Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +10 -10
- a2c-PandaReachDense-v2/policy.optimizer.pth +1 -1
- a2c-PandaReachDense-v2/policy.pth +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
|
@@ -16,7 +16,7 @@ model-index:
|
|
| 16 |
type: PandaReachDense-v2
|
| 17 |
metrics:
|
| 18 |
- type: mean_reward
|
| 19 |
-
value: -
|
| 20 |
name: mean_reward
|
| 21 |
verified: false
|
| 22 |
---
|
|
|
|
| 16 |
type: PandaReachDense-v2
|
| 17 |
metrics:
|
| 18 |
- type: mean_reward
|
| 19 |
+
value: -1.62 +/- 0.51
|
| 20 |
name: mean_reward
|
| 21 |
verified: false
|
| 22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:31da3ac8ac1b77aa9f0a4809e72404c4c3730edd6f90fabc4bf1e5bc9144eb8a
|
| 3 |
+
size 108016
|
a2c-PandaReachDense-v2/data
CHANGED
|
@@ -4,9 +4,9 @@
|
|
| 4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
| 5 |
"__module__": "stable_baselines3.common.policies",
|
| 6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
| 7 |
-
"__init__": "<function MultiInputActorCriticPolicy.__init__ at
|
| 8 |
"__abstractmethods__": "frozenset()",
|
| 9 |
-
"_abc_impl": "<_abc._abc_data object at
|
| 10 |
},
|
| 11 |
"verbose": 1,
|
| 12 |
"policy_kwargs": {
|
|
@@ -46,7 +46,7 @@
|
|
| 46 |
"_num_timesteps_at_start": 0,
|
| 47 |
"seed": null,
|
| 48 |
"action_noise": null,
|
| 49 |
-
"start_time":
|
| 50 |
"learning_rate": 0.0007,
|
| 51 |
"tensorboard_log": null,
|
| 52 |
"lr_schedule": {
|
|
@@ -55,10 +55,10 @@
|
|
| 55 |
},
|
| 56 |
"_last_obs": {
|
| 57 |
":type:": "<class 'collections.OrderedDict'>",
|
| 58 |
-
":serialized:": "
|
| 59 |
-
"achieved_goal": "[[
|
| 60 |
-
"desired_goal": "[[
|
| 61 |
-
"observation": "[[ 0.
|
| 62 |
},
|
| 63 |
"_last_episode_starts": {
|
| 64 |
":type:": "<class 'numpy.ndarray'>",
|
|
@@ -66,9 +66,9 @@
|
|
| 66 |
},
|
| 67 |
"_last_original_obs": {
|
| 68 |
":type:": "<class 'collections.OrderedDict'>",
|
| 69 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
| 70 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
| 71 |
-
"desired_goal": "[[ 0.
|
| 72 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
| 73 |
},
|
| 74 |
"_episode_num": 0,
|
|
@@ -77,7 +77,7 @@
|
|
| 77 |
"_current_progress_remaining": 0.0,
|
| 78 |
"ep_info_buffer": {
|
| 79 |
":type:": "<class 'collections.deque'>",
|
| 80 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
| 81 |
},
|
| 82 |
"ep_success_buffer": {
|
| 83 |
":type:": "<class 'collections.deque'>",
|
|
|
|
| 4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
| 5 |
"__module__": "stable_baselines3.common.policies",
|
| 6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
| 7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f168b097af0>",
|
| 8 |
"__abstractmethods__": "frozenset()",
|
| 9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f168b098880>"
|
| 10 |
},
|
| 11 |
"verbose": 1,
|
| 12 |
"policy_kwargs": {
|
|
|
|
| 46 |
"_num_timesteps_at_start": 0,
|
| 47 |
"seed": null,
|
| 48 |
"action_noise": null,
|
| 49 |
+
"start_time": 1679603557640387555,
|
| 50 |
"learning_rate": 0.0007,
|
| 51 |
"tensorboard_log": null,
|
| 52 |
"lr_schedule": {
|
|
|
|
| 55 |
},
|
| 56 |
"_last_obs": {
|
| 57 |
":type:": "<class 'collections.OrderedDict'>",
|
