sampathlonka commited on
Commit
5aac8cb
·
1 Parent(s): 0709633

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1925.78 +/- 212.69
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c0477630008e96a587a9af0b22e16cdd0aaa91a581eba637d4c6a54a3b603e53
3
+ size 129231
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2b4534a550>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2b4534a5e0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2b4534a670>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2b4534a700>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f2b4534a790>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f2b4534a820>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f2b4534a8b0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2b4534a940>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f2b4534a9d0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2b4534aa60>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2b4534aaf0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2b4534ab80>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f2b4534b6c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "num_timesteps": 2000000,
36
+ "_total_timesteps": 2000000,
37
+ "_num_timesteps_at_start": 0,
38
+ "seed": null,
39
+ "action_noise": null,
40
+ "start_time": 1680969446138298279,
41
+ "learning_rate": 0.00096,
42
+ "tensorboard_log": null,
43
+ "lr_schedule": {
44
+ ":type:": "<class 'function'>",
45
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
46
+ },
47
+ "_last_obs": {
48
+ ":type:": "<class 'numpy.ndarray'>",
49
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAKeceT92Jua+pID6Pk8LND8Jlzg/hYuHvnJxGj84zcO/3TlJPqFx2b6bnYS/bDwePqNshD8FWmQ+3SlGPz6Iuj/ul3g/Xqn3vhYAxTwOJUi9Sz41v/25vj7ec6E/Tf7ovgSKfb8U/wc/f8EQP2k8dD/hfwc/CgEPvwzQ6z7tQqs/7ae+v5BqOL9+7ea+ItMvv7fQDD+6tFu+7wsEPqnYBMDABjy/jit6P85Fgz3EKmw/AhOLv0COPj+xiCY//F6XPHfupD6gFfY/vQeJuNCfAUAEin2/FP8HPwxe4r9TKoa/cli9vligHz8hs6w+CRK8P6pWIMAXdaO+CXtnP60Z6j2HkCE/vCIrQJyiGD86NnI9rZzAv/+1IztaoQq+jMTTvoNO9L9UyeS+PTgqP7vSur3XkAi/3YPxP99Pdr/qqIq8DD6BP5Hy8L9/wRA/UyqGv4/DwD/AgEi//sS/Piwv1T+ZIAzArd0qvsjcNr9iWLy/3KIwvvN+8L+r0+I/Yzu3v3aYMb/HrEg/FVG0vbGVpD/4Duu/5/a7PWtHGz/r2iW+EI4KPg9l3r5o7hM9I7ESQASKfb8U/wc/f8EQP1Mqhr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
50
+ },
51
+ "_last_episode_starts": {
