation steps =" f" {gradient_accumulation_steps}") |
|
logger.info( |
|
f" Total train batch size (w. parallel & distributed) = {train_batch_size * gradient_accumulation_steps}" |
|
) |
|
logger.info(f" Total optimization steps = {total_train_steps}") |
|
|
|
|
|
train_time = 0 |
|
train_start = time.time() |
|
train_metrics = [] |
|
batches_to_skip = jax.device_get(unreplicate(student_state.step)) |
|
cur_step = int(batches_to_skip) |
|
epochs_trained = batches_to_skip // steps_per_epoch |
|
steps_trained_progress_bar = tqdm(range(total_train_steps), desc="Train steps ... ", position=0) |
|
steps_trained_progress_bar.update(batches_to_skip) |
|
continue_training = True |
|
minibatch_steps = 0 |
|
|
|
if batches_to_skip > 0: |
|
logger.info(" Continuing training from checkpoint, will skip to saved global_step") |
|
logger.info(f" Continuing training from epoch {epochs_trained}") |
|
logger.info(f" Continuing training from global step {batches_to_skip}") |
|
|
|
|
|
train_loader = get_data_loader( |
|
training_args.seed, |
|
vectorized_datasets["train"], |
|
batch_size=train_batch_size, |
|
data_collator=data_collator, |
|
dataloader_num_workers=dataloader_num_workers, |
|
skip_batches=batches_to_skip, |
|
prefetch_size=dataloader_prefetch_size, |
|
) |
|
|
|
for epoch in range(epochs_trained, num_epochs): |
|
if hasattr(train_loader, "dataset") and isinstance(train_loader.dataset, IterableDataset): |
|
train_loader.dataset.set_epoch(epoch) |
|
|
|
for batch in train_loader: |
|
minibatch_steps += 1 |
|
update_step = minibatch_steps == gradient_accumulation_steps |
|
|
|
if update_step: |
|
steps_trained_progress_bar.update(1) |
|
cur_step += 1 |
|
minibatch_steps = 0 |
|
|
|
batch = shard(batch.data) |
|
student_state, train_metric = p_train_step( |
|
student_state, |
|
teacher_params, |
|
batch, |
|
training_args.freeze_encoder, |
|
training_args.freeze_embeddings, |
|
share_hidden_states, |
|
training_args.temperature, |
|
training_args.label_smoothing_factor, |
|
) |
|
|
|
if cur_step % training_args.logging_steps == 0 and update_step: |
|
train_metrics.append(train_metric) |
|
train_metric_to_write = unreplicate(train_metric) |
|
steps_trained_progress_bar.write( |
|
f"Step... ({cur_step} / {total_train_steps} | Loss:" |
|
f" {train_metric_to_write['loss']}, Learning Rate:" |
|
f" {train_metric_to_write['learning_rate']})" |
|
) |
|
if has_wandb and jax.process_index() == 0: |
|
write_wandb_metric( |
|
wandb_logger, |
|
train_metric_to_write, |
|
train_time + time.time() - train_start, |
|
cur_step, |
|
epoch, |
|
prefix="train", |
|
) |
|
|
|
|
|
if (cur_step % training_args.save_steps == 0 and update_step) or cur_step == total_train_steps: |
|
if jax.process_index() == 0: |
|
save_hf_weights( |
|
student_state, |
|
student_model, |
|
processor, |
|
training_args.output_dir, |
|
cur_step, |
|
total_train_steps, |
|
use_scan=training_args.use_scan, |
|
) |
|
if training_args.save_train_state: |
|
student_state.save_state(training_args.output_dir) |
|
rotate_checkpoints( |
|
save_total_limit=training_args.save_total_limit, output_dir=training_args.output_dir |
|
) |
|
if training_args.push_to_hub: |
|
upload_folder( |
|
folder_path=training_args.output_dir, |
|
repo_id=repo_name, |
|
repo_type="model", |
|
commit_message=f"Saving train state of step {cur_step}", |
|
) |
|
|
|
if training_args.do_eval and ( |
|
(cur_step % eval_steps == 0 and update_step) or cur_step == total_train_steps |
|
): |
|
train_time += time.time() - train_start |
|
|
|
for eval_split in all_eval_splits: |
|
eval_metrics = [] |
|
eval_preds = [] |
|
eval_labels = [] |
|
eval_start = time.time() |
|
|
|
eval_loader = get_data_loader( |
|
training_args.seed, |
|
vectorized_datasets[eval_split], |
|
batch_size=eval_batch_size, |
|
data_collator=data_collator, |
|
shuffle=False, |
|
drop_last=False, |
|
dataloader_num_workers=dataloader_num_workers, |
|
) |
|
for batch in tqdm(eval_loader, desc=f"Evaluating {eval_split}...", position=2): |
|
|
|
labels = batch["labels"] |
|
|
|
metrics = pad_shard_unpad( |
|
p_eval_step, |
|
static_argnums=(0, 1), |
|
static_return=True, |
|
)( |
|
student_state.params, |
|
teacher_params, |
|
batch.data, |
|
min_device_batch=per_device_eval_batch_size, |
|
) |
|
eval_metrics.append(metrics) |
|
|
|
|
|
if training_args.predict_with_generate: |
|
generated_ids = pad_shard_unpad(p_generate_step)( |
|
student_state.params, batch.data, min_device_batch=per_device_eval_batch_size |
|
) |
|
eval_preds.extend(jax.device_get(generated_ids.reshape(-1, gen_kwargs["max_length"]))) |
|
eval_labels.extend(labels) |
|
|
|
eval_time = time.time() - eval_start |
|
|
|
|
|
eval_metrics = get_metrics(eval_metrics) |
|
eval_metrics = jax.tree_util.tree_map(jnp.mean, eval_metrics) |
|
|
|
|
|
wer_desc = "" |
|
if training_args.predict_with_generate: |
|
wer_metric, pred_str, label_str, norm_pred_str, norm_label_str = compute_metrics( |
|
eval_preds, eval_labels |
|
) |
|
eval_metrics.update(wer_metric) |
|
wer_desc = " ".join([f"Eval {key}: {value} |" for key, value in wer_metric.items()]) |
|
|
|
|
|
steps_trained_progress_bar.write( |
|
f"Eval results for step ({cur_step} / {total_train_steps} | Eval Loss: {eval_metrics['loss']} |" |
|
f" {wer_desc})" |
|
) |
|
|
|
if has_tensorboard and jax.process_index() == 0: |
|
write_eval_metric( |
|
summary_writer, |
|
eval_metrics, |
|
cur_step, |
|
prefix=eval_split, |
|
) |
|
|
|
if has_wandb and jax.process_index() == 0: |
|
write_wandb_metric(wandb_logger, eval_metrics, eval_time, cur_step, epoch, prefix=eval_split) |
|
if training_args.predict_with_generate: |
|
write_wandb_pred( |
|
wandb_logger, |
|
pred_str, |
|
label_str, |
|
norm_pred_str, |
|
norm_label_str, |
|
cur_step, |
|
prefix=eval_split, |
|
) |
|
|
|
if has_tensorboard and jax.process_index() == 0: |
|
|
|
write_train_metric( |
|
summary_writer, |
|
train_metrics, |
|
train_time, |
|
cur_step, |
|
training_args.logging_steps, |
|
) |
|
|
|
|
|
train_start = time.time() |
|
train_metrics = [] |
|
|
|
|
|
if cur_step == total_train_steps: |
|
continue_training = False |
|
break |
|
|
|
if not continue_training: |
|
break |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|