| 58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAnHSnPjHEtzxsJAM/nHSnPjHEtzxsJAM/nHSnPjHEtzxsJAM/nHSnPjHEtzxsJAM/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAARAOgv0OiXL8JhTU9N5BeP/4UVb6dRYi/8DCFvOkkiL9GmpY+DSfOv0JUOb8GNsm/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACcdKc+McS3PGwkAz/ssUC88yz/OqejbzucdKc+McS3PGwkAz/ssUC88yz/OqejbzucdKc+McS3PGwkAz/ssUC88yz/OqejbzucdKc+McS3PGwkAz/ssUC88yz/OqejbzuUaA5LBEsGhpRoEnSUUpR1Lg==",
|
| 59 |
+
"achieved_goal": "[[0.32706153 0.02243242 0.5122745 ]\n [0.32706153 0.02243242 0.5122745 ]\n [0.32706153 0.02243242 0.5122745 ]\n [0.32706153 0.02243242 0.5122745 ]]",
|
| 60 |
+
"desired_goal": "[[-1.2500997 -0.8618509 0.04431633]\n [ 0.86938804 -0.20808789 -1.0646244 ]\n [-0.01625869 -1.0636264 0.29414576]\n [-1.6105667 -0.7239419 -1.5719612 ]]",
|
| 61 |
+
"observation": "[[ 0.32706153 0.02243242 0.5122745 -0.01176117 0.00194684 0.00365661]\n [ 0.32706153 0.02243242 0.5122745 -0.01176117 0.00194684 0.00365661]\n [ 0.32706153 0.02243242 0.5122745 -0.01176117 0.00194684 0.00365661]\n [ 0.32706153 0.02243242 0.5122745 -0.01176117 0.00194684 0.00365661]]"
|
| 62 |
},
|
| 63 |
"_last_episode_starts": {
|
| 64 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
|
| 66 |
},
|
| 67 |
"_last_original_obs": {
|
| 68 |
":type:": "<class 'collections.OrderedDict'>",
|
| 69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAh9GOPRyLsz3pp4Q9nYtZPU5TD77aLZM+yj+3PXtg7bzED2c+/j6xvdtImz2c3uA9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
| 70 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
| 71 |
+
"desired_goal": "[[ 0.06973558 0.08766767 0.06477339]\n [ 0.05311166 -0.13996622 0.2874592 ]\n [ 0.08947714 -0.02897667 0.22564608]\n [-0.08654593 0.07582255 0.10979959]]",
|
| 72 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
| 73 |
},
|
| 74 |
"_episode_num": 0,
|
|
|
|
| 77 |
"_current_progress_remaining": 0.0,
|
| 78 |
"ep_info_buffer": {
|
| 79 |
":type:": "<class 'collections.deque'>",
|
| 80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIc71tpkJ8/b+UhpRSlIwBbJRLMowBdJRHQKbFxsiSq2l1fZQoaAZoCWgPQwgj2/l+avz2v5SGlFKUaBVLMmgWR0CmxYuCf6GhdX2UKGgGaAloD0MIHCWvzjHg97+UhpRSlGgVSzJoFkdApsVMCV8kU3V9lChoBmgJaA9DCDWzlgLSXgLAlIaUUpRoFUsyaBZHQKbFEL5ylvZ1fZQoaAZoCWgPQwj5MHvZdhr3v5SGlFKUaBVLMmgWR0CmxrbNr0rcdX2UKGgGaAloD0MI5fG0/MBV9L+UhpRSlGgVSzJoFkdApsZ7W5H3DnV9lChoBmgJaA9DCNWWOsjrQfO/lIaUUpRoFUsyaBZHQKbGO/wiJO51fZQoaAZoCWgPQwhqwvaTMf75v5SGlFKUaBVLMmgWR0CmxgDD0lJIdX2UKGgGaAloD0MI+tAF9S3z87+UhpRSlGgVSzJoFkdApsevUONHY3V9lChoBmgJaA9DCAt8Rbde0/i/lIaUUpRoFUsyaBZHQKbHdPk7wKB1fZQoaAZoCWgPQwhJgJpatlb1v5SGlFKUaBVLMmgWR0CmxzYzrNW3dX2UKGgGaAloD0MIHLeYnxta87+UhpRSlGgVSzJoFkdApsb7MLWqcXV9lChoBmgJaA9DCMAJhQg4xPS/lIaUUpRoFUsyaBZHQKbIt5iVjZt1fZQoaAZoCWgPQwgVGR2QhD30v5SGlFKUaBVLMmgWR0CmyH1MmF8HdX2UKGgGaAloD0MIUUtzK4TV8b+UhpRSlGgVSzJoFkdApsg/L7oB73V9lChoBmgJaA9DCLyzdtuF5vK/lIaUUpRoFUsyaBZHQKbIBOFg2Ih1fZQoaAZoCWgPQwggtYmT+13xv5SGlFKUaBVLMmgWR0CmynAjIJZ4dX2UKGgGaAloD0MIdytLdJbZ8b+UhpRSlGgVSzJoFkdApso1rTH80nV9lChoBmgJaA9DCPlnBvGB3fu/lIaUUpRoFUsyaBZHQKbJ9voePq91fZQoaAZoCWgPQwhtOZfiqnL9v5SGlFKUaBVLMmgWR0CmybzHCGeudX2UKGgGaAloD0MIsMbZdARw8b+UhpRSlGgVSzJoFkdApswimhufmXV9lChoBmgJaA9DCBv0pbc/l/O/lIaUUpRoFUsyaBZHQKbL6BshxHZ1fZQoaAZoCWgPQwiVRWEXRQ/4v5SGlFKUaBVLMmgWR0Cmy6l/YraudX2UKGgGaAloD0MI86s5QDCH9b+UhpRSlGgVSzJoFkdApstu1SflIXV9lChoBmgJaA9DCBMM5xpmKPK/lIaUUpRoFUsyaBZHQKbN1gNwzch1fZQoaAZoCWgPQwjYKOs3E9Ppv5SGlFKUaBVLMmgWR0CmzZvFWGRFdX2UKGgGaAloD0MIOx3Iemp197+UhpRSlGgVSzJoFkdAps1c4R28qXV9lChoBmgJaA9DCJrQJLGknAPAlIaUUpRoFUsyaBZHQKbNIjVQQ+V1fZQoaAZoCWgPQwhF1hpK7cX5v5SGlFKUaBVLMmgWR0Cmz5LDhtLtdX2UKGgGaAloD0MIMxr5vOLp+L+UhpRSlGgVSzJoFkdAps9Yj4YaYXV9lChoBmgJaA9DCLyt9NpsbPm/lIaUUpRoFUsyaBZHQKbPGc4o7V91fZQoaAZoCWgPQwjvkjgroub0v5SGlFKUaBVLMmgWR0Cmzt9B8hLXdX2UKGgGaAloD0MIVi3pKAcz9r+UhpRSlGgVSzJoFkdAptFRmh/RV3V9lChoBmgJaA9DCJ7sZkY/2vu/lIaUUpRoFUsyaBZHQKbRFtIClrN1fZQoaAZoCWgPQwieKAmJtI35v5SGlFKUaBVLMmgWR0Cm0NhDXvphdX2UKGgGaAloD0MIrrmj/+Xa/7+UhpRSlGgVSzJoFkdAptCdbVz6rXV9lChoBmgJaA9DCIhkyLH1DPm/lIaUUpRoFUsyaBZHQKbTGIgvDgt1fZQoaAZoCWgPQwjoS29/Llr6v5SGlFKUaBVLMmgWR0Cm0t6DXe3ydX2UKGgGaAloD0MINC+H3XdsAsCUhpRSlGgVSzJoFkdAptKf7UG3WnV9lChoBmgJaA9DCCx/vi1Yavm/lIaUUpRoFUsyaBZHQKbSZaN+9al1fZQoaAZoCWgPQwjWVBaFXVT2v5SGlFKUaBVLMmgWR0Cm1DlXaJyidX2UKGgGaAloD0MIwjHLngS2+7+UhpRSlGgVSzJoFkdAptP+QhfShXV9lChoBmgJaA9DCN9t3jgpTPe/lIaUUpRoFUsyaBZHQKbTvuBtk4F1fZQoaAZoCWgPQwjZl2w82MIDwJSGlFKUaBVLMmgWR0Cm04PPkaMrdX2UKGgGaAloD0MIoWRyamdY/7+UhpRSlGgVSzJoFkdAptVGN96Tn3V9lChoBmgJaA9DCKciFcYWogHAlIaUUpRoFUsyaBZHQKbVCvZh8Y11fZQoaAZoCWgPQwjMlxdgH138v5SGlFKUaBVLMmgWR0Cm1MulwcYJdX2UKGgGaAloD0MI0SNGzy2UCMCUhpRSlGgVSzJoFkdAptSQraufVnV9lChoBmgJaA9DCA3fwrrx7gTAlIaUUpRoFUsyaBZHQKbWYqslsxh1fZQoaAZoCWgPQwhK7UW0HbMAwJSGlFKUaBVLMmgWR0Cm1idqtYCAdX2UKGgGaAloD0MIoyHjUSrh9r+UhpRSlGgVSzJoFkdAptXoNPP9k3V9lChoBmgJaA9DCCidSDDVDATAlIaUUpRoFUsyaBZHQKbVrRBNVR11fZQoaAZoCWgPQwgYXknyXB/2v5SGlFKUaBVLMmgWR0Cm12VBUrCndX2UKGgGaAloD0MI+fVDbLCQAsCUhpRSlGgVSzJoFkdAptcp9uxbCHV9lChoBmgJaA9DCEYiNIKN6wHAlIaUUpRoFUsyaBZHQKbW6rtE5Qx1fZQoaAZoCWgPQwhQUIpW7iUCwJSGlFKUaBVLMmgWR0Cm1q+VC5VfdX2UKGgGaAloD0MItDwP7s4a9b+UhpRSlGgVSzJoFkdApth4FvAGjnV9lChoBmgJaA9DCH2SO2wis/a/lIaUUpRoFUsyaBZHQKbYPP0qYqp1fZQoaAZoCWgPQwi5ADRKl37yv5SGlFKUaBVLMmgWR0Cm1/2eYlY2dX2UKGgGaAloD0MIE38Udeae9r+UhpRSlGgVSzJoFkdAptfCd4FA3XV9lChoBmgJaA9DCNvDXihg+/q/lIaUUpRoFUsyaBZHQKbZjnyup0h1fZQoaAZoCWgPQwiH/Z5Yp4r8v5SGlFKUaBVLMmgWR0Cm2VNNrTH9dX2UKGgGaAloD0MImGvRArTt97+UhpRSlGgVSzJoFkdAptkT+cYqG3V9lChoBmgJaA9DCMOAJVexOPW/lIaUUpRoFUsyaBZHQKbY2MuOCGx1fZQoaAZoCWgPQwig4c0avG/0v5SGlFKUaBVLMmgWR0Cm2pDRlYlqdX2UKGgGaAloD0MIIc7DCUwn+b+UhpRSlGgVSzJoFkdAptpV5OafBnV9lChoBmgJaA9DCDSBIhYxrPa/lIaUUpRoFUsyaBZHQKbaFopx3mp1fZQoaAZoCWgPQwhV3o5wWvD3v5SGlFKUaBVLMmgWR0Cm2dtet0V8dX2UKGgGaAloD0MI93ghHR7C9b+UhpRSlGgVSzJoFkdAptuSnFYMfHV9lChoBmgJaA9DCGGNs+kI4P2/lIaUUpRoFUsyaBZHQKbbV4Hooux1fZQoaAZoCWgPQwhivyfWqbL7v5SGlFKUaBVLMmgWR0Cm2xgs9SuRdX2UKGgGaAloD0MIjdKlf0kq+r+UhpRSlGgVSzJoFkdAptrc/4ZdfXV9lChoBmgJaA9DCF3Cobd42AHAlIaUUpRoFUsyaBZHQKbclYK6WgR1fZQoaAZoCWgPQwiISE27mKb+v5SGlFKUaBVLMmgWR0Cm3Fp1zQu3dX2UKGgGaAloD0MIm3Eaogp/AcCUhpRSlGgVSzJoFkdAptwbAnDziHV9lChoBmgJaA9DCGH9n8N8ufW/lIaUUpRoFUsyaBZHQKbb3+pfhMt1fZQoaAZoCWgPQwgrhqsDIG7uv5SGlFKUaBVLMmgWR0Cm3ZzdDYywdX2UKGgGaAloD0MIEsE4uHQMA8CUhpRSlGgVSzJoFkdApt1hvP1L8XV9lChoBmgJaA9DCBgLQ+T0NQHAlIaUUpRoFUsyaBZHQKbdIotthux1fZQoaAZoCWgPQwhZbf5fdST1v5SGlFKUaBVLMmgWR0Cm3OeM6zVudX2UKGgGaAloD0MID+7O2m0X8r+UhpRSlGgVSzJoFkdApt6rwQUYbnV9lChoBmgJaA9DCLZKsDicufi/lIaUUpRoFUsyaBZHQKbecRQJokB1fZQoaAZoCWgPQwitaklHOfgAwJSGlFKUaBVLMmgWR0Cm3jHKwIMSdX2UKGgGaAloD0MIhNiZQud187+UhpRSlGgVSzJoFkdApt32lO45LnV9lChoBmgJaA9DCFLSw9DqZPi/lIaUUpRoFUsyaBZHQKbft8YQ8Ol1fZQoaAZoCWgPQwjChTyCG2n2v5SGlFKUaBVLMmgWR0Cm33z7di2EdX2UKGgGaAloD0MIdCMsKuI08L+UhpRSlGgVSzJoFkdApt89me18cHV9lChoBmgJaA9DCNTxmIHKuPa/lIaUUpRoFUsyaBZHQKbfAoKD0191fZQoaAZoCWgPQwihLHx9rUv6v5SGlFKUaBVLMmgWR0Cm4L4EOiFkdX2UKGgGaAloD0MIb4RFRZzO97+UhpRSlGgVSzJoFkdApuCC2rn1WnV9lChoBmgJaA9DCP1NKETAIfi/lIaUUpRoFUsyaBZHQKbgQ5fdAPd1fZQoaAZoCWgPQwhtO22NCEb+v5SGlFKUaBVLMmgWR0Cm4AhqCYkWdX2UKGgGaAloD0MI0eejjLgA+r+UhpRSlGgVSzJoFkdApuHGsFMZg3V9lChoBmgJaA9DCONSlba4hvK/lIaUUpRoFUsyaBZHQKbhi4iHIp91fZQoaAZoCWgPQwjfUs4Xe6/7v5SGlFKUaBVLMmgWR0Cm4UxBNVR2dX2UKGgGaAloD0MIbXL4pBMJ+r+UhpRSlGgVSzJoFkdApuERFI/Z/XV9lChoBmgJaA9DCHKndLD+j/G/lIaUUpRoFUsyaBZHQKbi0nVoYel1fZQoaAZoCWgPQwhx58JILyr7v5SGlFKUaBVLMmgWR0Cm4pdAX2ugdX2UKGgGaAloD0MIhjqscMvnAsCUhpRSlGgVSzJoFkdApuJYAS39aXV9lChoBmgJaA9DCAGnd/F+HPm/lIaUUpRoFUsyaBZHQKbiHNjbzsh1ZS4="
|
| 81 |
},
|
| 82 |
"ep_success_buffer": {
|
| 83 |
":type:": "<class 'collections.deque'>",
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 44734
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cae8b5486b145b0288084f37cb813d21f38148984caa7fdfbbd585bf1275c676
|
| 3 |
size 44734
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 46014
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3719c896dfb91f181dfd8aafebec63886391fe247069bd5235aa81a5c9f989eb
|
| 3 |
size 46014
|
config.json
CHANGED
|
@@ -1 +1 @@
|
|
| 1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f6b32d68c10>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f6b32d6b8c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679590282055351081, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAWlLZPsqegLy6ago/WlLZPsqegLy6ago/WlLZPsqegLy6ago/WlLZPsqegLy6ago/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAnC2VP2Quir932jg/DF5LP/4mjr6rT0e/gaohvw1xoz8Qfpg+wVz/vpgUzL/KKYU/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABaUtk+yp6AvLpqCj8XPHM8RRyfOmWbbjxaUtk+yp6AvLpqCj8XPHM8RRyfOmWbbjxaUtk+yp6AvLpqCj8XPHM8RRyfOmWbbjxaUtk+yp6AvLpqCj8XPHM8RRyfOmWbbjyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.42445642 -0.01570072 0.540691 ]\n [ 0.42445642 -0.01570072 0.540691 ]\n [ 0.42445642 -0.01570072 0.540691 ]\n [ 0.42445642 -0.01570072 0.540691 ]]", "desired_goal": "[[ 1.1654544 -1.0795407 0.7220835 ]\n [ 0.7944038 -0.27764124 -0.7785594 ]\n [-0.63150793 1.2768875 0.29783678]\n [-0.49875453 -1.5943785 1.0403378 ]]", "observation": "[[ 0.42445642 -0.01570072 0.540691 0.01484587 0.00121392 0.01456342]\n [ 0.42445642 -0.01570072 0.540691 0.01484587 0.00121392 0.01456342]\n [ 0.42445642 -0.01570072 0.540691 0.01484587 0.00121392 0.01456342]\n [ 0.42445642 -0.01570072 0.540691 0.01484587 0.00121392 0.01456342]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAArI0aPBJIg72RNjA9X02zvddsO7191Ck+9O0OvM8rLr2xGBY+ChqgvN7nJL3Ujoc9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.00943319 -0.06410231 0.04302079]\n [-0.08754992 -0.04575809 0.16584964]\n [-0.00872372 -0.04252225 0.14657857]\n [-0.01954367 -0.04026019 