52
+ ":type:": "<class 'numpy.ndarray'>",
53
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
54
+ },
55
+ "_last_original_obs": {
56
+ ":type:": "<class 'numpy.ndarray'>",
57
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADpUCy2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACARp87uwAAAABN2/e/AAAAAKYYk70AAAAAMATqPwAAAAAiD/U8AAAAALU92T8AAAAArguNPQAAAACor/u/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAvtsBNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgP1NpL0AAAAAYtfZvwAAAAC7X4+9AAAAAKTS5z8AAAAAC/8YPQAAAADQI+0/AAAAABVz+zwAAAAAiRDevwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFa8k7YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICCmIU9AAAAAB5G9L8AAAAAVfTcvQAAAAAlzPM/AAAAAKdZr7wAAAAAvwTjPwAAAAC4Fmq5AAAAAFL95b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAd6ki1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAKwhPuwAAAACky9y/AAAAADEMwr0AAAAAYcjjPwAAAAChty29AAAAAIqD8D8AAAAAZVvPvQAAAABziPK/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
58
+ },
59
+ "_episode_num": 0,
60
+ "use_sde": true,
61
+ "sde_sample_freq": -1,
62
+ "_current_progress_remaining": 0.0,
63
+ "_stats_window_size": 100,
64
+ "ep_info_buffer": {
65
+ ":type:": "<class 'collections.deque'>",
66
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIqtXAuZkTaMAWyUTegDjAF0lEdAquK2HBUJfXV9lChoBkdAhTHQ482aUmgHTegDaAhHQKrj12L5ylx1fZQoaAZHQID+TLGJemhoB03oA2gIR0Cq6CofKZDzdX2UKGgGR0CTJTzeXRgJaAdN6ANoCEdAquo1b1RLsnV9lChoBkdAgqEllkH2RWgHTegDaAhHQKryBR6Ww/x1fZQoaAZHQIAWEtNBWxRoB03oA2gIR0Cq8yf3vhIfdX2UKGgGR0CW7AKYiPhiaAdN6ANoCEdAqvbLdJrckHV9lChoBkdAmuyC39aUzWgHTegDaAhHQKr4Hp6hQFd1fZQoaAZHQJhizwgDA8BoB03oA2gIR0Cq/kKyGBWgdX2UKGgGR0CX1DFy7wrlaAdN6ANoCEdAqv9Yj2SMcnV9lChoBkdAnHh7+98JD2gHTegDaAhHQKsDM15Sm651fZQoaAZHQJmmHFfiPyVoB03oA2gIR0CrBSccuJ1rdX2UKGgGR0CXyhHkLhJiaAdN6ANoCEdAqw15kCmuT3V9lChoBkdAm2JyLZSNwWgHTegDaAhHQKsOkTURWcV1fZQoaAZHQJznobR4QjFoB03oA2gIR0CrEiVF6RhddX2UKGgGR0CbZGvWH1vmaAdN6ANoCEdAqxN9kQPI4nV9lChoBkdAnMjC/0ulGmgHTegDaAhHQKsZeuwosqd1fZQoaAZHQJ0Nhygf2bpoB03oA2gIR0CrGobLMcIadX2UKGgGR0CffUWPLgXNaAdN6ANoCEdAqx4JOLzf8HV9lChoBkdAoARDuIAOrmgHTegDaAhHQKsfYRFI/aB1fZQoaAZHQJ2oHva11GNoB03oA2gIR0CrKG7U5MlDdX2UKGgGR0CbKhfcvduYaAdN6ANoCEdAqymKSs8xK3V9lChoBkdAnRknlKbrkmgHTegDaAhHQKstLinYQJ51fZQoaAZHQJkJ+ilBQepoB03oA2gIR0CrLn/wiJO4dX2UKGgGR0CRfDjbSJCTaAdN6ANoCEdAqzSJ7TlT33V9lChoBkdAnKBJGFzuGGgHTegDaAhHQKs1nQ0oBq91fZQoaAZHQJZPKvnr6cloB03oA2gIR0CrOTkLQXyidX2UKGgGR0Cd9UIN3GGVaAdN6ANoCEdAqzqODe0ojXV9lChoBkdAnZ0prHlwLmgHTegDaAhHQKtDC5R0lqt1fZQoaAZHQJ1gPcuanaZoB03oA2gIR0CrRLmPYFq0dX2UKGgGR0CbtglhgE2YaAdN6ANoCEdAq0iYZdfLLnV9lChoBkdAm81Z5/smfGgHTegDaAhHQKtKBBk7Oml1fZQoaAZHQJujiBH09QpoB03oA2gIR0CrUD637UG3dX2UKGgGR0CbJ3BQN0/4aAdN6ANoCEdAq1Fa8e0XxnV9lChoBkdAnTrWt2cJ+mgHTegDaAhHQKtVBqGlANZ1fZQoaAZHQJ8mJkxyn1poB03oA2gIR0CrVlkNOM2ndX2UKGgGR0Cb2VbZezD5aAdN6ANoCEdAq14gN0/4ZnV9lChoBkdAkI2A3cYZVGgHTegDaAhHQKtf05vLowF1fZQoaAZHQJh0jazu4PRoB03oA2gIR0CrZEG5UcXFdX2UKGgGR0CPeEsmv4dqaAdN6ANoCEdAq2WkBXCCSXV9lChoBkdAlcW+3c580GgHTegDaAhHQKtrqmWt2cJ1fZQoaAZHQJqPXEtNBWxoB03oA2gIR0CrbMJFb3XadX2UKGgGR0CRqyOAiFCcaAdN6ANoCEdAq3B2foRqXXV9lChoBkdAmU50H+qBE2gHTegDaAhHQKtx0vQF9rp1fZQoaAZHQJQKwFEAo5RoB03oA2gIR0CreLddmg8KdX2UKGgGR0CbxeD1GsmwaAdN6ANoCEdAq3pUoScslXV9lChoBkdAmkrRyKekHmgHTegDaAhHQKt/jqu8sc11fZQoaAZHQJHw8B1cMVloB03oA2gIR0CrgOqEvkBCdX2UKGgGR0CXKBVD8cdYaAdN6ANoCEdAq4cHGff4y3V9lChoBkdAkHZpaq0dBGgHTegDaAhHQKuIEb6xgRd1fZQoaAZHQJqO7P6be/JoB03oA2gIR0Cri5SOaOPvdX2UKGgGR0CYTXIBzV+aaAdN6ANoCEdAq4zki8nNPnV9lChoBkdAlzquTNdJKGgHTegDaAhHQKuTGhUzbex1fZQoaAZHQJIcqfL9uP5oB03oA2gIR0CrlKJaaCtjdX2UKGgGR0CYG7TvAoG6aAdN6ANoCEdAq5oflU6xPnV9lChoBkdAnA5emBOHnGgHTegDaAhHQKub7bYbsGB1fZQoaAZHQJKIyfvnbItoB03oA2gIR0CrogY1P3zudX2UKGgGR0Ca7vy1uzhQaAdN6ANoCEdAq6MjTQVsUXV9lChoBkdAna20liSaE2gHTegDaAhHQKum0c5sCT51fZQoaAZHQI9bE0aZQYVoB03oA2gIR0CrqCiDmKZVdX2UKGgGR0CbbGTodMkAaAdN6ANoCEdAq641feDWb3V9lChoBkdAnZ2I/7iyZGgHTegDaAhHQKuvTM+u/1x1fZQoaAZHQJkVjUBnzxxoB03oA2gIR0CrtKBgNPP+dX2UKGgGR0CW2Y7W/ag3aAdN6ANoCEdAq7bLQJHAh3V9lChoBkdAnwkVhLGrCGgHTegDaAhHQKu9aWAwwkB1fZQoaAZHQJOzH/GVAzJoB03oA2gIR0CrvnnkDIRzdX2UKGgGR0CQ0n12q1gIaAdN6ANoCEdAq8IfcpLEk3V9lChoBkdAmhO8ByS3b2gHTegDaAhHQKvDg0b961N1fZQoaAZHQITCAf4h2W9oB03oA2gIR0CryaNqgyuZdX2UKGgGR0CM3XblA/s3aAdN6ANoCEdAq8rExGlQ/HV9lChoBkdAm/cgzUI9kmgHTegDaAhHQKvPc22oegd1fZQoaAZHQJDxkHcDbJxoB03oA2gIR0Cr0Z690zTGdX2UKGgGR0CSeTJ6Y3NtaAdN6ANoCEdAq9kPS0BwM3V9lChoBkdAmKxXT7VJ+WgHTegDaAhHQKvaKKSgXdl1fZQoaAZHQJ5I/4CZF5RoB03oA2gIR0Cr3cr4WUKRdX2UKGgGR0Cd8u8baRISaAdN6ANoCEdAq98qm/FirnV9lChoBkdAmmlubRWtEGgHTegDaAhHQKvlU0v4/NZ1fZQoaAZHQJ4hxSgoPTZoB03oA2gIR0Cr5mi7TUiIdX2UKGgGR0CdIwiILw4LaAdN6ANoCEdAq+qoF3Y+S3V9lChoBkdAi0/C9qUNa2gHTegDaAhHQKvsrNbC79R1fZQoaAZHQIGI7oW56MRoB03oA2gIR0Cr9MHwob4rdX2UKGgGR0CYx8ww0wajaAdN6ANoCEdAq/Xc0SAYpHV9lChoBkdAnxwPoFFDv2gHTegDaAhHQKv5jSKm8/V1fZQoaAZHQJuNV8twrDtoB03oA2gIR0Cr+u446wMZdX2UKGgGR0CgLDpUPxx2aAdN6ANoCEdArAEWdXko4XV9lChoBkdAnOA0R8MNMGgHTegDaAhHQKwCJz4k/r11fZQoaAZHQJtDROi35N5oB03oA2gIR0CsBcIJzDGcdX2UKGgGR0CGejvTgEU1aAdN6ANoCEdArAe2zWwu/XV9lChoBkdAnLmIdlum8GgHTegDaAhHQKwQOo2GZeB1fZQoaAZHQJ9v1RzijtZoB03oA2gIR0CsEU0DEFW5dX2UKGgGR0CYd+fnwG4aaAdN6ANoCEdArBTprtVrAXV9lChoBkdAgvwTbvgFYGgHTegDaAhHQKwWQ11GLDR1fZQoaAZHQJ78xplBhQZoB03oA2gIR0CsHE5h8YygdX2UKGgGR0Ce2Q2LYPGyaAdN6ANoCEdArB1eXeFcp3V9lChoBkdAk1U8t5D7ZWgHTegDaAhHQKwg57FbVz91fZQoaAZHQJzcyuDBdldoB03oA2gIR0CsIjkmICU5dX2UKGgGR0CeMhOIInjRaAdN6ANoCEdArCs3RTjvNXV9lChoBkdAoAoyRwIdEWgHTegDaAhHQKwsa63AmAt1fZQoaAZHQJZlMSkCV8loB03oA2gIR0CsMAdPk7wKdX2UKGgGR0CYYVmbsniOaAdN6ANoCEdArDFmvStvGnVlLg=="
67
+ },
68
+ "ep_success_buffer": {
69
+ ":type:": "<class 'collections.deque'>",
70
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
71
+ },
72
+ "_n_updates": 62500,
73
+ "n_steps": 8,
74
+ "gamma": 0.99,
75
+ "gae_lambda": 0.9,
76
+ "ent_coef": 0.0,
77
+ "vf_coef": 0.4,
78
+ "max_grad_norm": 0.5,
79
+ "normalize_advantage": false,
80
+ "observation_space": {
81
+ ":type:": "<class 'gym.spaces.box.Box'>",
82
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
83
+ "dtype": "float32",
84
+ "_shape": [
85
+ 28
86
+ ],
87
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
88
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
89
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
90
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
91
+ "_np_random": null
92
+ },
93
+ "action_space": {
94
+ ":type:": "<class 'gym.spaces.box.Box'>",
95
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
96
+ "dtype": "float32",
97
+ "_shape": [
98
+ 8
99
+ ],
100
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
101
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
102
+ "bounded_below": "[ True True True True True True True True]",
103
+ "bounded_above": "[ True True True True True True True True]",
104
+ "_np_random": null
105
+ },
106
+ "n_envs": 4
107
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:df9a5de786f272e955eac166522d63b0e517a4becff411e8af429cb66b8f0209
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:76e5f8b5414220335f18a5c2e2cfeb82d6bb4e1d5e69352f59f8852127c27c0e
3
+ size 56894
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2b4534a550>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2b4534a5e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2b4534a670>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2b4534a700>", "_build": "<function ActorCriticPolicy._build at 0x7f2b4534a790>", "forward": "<function ActorCriticPolicy.forward at 0x7f2b4534a820>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f2b4534a8b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2b4534a940>", "_predict": "<function ActorCriticPolicy._predict at 0x7f2b4534a9d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2b4534aa60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2b4534aaf0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2b4534ab80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f2b4534b6c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680969446138298279, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAKeceT92Jua+pID6Pk8LND8Jlzg/hYuHvnJxGj84zcO/3TlJPqFx2b6bnYS/bDwePqNshD8FWmQ+3SlGPz6Iuj/ul3g/Xqn3vhYAxTwOJUi9Sz41v/25vj7ec6E/Tf7ovgSKfb8U/wc/f8EQP2k8dD/hfwc/CgEPvwzQ6z7tQqs/7ae+v5BqOL9+7ea+ItMvv7fQDD+6tFu+7wsEPqnYBMDABjy/jit6P85Fgz3EKmw/AhOLv0COPj+xiCY//F6XPHfupD6gFfY/vQeJuNCfAUAEin2/FP8HPwxe4r9TKoa/cli9vligHz8hs6w+CRK8P6pWIMAXdaO+CXtnP60Z6j2HkCE/vCIrQJyiGD86NnI9rZzAv/+1IztaoQq+jMTTvoNO9L9UyeS+PTgqP7vSur3XkAi/3YPxP99Pdr/qqIq8DD6BP5Hy8L9/wRA/UyqGv4/DwD/AgEi//sS/Piwv1T+ZIAzArd0qvsjcNr9iWLy/3KIwvvN+8L+r0+I/Yzu3v3aYMb/HrEg/FVG0vbGVpD/4Duu/5/a7PWtHGz/r2iW+EI4KPg9l3r5o7hM9I7ESQASKfb8U/wc/f8EQP1Mqhr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADpUCy2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACARp87uwAAAABN2/e/AAAAAKYYk70AAAAAMATqPwAAAAAiD/U8AAAAALU92T8AAAAArguNPQAAAACor/u/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAvtsBNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgP1NpL0AAAAAYtfZvwAAAAC7X4+9AAAAAKTS5z8AAAAAC/8YPQAAAADQI+0/AAAAABVz+zwAAAAAiRDevwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFa8k7YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICCmIU9AAAAAB5G9L8AAAAAVfTcvQAAAAAlzPM/AAAAAKdZr7wAAAAAvwTjPwAAAAC4Fmq5AAAAAFL95b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAd6ki1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAKwhPuwAAAACky9y/AAAAADEMwr0AAAAAYcjjPwAAAAChty29AAAAAIqD8D8AAAAAZVvPvQAAAABziPK/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIqtXAuZkTaMAWyUTegDjAF0lEdAquK2HBUJfXV9lChoBkdAhTHQ482aUmgHTegDaAhHQKrj12L5ylx1fZQoaAZHQID+TLGJemhoB03oA2gIR0Cq6CofKZDzdX2UKGgGR0CTJTzeXRgJaAdN6ANoCEdAquo1b1RLsnV9lChoBkdAgqEllkH2RWgHTegDaAhHQKryBR6Ww/x1fZQoaAZHQIAWEtNBWxRoB03oA2gIR0Cq8yf3vhIfdX2UKGgGR0CW7AKYiPhiaAdN6ANoCEdAqvbLdJrckHV9lChoBkdAmuyC39aUzWgHTegDaAhHQKr4Hp6hQFd1fZQoaAZHQJhizwgDA8BoB03oA2gIR0Cq/kKyGBWgdX2UKGgGR0CX1DFy7wrlaAdN6ANoCEdAqv9Yj2SMcnV9lChoBkdAnHh7+98JD2gHTegDaAhHQKsDM15Sm651fZQoaAZHQJmmHFfiPyVoB03oA2gIR0CrBSccuJ1rdX2UKGgGR0CXyhHkLhJiaAdN6ANoCEdAqw15kCmuT3V9lChoBkdAm2JyLZSNwWgHTegDaAhHQKsOkTURWcV1fZQoaAZHQJznobR4QjFoB03oA2gIR0CrEiVF6RhddX2UKGgGR0CbZGvWH1vmaAdN6ANoCEdAqxN9kQPI4nV9lChoBkdAnMjC/0ulGmgHTegDaAhHQKsZeuwosqd1fZQoaAZHQJ0Nhygf2bpoB03oA2gIR0CrGobLMcIadX2UKGgGR0CffUWPLgXNaAdN6ANoCEdAqx4JOLzf8HV9lChoBkdAoARDuIAOrmgHTegDaAhHQKsfYRFI/aB1fZQoaAZHQJ2oHva11GNoB03oA2gIR0CrKG7U5MlDdX2UKGgGR0CbKhfcvduYaAdN6ANoCEdAqymKSs8xK3V9lChoBkdAnRknlKbrkmgHTegDaAhHQKstLinYQJ51fZQoaAZHQJkJ+ilBQepoB03oA2gIR0CrLn/wiJO4dX2UKGgGR0CRfDjbSJCTaAdN6ANoCEdAqzSJ7TlT33V9lChoBkdAnKBJGFzuGGgHTegDaAhHQKs1nQ0oBq91fZQoaAZHQJZPKvnr6cloB03oA2gIR0CrOTkLQXyidX2UKGgGR0Cd9UIN3GGVaAdN6ANoCEdAqzqODe0ojXV9lChoBkdAnZ0prHlwLmgHTegDaAhHQKtDC5R0lqt1fZQoaAZHQJ1gPcuanaZoB03oA2gIR0CrRLmPYFq0dX2UKGgGR0CbtglhgE2YaAdN6ANoCEdAq0iYZdfLLnV9lChoBkdAm81Z5/smfGgHTegDaAhHQKtKBBk7Oml1fZQoaAZHQJujiBH09QpoB03oA2gIR0CrUD637UG3dX2UKGgGR0CbJ3BQN0/4aAdN6ANoCEdAq1Fa8e0XxnV9lChoBkdAnTrWt2cJ+mgHTegDaAhHQKtVBqGlANZ1fZQoaAZHQJ8mJkxyn1poB03oA2gIR0CrVlkNOM2ndX2UKGgGR0Cb2VbZezD5aAdN6ANoCEdAq14gN0/4ZnV9lChoBkdAkI2A3cYZVGgHTegDaAhHQKtf05vLowF1fZQoaAZHQJh0jazu4PRoB03oA2gIR0CrZEG5UcXFdX2UKGgGR0CPeEsmv4dqaAdN6ANoCEdAq2WkBXCCSXV9lChoBkdAlcW+3c580GgHTegDaAhHQKtrqmWt2cJ1fZQoaAZHQJqPXEtNBWxoB03oA2gIR0CrbMJFb3XadX2UKGgGR0CRqyOAiFCcaAdN6ANoCEdAq3B2foRqXXV9lChoBkdAmU50H+qBE2gHTegDaAhHQKtx0vQF9rp1fZQoaAZHQJQKwFEAo5RoB03oA2gIR0CreLddmg8KdX2UKGgGR0CbxeD1GsmwaAdN6ANoCEdAq3pUoScslXV9lChoBkdAmkrRyKekHmgHTegDaAhHQKt/jqu8sc11fZQoaAZHQJHw8B1cMVloB03oA2gIR0CrgOqEvkBCdX2UKGgGR0CXKBVD8cdYaAdN6ANoCEdAq4cHGff4y3V9lChoBkdAkHZpaq0dBGgHTegDaAhHQKuIEb6xgRd1fZQoaAZHQJqO7P6be/JoB03oA2gIR0Cri5SOaOPvdX2UKGgGR0CYTXIBzV+aaAdN6ANoCEdAq4zki8nNPnV9lChoBkdAlzquTNdJKGgHTegDaAhHQKuTGhUzbex1fZQoaAZHQJIcqfL9uP5oB03oA2gIR0CrlKJaaCtjdX2UKGgGR0CYG7TvAoG6aAdN6ANoCEdAq5oflU6xPnV9lChoBkdAnA5emBOHnGgHTegDaAhHQKub7bYbsGB1fZQoaAZHQJKIyfvnbItoB03oA2gIR0CrogY1P3zudX2UKGgGR0Ca7vy1uzhQaAdN6ANoCEdAq6MjTQVsUXV9lChoBkdAna20liSaE2gHTegDaAhHQKum0c5sCT51fZQoaAZHQI9bE0aZQYVoB03oA2gIR0CrqCiDmKZVdX2UKGgGR0CbbGTodMkAaAdN6ANoCEdAq641feDWb3V9lChoBkdAnZ2I/7iyZGgHTegDaAhHQKuvTM+u/1x1fZQoaAZHQJkVjUBnzxxoB03oA2gIR0CrtKBgNPP+dX2UKGgGR0CW2Y7W/ag3aAdN6ANoCEdAq7bLQJHAh3V9lChoBkdAnwkVhLGrCGgHTegDaAhHQKu9aWAwwkB1fZQoaAZHQJOzH/GVAzJoB03oA2gIR0CrvnnkDIRzdX2UKGgGR0CQ0n12q1gIaAdN6ANoCEdAq8IfcpLEk3V9lChoBkdAmhO8ByS3b2gHTegDaAhHQKvDg0b961N1fZQoaAZHQITCAf4h2W9oB03oA2gIR0CryaNqgyuZdX2UKGgGR0CM3XblA/s3aAdN6ANoCEdAq8rExGlQ/HV9lChoBkdAm/cgzUI9kmgHTegDaAhHQKvPc22oegd1fZQoaAZHQJDxkHcDbJxoB03oA2gIR0Cr0Z690zTGdX2UKGgGR0CSeTJ6Y3NtaAdN6ANoCEdAq9kPS0BwM3V9lChoBkdAmKxXT7VJ+WgHTegDaAhHQKvaKKSgXdl1fZQoaAZHQJ5I/4CZF5RoB03oA2gIR0Cr3cr4WUKRdX2UKGgGR0Cd8u8baRISaAdN6ANoCEdAq98qm/FirnV9lChoBkdAmmlubRWtEGgHTegDaAhHQKvlU0v4/NZ1fZQoaAZHQJ4hxSgoPTZoB03oA2gIR0Cr5mi7TUiIdX2UKGgGR0CdIwiILw4LaAdN6ANoCEdAq+qoF3Y+S3V9lChoBkdAi0/C9qUNa2gHTegDaAhHQKvsrNbC79R1fZQoaAZHQIGI7oW56MRoB03oA2gIR0Cr9MHwob4rdX2UKGgGR0CYx8ww0wajaAdN6ANoCEdAq/Xc0SAYpHV9lChoBkdAnxwPoFFDv2gHTegDaAhHQKv5jSKm8/V1fZQoaAZHQJuNV8twrDtoB03oA2gIR0Cr+u446wMZdX2UKGgGR0CgLDpUPxx2aAdN6ANoCEdArAEWdXko4XV9lChoBkdAnOA0R8MNMGgHTegDaAhHQKwCJz4k/r11fZQoaAZHQJtDROi35N5oB03oA2gIR0CsBcIJzDGcdX2UKGgGR0CGejvTgEU1aAdN6ANoCEdArAe2zWwu/XV9lChoBkdAnLmIdlum8GgHTegDaAhHQKwQOo2GZeB1fZQoaAZHQJ9v1RzijtZoB03oA2gIR0CsEU0DEFW5dX2UKGgGR0CYd+fnwG4aaAdN6ANoCEdArBTprtVrAXV9lChoBkdAgvwTbvgFYGgHTegDaAhHQKwWQ11GLDR1fZQoaAZHQJ78xplBhQZoB03oA2gIR0CsHE5h8YygdX2UKGgGR0Ce2Q2LYPGyaAdN6ANoCEdArB1eXeFcp3V9lChoBkdAk1U8t5D7ZWgHTegDaAhHQKwg57FbVz91fZQoaAZHQJzcyuDBdldoB03oA2gIR0CsIjkmICU5dX2UKGgGR0CeMhOIInjRaAdN6ANoCEdArCs3RTjvNXV9lChoBkdAoAoyRwIdEWgHTegDaAhHQKwsa63AmAt1fZQoaAZHQJZlMSkCV8loB03oA2gIR0CsMAdPk7wKdX2UKGgGR0CYYVmbsniOaAdN6ANoCEdArDFmvStvGnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:920a0fc21f1bf9e5af53014527e1150ae535f5419f2c3757c23ee634e4afa27b
3
+ size 1139868
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1925.7801803804236, "std_reward": 212.69221852023423, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-08T17:18:02.918394"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:120c748e6dd897f8c63a38e82652448a3f6fcee686dfdcb6051b80843106f26a
3
+ size 2170