0.06619039]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZRwj2SPkF8CUhpRSlIwBbJRLMowBdJRHQKc/wEr5IpZ1fZQoaAZoCWgPQwiEukihLCwZwJSGlFKUaBVLMmgWR0CnP4ORcNYsdX2UKGgGaAloD0MIBwd7E0PCGcCUhpRSlGgVSzJoFkdApz9F3GGVRnV9lChoBmgJaA9DCCAot+17tA3AlIaUUpRoFUsyaBZHQKc/B6rvLHN1fZQoaAZoCWgPQwgIc7uX+7wiwJSGlFKUaBVLMmgWR0CnQLNzr/sFdX2UKGgGaAloD0MIbsFSXcD7EMCUhpRSlGgVSzJoFkdAp0B2yquKXXV9lChoBmgJaA9DCNkJL8GpHxrAlIaUUpRoFUsyaBZHQKdAOVqveP91fZQoaAZoCWgPQwgQWg9fJsoNwJSGlFKUaBVLMmgWR0CnP/siSq2jdX2UKGgGaAloD0MIp5IBoIp7FsCUhpRSlGgVSzJoFkdAp0GpOHnEEXV9lChoBmgJaA9DCJYFE38UlRDAlIaUUpRoFUsyaBZHQKdBbYAbQ1J1fZQoaAZoCWgPQwjU78LWbNUcwJSGlFKUaBVLMmgWR0CnQS/YraufdX2UKGgGaAloD0MIjq89syRwEsCUhpRSlGgVSzJoFkdAp0Dxng5zYHV9lChoBmgJaA9DCMYxkj1C1SPAlIaUUpRoFUsyaBZHQKdCkVkc0ch1fZQoaAZoCWgPQwhHkEqxo0ETwJSGlFKUaBVLMmgWR0CnQlTNUwSKdX2UKGgGaAloD0MIL1G9NbBVEcCUhpRSlGgVSzJoFkdAp0IXIEKVp3V9lChoBmgJaA9DCGHgufdwSRLAlIaUUpRoFUsyaBZHQKdB2Otnwod1fZQoaAZoCWgPQwgzh6QWSrYuwJSGlFKUaBVLMmgWR0CnQ39+ocaPdX2UKGgGaAloD0MIbW+3JAf8GMCUhpRSlGgVSzJoFkdAp0NC2c8Tz3V9lChoBmgJaA9DCCOjA5KwHx7AlIaUUpRoFUsyaBZHQKdDBTKDCgt1fZQoaAZoCWgPQwg0gSIWMSwawJSGlFKUaBVLMmgWR0CnQsdCNS62dX2UKGgGaAloD0MIjXxe8dSjHMCUhpRSlGgVSzJoFkdAp0RlSde6Z3V9lChoBmgJaA9DCEvoLomzghPAlIaUUpRoFUsyaBZHQKdEKJ+DvmZ1fZQoaAZoCWgPQwiiuONNfhsSwJSGlFKUaBVLMmgWR0CnQ+raEi+tdX2UKGgGaAloD0MIx/Xv+sxZFsCUhpRSlGgVSzJoFkdAp0OsqQRwqHV9lChoBmgJaA9DCNlfdk8edibAlIaUUpRoFUsyaBZHQKdF1/I8yN51fZQoaAZoCWgPQwgLthFPdmMWwJSGlFKUaBVLMmgWR0CnRZvGyX2NdX2UKGgGaAloD0MIcr9DUaAfHsCUhpRSlGgVSzJoFkdAp0VejTKDCnV9lChoBmgJaA9DCMXjolpENCHAlIaUUpRoFUsyaBZHQKdFIUfxMFl1fZQoaAZoCWgPQwjbGDvhJXgTwJSGlFKUaBVLMmgWR0CnR0HwXqJNdX2UKGgGaAloD0MIUWaDTDL6IsCUhpRSlGgVSzJoFkdAp0cF2Rq46XV9lChoBmgJaA9DCJ8hHLPsuRHAlIaUUpRoFUsyaBZHQKdGyNG3F1l1fZQoaAZoCWgPQwhxBKkUO5oSwJSGlFKUaBVLMmgWR0CnRouHN5dGdX2UKGgGaAloD0MI48XCEDltGsCUhpRSlGgVSzJoFkdAp0i7o8p1BHV9lChoBmgJaA9DCLL0oQvqmxfAlIaUUpRoFUsyaBZHQKdIf5s0pEx1fZQoaAZoCWgPQwgJ4GbxYtERwJSGlFKUaBVLMmgWR0CnSEJW3jMndX2UKGgGaAloD0MIOWItPgWgEcCUhpRSlGgVSzJoFkdAp0gEwevIO3V9lChoBmgJaA9DCF1r71NVGBDAlIaUUpRoFUsyaBZHQKdKSuSOinJ1fZQoaAZoCWgPQwjChxIteVQjwJSGlFKUaBVLMmgWR0CnSg8cU/OddX2UKGgGaAloD0MIQGt+/KU1FcCUhpRSlGgVSzJoFkdAp0nSJO32EnV9lChoBmgJaA9DCNzawvNSkRTAlIaUUpRoFUsyaBZHQKdJlLIxQBR1fZQoaAZoCWgPQwgGDmjpCtYQwJSGlFKUaBVLMmgWR0CnS94C6pYLdX2UKGgGaAloD0MIRSv3ArMyIMCUhpRSlGgVSzJoFkdAp0uiE8JUpHV9lChoBmgJaA9DCOp5NxYUJhzAlIaUUpRoFUsyaBZHQKdLZPw/gR91fZQoaAZoCWgPQwiHhzB+GscQwJSGlFKUaBVLMmgWR0CnSyd5yEL6dX2UKGgGaAloD0MI+wPltn2fEcCUhpRSlGgVSzJoFkdAp01YLeANG3V9lChoBmgJaA9DCOTZ5VsfVgrAlIaUUpRoFUsyaBZHQKdNHBJI1+B1fZQoaAZoCWgPQwj+SBEZVjEhwJSGlFKUaBVLMmgWR0CnTN9jXnQqdX2UKGgGaAloD0MIiNhg4SStD8CUhpRSlGgVSzJoFkdAp0yiFPBSDXV9lChoBmgJaA9DCN6QRgVO5hDAlIaUUpRoFUsyaBZHQKdOe+yJKrd1fZQoaAZoCWgPQwhXJCao4fsbwJSGlFKUaBVLMmgWR0CnTj9IPK+0dX2UKGgGaAloD0MICi5W1GAyIMCUhpRSlGgVSzJoFkdAp04BrnDBM3V9lChoBmgJaA9DCIkl5e5zvBTAlIaUUpRoFUsyaBZHQKdNw4uscQ11fZQoaAZoCWgPQwgYQWMmUS8SwJSGlFKUaBVLMmgWR0CnT2SEL6UJdX2UKGgGaAloD0MIXAAapUuPFsCUhpRSlGgVSzJoFkdAp08nugHu7nV9lChoBmgJaA9DCFInoImwQRPAlIaUUpRoFUsyaBZHQKdO6g3974V1fZQoaAZoCWgPQwh88rBQazoTwJSGlFKUaBVLMmgWR0CnTqvSc9W7dX2UKGgGaAloD0MI6xotB3pIEMCUhpRSlGgVSzJoFkdAp1BG4AjptHV9lChoBmgJaA9DCOQwmL9CZg/AlIaUUpRoFUsyaBZHQKdQCnfl6qt1fZQoaAZoCWgPQwhw626e6uASwJSGlFKUaBVLMmgWR0CnT8zGHYYjdX2UKGgGaAloD0MIfv/mxYmfEMCUhpRSlGgVSzJoFkdAp0+OtKZlWnV9lChoBmgJaA9DCH1Z2qm5jBXAlIaUUpRoFUsyaBZHQKdRNvS+g151fZQoaAZoCWgPQwhn8WJhiEwewJSGlFKUaBVLMmgWR0CnUPo1UEPldX2UKGgGaAloD0MIZVQZxt3QEsCUhpRSlGgVSzJoFkdAp1C8hV2ic3V9lChoBmgJaA9DCCv8Gd6scRLAlIaUUpRoFUsyaBZHQKdQflijL0V1fZQoaAZoCWgPQwgldQKaCKsTwJSGlFKUaBVLMmgWR0CnUhq9oN/fdX2UKGgGaAloD0MI/p3t0RtOHcCUhpRSlGgVSzJoFkdAp1HeC7K7qnV9lChoBmgJaA9DCH/ZPXlYqCPAlIaUUpRoFUsyaBZHQKdRoE7nxKB1fZQoaAZoCWgPQwi9cyhDVcwawJSGlFKUaBVLMmgWR0CnUWIYvWYndX2UKGgGaAloD0MI9x3DYz8rHMCUhpRSlGgVSzJoFkdAp1MJ1A7gbnV9lChoBmgJaA9DCLd7uU+OIhLAlIaUUpRoFUsyaBZHQKdSzVI7Njd1fZQoaAZoCWgPQwjzj75J03AWwJSGlFKUaBVLMmgWR0CnUo+2uxKQdX2UKGgGaAloD0MI8E+pEmWfHMCUhpRSlGgVSzJoFkdAp1JRzo2XLXV9lChoBmgJaA9DCHFyv0NR0BHAlIaUUpRoFUsyaBZHQKdT78+iaiN1fZQoaAZoCWgPQwinWDUIc7sfwJSGlFKUaBVLMmgWR0CnU7MtsenydX2UKGgGaAloD0MI93e2R284DsCUhpRSlGgVSzJoFkdAp1N1g0CRwXV9lChoBmgJaA9DCNap8j0jMRrAlIaUUpRoFUsyaBZHQKdTN1zQu291fZQoaAZoCWgPQwigjVw3pRwNwJSGlFKUaBVLMmgWR0CnVNh+vyLAdX2UKGgGaAloD0MINpVFYRdFFMCUhpRSlGgVSzJoFkdAp1ScEV32VXV9lChoBmgJaA9DCPRQ24ZR8A3AlIaUUpRoFUsyaBZHQKdUXnVXmvJ1fZQoaAZoCWgPQwhdF35wPj0lwJSGlFKUaBVLMmgWR0CnVCBjOLR8dX2UKGgGaAloD0MIdZSD2QS4EcCUhpRSlGgVSzJoFkdAp1W2HYYixHV9lChoBmgJaA9DCFbVy+80aRnAlIaUUpRoFUsyaBZHQKdVeXWOIZZ1fZQoaAZoCWgPQwh8f4P26rMSwJSGlFKUaBVLMmgWR0CnVTvjn3cpdX2UKGgGaAloD0MIVaaYg6BjC8CUhpRSlGgVSzJoFkdAp1T9vVEux3V9lChoBmgJaA9DCEJfevtzwRPAlIaUUpRoFUsyaBZHQKdWmcRUWEd1fZQoaAZoCWgPQwiy1lBqL8IRwJSGlFKUaBVLMmgWR0CnVl0+1SfldX2UKGgGaAloD0MIuW3fo/76EMCUhpRSlGgVSzJoFkdAp1YgDRtxdnV9lChoBmgJaA9DCAN9Ik+S/hvAlIaUUpRoFUsyaBZHQKdV4e/YapB1fZQoaAZoCWgPQwhj0XR2MjgdwJSGlFKUaBVLMmgWR0CnV4T4L1EmdX2UKGgGaAloD0MIxF4oYDvYC8CUhpRSlGgVSzJoFkdAp1dIcvM8o3V9lChoBmgJaA9DCAB0mC8v4BnAlIaUUpRoFUsyaBZHQKdXCtapxWF1fZQoaAZoCWgPQwhoklhS7t4TwJSGlFKUaBVLMmgWR0CnVsy2QXANdX2UKGgGaAloD0MI+7DeqBWGEcCUhpRSlGgVSzJoFkdAp1hl8Rcu8XV9lChoBmgJaA9DCKNZ2T7kfRbAlIaUUpRoFUsyaBZHQKdYKXm/3391fZQoaAZoCWgPQwhMpDSbx7EYwJSGlFKUaBVLMmgWR0CnV+va+N96dX2UKGgGaAloD0MIg24vaYwmFMCUhpRSlGgVSzJoFkdAp1etnwob43V9lChoBmgJaA9DCOtVZHRAEh3AlIaUUpRoFUsyaBZHQKdZaRzzVc51fZQoaAZoCWgPQwi37uapDtkKwJSGlFKUaBVLMmgWR0CnWSxz7uUmdX2UKGgGaAloD0MIN94dGaudE8CUhpRSlGgVSzJoFkdAp1juwA2hqXV9lChoBmgJaA9DCKaXGMv06w/AlIaUUpRoFUsyaBZHQKdYsOyVv/B1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
|
| 1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f168b097af0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f168b098880>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679603557640387555, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAnHSnPjHEtzxsJAM/nHSnPjHEtzxsJAM/nHSnPjHEtzxsJAM/nHSnPjHEtzxsJAM/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAARAOgv0OiXL8JhTU9N5BeP/4UVb6dRYi/8DCFvOkkiL9GmpY+DSfOv0JUOb8GNsm/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACcdKc+McS3PGwkAz/ssUC88yz/OqejbzucdKc+McS3PGwkAz/ssUC88yz/OqejbzucdKc+McS3PGwkAz/ssUC88yz/OqejbzucdKc+McS3PGwkAz/ssUC88yz/OqejbzuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.32706153 0.02243242 0.5122745 ]\n [0.32706153 0.02243242 0.5122745 ]\n [0.32706153 0.02243242 0.5122745 ]\n [0.32706153 0.02243242 0.5122745 ]]", "desired_goal": "[[-1.2500997 -0.8618509 0.04431633]\n [ 0.86938804 -0.20808789 -1.0646244 ]\n [-0.01625869 -1.0636264 0.29414576]\n [-1.6105667 -0.7239419 -1.5719612 ]]", "observation": "[[ 0.32706153 0.02243242 0.5122745 -0.01176117 0.00194684 0.00365661]\n [ 0.32706153 0.02243242 0.5122745 -0.01176117 0.00194684 0.00365661]\n [ 0.32706153 0.02243242 0.5122745 -0.01176117 0.00194684 0.00365661]\n [ 0.32706153 0.02243242 0.5122745 -0.01176117 0.00194684 0.00365661]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAh9GOPRyLsz3pp4Q9nYtZPU5TD77aLZM+yj+3PXtg7bzED2c+/j6xvdtImz2c3uA9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.06973558 0.08766767 0.06477339]\n [ 0.05311166 -0.13996622 0.2874592 ]\n [ 0.08947714 -0.02897667 0.22564608]\n [-0.08654593 0.07582255 0.10979959]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIc71tpkJ8/b+UhpRSlIwBbJRLMowBdJRHQKbFxsiSq2l1fZQoaAZoCWgPQwgj2/l+avz2v5SGlFKUaBVLMmgWR0CmxYuCf6GhdX2UKGgGaAloD0MIHCWvzjHg97+UhpRSlGgVSzJoFkdApsVMCV8kU3V9lChoBmgJaA9DCDWzlgLSXgLAlIaUUpRoFUsyaBZHQKbFEL5ylvZ1fZQoaAZoCWgPQwj5MHvZdhr3v5SGlFKUaBVLMmgWR0CmxrbNr0rcdX2UKGgGaAloD0MI5fG0/MBV9L+UhpRSlGgVSzJoFkdApsZ7W5H3DnV9lChoBmgJaA9DCNWWOsjrQfO/lIaUUpRoFUsyaBZHQKbGO/wiJO51fZQoaAZoCWgPQwhqwvaTMf75v5SGlFKUaBVLMmgWR0CmxgDD0lJIdX2UKGgGaAloD0MI+tAF9S3z87+UhpRSlGgVSzJoFkdApsevUONHY3V9lChoBmgJaA9DCAt8Rbde0/i/lIaUUpRoFUsyaBZHQKbHdPk7wKB1fZQoaAZoCWgPQwhJgJpatlb1v5SGlFKUaBVLMmgWR0CmxzYzrNW3dX2UKGgGaAloD0MIHLeYnxta87+UhpRSlGgVSzJoFkdApsb7MLWqcXV9lChoBmgJaA9DCMAJhQg4xPS/lIaUUpRoFUsyaBZHQKbIt5iVjZt1fZQoaAZoCWgPQwgVGR2QhD30v5SGlFKUaBVLMmgWR0CmyH1MmF8HdX2UKGgGaAloD0MIUUtzK4TV8b+UhpRSlGgVSzJoFkdApsg/L7oB73V9lChoBmgJaA9DCLyzdtuF5vK/lIaUUpRoFUsyaBZHQKbIBOFg2Ih1fZQoaAZoCWgPQwggtYmT+13xv5SGlFKUaBVLMmgWR0CmynAjIJZ4dX2UKGgGaAloD0MIdytLdJbZ8b+UhpRSlGgVSzJoFkdApso1rTH80nV9lChoBmgJaA9DCPlnBvGB3fu/lIaUUpRoFUsyaBZHQKbJ9voePq91fZQoaAZoCWgPQwhtOZfiqnL9v5SGlFKUaBVLMmgWR0CmybzHCGeudX2UKGgGaAloD0MIsMbZdARw8b+UhpRSlGgVSzJoFkdApswimhufmXV9lChoBmgJaA9DCBv0pbc/l/O/lIaUUpRoFUsyaBZHQKbL6BshxHZ1fZQoaAZoCWgPQwiVRWEXRQ/4v5SGlFKUaBVLMmgWR0Cmy6l/YraudX2UKGgGaAloD0MI86s5QDCH9b+UhpRSlGgVSzJoFkdApstu1SflIXV9lChoBmgJaA9DCBMM5xpmKPK/lIaUUpRoFUsyaBZHQKbN1gNwzch1fZQoaAZoCWgPQwjYKOs3E9Ppv5SGlFKUaBVLMmgWR0CmzZvFWGRFdX2UKGgGaAloD0MIOx3Iemp197+UhpRSlGgVSzJoFkdAps1c4R28qXV9lChoBmgJaA9DCJrQJLGknAPAlIaUUpRoFUsyaBZHQKbNIjVQQ+V1fZQoaAZoCWgPQwhF1hpK7cX5v5SGlFKUaBVLMmgWR0Cmz5LDhtLtdX2UKGgGaAloD0MIMxr5vOLp+L+UhpRSlGgVSzJoFkdAps9Yj4YaYXV9lChoBmgJaA9DCLyt9NpsbPm/lIaUUpRoFUsyaBZHQKbPGc4o7V91fZQoaAZoCWgPQwjvkjgroub0v5SGlFKUaBVLMmgWR0Cmzt9B8hLXdX2UKGgGaAloD0MIVi3pKAcz9r+UhpRSlGgVSzJoFkdAptFRmh/RV3V9lChoBmgJaA9DCJ7sZkY/2vu/lIaUUpRoFUsyaBZHQKbRFtIClrN1fZQoaAZoCWgPQwieKAmJtI35v5SGlFKUaBVLMmgWR0Cm0NhDXvphdX2UKGgGaAloD0MIrrmj/+Xa/7+UhpRSlGgVSzJoFkdAptCdbVz6rXV9lChoBmgJaA9DCIhkyLH1DPm/lIaUUpRoFUsyaBZHQKbTGIgvDgt1fZQoaAZoCWgPQwjoS29/Llr6v5SGlFKUaBVLMmgWR0Cm0t6DXe3ydX2UKGgGaAloD0MINC+H3XdsAsCUhpRSlGgVSzJoFkdAptKf7UG3WnV9lChoBmgJaA9DCCx/vi1Yavm/lIaUUpRoFUsyaBZHQKbSZaN+9al1fZQoaAZoCWgPQwjWVBaFXVT2v5SGlFKUaBVLMmgWR0Cm1DlXaJyidX2UKGgGaAloD0MIwjHLngS2+7+UhpRSlGgVSzJoFkdAptP+QhfShXV9lChoBmgJaA9DCN9t3jgpTPe/lIaUUpRoFUsyaBZHQKbTvuBtk4F1fZQoaAZoCWgPQwjZl2w82MIDwJSGlFKUaBVLMmgWR0Cm04PPkaMrdX2UKGgGaAloD0MIoWRyamdY/7+UhpRSlGgVSzJoFkdAptVGN96Tn3V9lChoBmgJaA9DCKciFcYWogHAlIaUUpRoFUsyaBZHQKbVCvZh8Y11fZQoaAZoCWgPQwjMlxdgH138v5SGlFKUaBVLMmgWR0Cm1MulwcYJdX2UKGgGaAloD0MI0SNGzy2UCMCUhpRSlGgVSzJoFkdAptSQraufVnV9lChoBmgJaA9DCA3fwrrx7gTAlIaUUpRoFUsyaBZHQKbWYqslsxh1fZQoaAZoCWgPQwhK7UW0HbMAwJSGlFKUaBVLMmgWR0Cm1idqtYCAdX2UKGgGaAloD0MIoyHjUSrh9r+UhpRSlGgVSzJoFkdAptXoNPP9k3V9lChoBmgJaA9DCCidSDDVDATAlIaUUpRoFUsyaBZHQKbVrRBNVR11fZQoaAZoCWgPQwgYXknyXB/2v5SGlFKUaBVLMmgWR0Cm12VBUrCndX2UKGgGaAloD0MI+fVDbLCQAsCUhpRSlGgVSzJoFkdAptcp9uxbCHV9lChoBmgJaA9DCEYiNIKN6wHAlIaUUpRoFUsyaBZHQKbW6rtE5Qx1fZQoaAZoCWgPQwhQUIpW7iUCwJSGlFKUaBVLMmgWR0Cm1q+VC5VfdX2UKGgGaAloD0MItDwP7s4a9b+UhpRSlGgVSzJoFkdApth4FvAGjnV9lChoBmgJaA9DCH2SO2wis/a/lIaUUpRoFUsyaBZHQKbYPP0qYqp1fZQoaAZoCWgPQwi5ADRKl37yv5SGlFKUaBVLMmgWR0Cm1/2eYlY2dX2UKGgGaAloD0MIE38Udeae9r+UhpRSlGgVSzJoFkdAptfCd4FA3XV9lChoBmgJaA9DCNvDXihg+/q/lIaUUpRoFUsyaBZHQKbZjnyup0h1fZQoaAZoCWgPQwiH/Z5Yp4r8v5SGlFKUaBVLMmgWR0Cm2VNNrTH9dX2UKGgGaAloD0MImGvRArTt97+UhpRSlGgVSzJoFkdAptkT+cYqG3V9lChoBmgJaA9DCMOAJVexOPW/lIaUUpRoFUsyaBZHQKbY2MuOCGx1fZQoaAZoCWgPQwig4c0avG/0v5SGlFKUaBVLMmgWR0Cm2pDRlYlqdX2UKGgGaAloD0MIIc7DCUwn+b+UhpRSlGgVSzJoFkdAptpV5OafBnV9lChoBmgJaA9DCDSBIhYxrPa/lIaUUpRoFUsyaBZHQKbaFopx3mp1fZQoaAZoCWgPQwhV3o5wWvD3v5SGlFKUaBVLMmgWR0Cm2dtet0V8dX2UKGgGaAloD0MI93ghHR7C9b+UhpRSlGgVSzJoFkdAptuSnFYMfHV9lChoBmgJaA9DCGGNs+kI4P2/lIaUUpRoFUsyaBZHQKbbV4Hooux1fZQoaAZoCWgPQwhivyfWqbL7v5SGlFKUaBVLMmgWR0Cm2xgs9SuRdX2UKGgGaAloD0MIjdKlf0kq+r+UhpRSlGgVSzJoFkdAptrc/4ZdfXV9lChoBmgJaA9DCF3Cobd42AHAlIaUUpRoFUsyaBZHQKbclYK6WgR1fZQoaAZoCWgPQwiISE27mKb+v5SGlFKUaBVLMmgWR0Cm3Fp1zQu3dX2UKGgGaAloD0MIm3Eaogp/AcCUhpRSlGgVSzJoFkdAptwbAnDziHV9lChoBmgJaA9DCGH9n8N8ufW/lIaUUpRoFUsyaBZHQKbb3+pfhMt1fZQoaAZoCWgPQwgrhqsDIG7uv5SGlFKUaBVLMmgWR0Cm3ZzdDYywdX2UKGgGaAloD0MIEsE4uHQMA8CUhpRSlGgVSzJoFkdApt1hvP1L8XV9lChoBmgJaA9DCBgLQ+T0NQHAlIaUUpRoFUsyaBZHQKbdIotthux1fZQoaAZoCWgPQwhZbf5fdST1v5SGlFKUaBVLMmgWR0Cm3OeM6zVudX2UKGgGaAloD0MID+7O2m0X8r+UhpRSlGgVSzJoFkdApt6rwQUYbnV9lChoBmgJaA9DCLZKsDicufi/lIaUUpRoFUsyaBZHQKbecRQJokB1fZQoaAZoCWgPQwitaklHOfgAwJSGlFKUaBVLMmgWR0Cm3jHKwIMSdX2UKGgGaAloD0MIhNiZQud187+UhpRSlGgVSzJoFkdApt32lO45LnV9lChoBmgJaA9DCFLSw9DqZPi/lIaUUpRoFUsyaBZHQKbft8YQ8Ol1fZQoaAZoCWgPQwjChTyCG2n2v5SGlFKUaBVLMmgWR0Cm33z7di2EdX2UKGgGaAloD0MIdCMsKuI08L+UhpRSlGgVSzJoFkdApt89me18cHV9lChoBmgJaA9DCNTxmIHKuPa/lIaUUpRoFUsyaBZHQKbfAoKD0191fZQoaAZoCWgPQwihLHx9rUv6v5SGlFKUaBVLMmgWR0Cm4L4EOiFkdX2UKGgGaAloD0MIb4RFRZzO97+UhpRSlGgVSzJoFkdApuCC2rn1WnV9lChoBmgJaA9DCP1NKETAIfi/lIaUUpRoFUsyaBZHQKbgQ5fdAPd1fZQoaAZoCWgPQwhtO22NCEb+v5SGlFKUaBVLMmgWR0Cm4AhqCYkWdX2UKGgGaAloD0MI0eejjLgA+r+UhpRSlGgVSzJoFkdApuHGsFMZg3V9lChoBmgJaA9DCONSlba4hvK/lIaUUpRoFUsyaBZHQKbhi4iHIp91fZQoaAZoCWgPQwjfUs4Xe6/7v5SGlFKUaBVLMmgWR0Cm4UxBNVR2dX2UKGgGaAloD0MIbXL4pBMJ+r+UhpRSlGgVSzJoFkdApuERFI/Z/XV9lChoBmgJaA9DCHKndLD+j/G/lIaUUpRoFUsyaBZHQKbi0nVoYel1fZQoaAZoCWgPQwhx58JILyr7v5SGlFKUaBVLMmgWR0Cm4pdAX2ugdX2UKGgGaAloD0MIhjqscMvnAsCUhpRSlGgVSzJoFkdApuJYAS39aXV9lChoBmgJaA9DCAGnd/F+HPm/lIaUUpRoFUsyaBZHQKbiHNjbzsh1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
|
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
|
results.json
CHANGED
|
@@ -1 +1 @@
|
|
| 1 |
-
{"mean_reward": -
|
|
|
|
| 1 |
+
{"mean_reward": -1.6238196037709713, "std_reward": 0.5145077242575581, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-23T21:47:35.874195"}
|
vec_normalize.pkl
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 3056
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c4b9903ee7fad783417236abf6e0e834e86af8b61ec3dad6fd259802bde7f0ab
|
| 3 |
size 3056
|