upload model files
Browse files- config.json +107 -0
- eval.py +126 -0
- preprocessor_config.json +10 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +1 -0
- tokenizer_config.json +1 -0
- vocab.json +1 -0
config.json
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "facebook/wav2vec2-xls-r-1b",
|
3 |
+
"activation_dropout": 0.1,
|
4 |
+
"adapter_kernel_size": 3,
|
5 |
+
"adapter_stride": 2,
|
6 |
+
"add_adapter": false,
|
7 |
+
"apply_spec_augment": true,
|
8 |
+
"architectures": [
|
9 |
+
"Wav2Vec2ForCTC"
|
10 |
+
],
|
11 |
+
"attention_dropout": 0.1,
|
12 |
+
"bos_token_id": 1,
|
13 |
+
"classifier_proj_size": 256,
|
14 |
+
"codevector_dim": 1024,
|
15 |
+
"contrastive_logits_temperature": 0.1,
|
16 |
+
"conv_bias": true,
|
17 |
+
"conv_dim": [
|
18 |
+
512,
|
19 |
+
512,
|
20 |
+
512,
|
21 |
+
512,
|
22 |
+
512,
|
23 |
+
512,
|
24 |
+
512
|
25 |
+
],
|
26 |
+
"conv_kernel": [
|
27 |
+
10,
|
28 |
+
3,
|
29 |
+
3,
|
30 |
+
3,
|
31 |
+
3,
|
32 |
+
2,
|
33 |
+
2
|
34 |
+
],
|
35 |
+
"conv_stride": [
|
36 |
+
5,
|
37 |
+
2,
|
38 |
+
2,
|
39 |
+
2,
|
40 |
+
2,
|
41 |
+
2,
|
42 |
+
2
|
43 |
+
],
|
44 |
+
"ctc_loss_reduction": "mean",
|
45 |
+
"ctc_zero_infinity": false,
|
46 |
+
"diversity_loss_weight": 0.1,
|
47 |
+
"do_stable_layer_norm": true,
|
48 |
+
"eos_token_id": 2,
|
49 |
+
"feat_extract_activation": "gelu",
|
50 |
+
"feat_extract_dropout": 0.0,
|
51 |
+
"feat_extract_norm": "layer",
|
52 |
+
"feat_proj_dropout": 0.1,
|
53 |
+
"feat_quantizer_dropout": 0.0,
|
54 |
+
"final_dropout": 0.0,
|
55 |
+
"hidden_act": "gelu",
|
56 |
+
"hidden_dropout": 0.1,
|
57 |
+
"hidden_size": 1280,
|
58 |
+
"initializer_range": 0.02,
|
59 |
+
"intermediate_size": 5120,
|
60 |
+
"layer_norm_eps": 1e-05,
|
61 |
+
"layerdrop": 0.1,
|
62 |
+
"mask_feature_length": 10,
|
63 |
+
"mask_feature_min_masks": 0,
|
64 |
+
"mask_feature_prob": 0.0,
|
65 |
+
"mask_time_length": 10,
|
66 |
+
"mask_time_min_masks": 2,
|
67 |
+
"mask_time_prob": 0.05,
|
68 |
+
"model_type": "wav2vec2",
|
69 |
+
"num_adapter_layers": 3,
|
70 |
+
"num_attention_heads": 16,
|
71 |
+
"num_codevector_groups": 2,
|
72 |
+
"num_codevectors_per_group": 320,
|
73 |
+
"num_conv_pos_embedding_groups": 16,
|
74 |
+
"num_conv_pos_embeddings": 128,
|
75 |
+
"num_feat_extract_layers": 7,
|
76 |
+
"num_hidden_layers": 48,
|
77 |
+
"num_negatives": 100,
|
78 |
+
"output_hidden_size": 1280,
|
79 |
+
"pad_token_id": 58,
|
80 |
+
"proj_codevector_dim": 1024,
|
81 |
+
"tdnn_dilation": [
|
82 |
+
1,
|
83 |
+
2,
|
84 |
+
3,
|
85 |
+
1,
|
86 |
+
1
|
87 |
+
],
|
88 |
+
"tdnn_dim": [
|
89 |
+
512,
|
90 |
+
512,
|
91 |
+
512,
|
92 |
+
512,
|
93 |
+
1500
|
94 |
+
],
|
95 |
+
"tdnn_kernel": [
|
96 |
+
5,
|
97 |
+
3,
|
98 |
+
3,
|
99 |
+
1,
|
100 |
+
1
|
101 |
+
],
|
102 |
+
"torch_dtype": "float32",
|
103 |
+
"transformers_version": "4.16.0.dev0",
|
104 |
+
"use_weighted_layer_sum": false,
|
105 |
+
"vocab_size": 59,
|
106 |
+
"xvector_output_dim": 512
|
107 |
+
}
|
eval.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datasets import load_dataset, load_metric, Audio, Dataset
|
2 |
+
from transformers import pipeline, AutoFeatureExtractor
|
3 |
+
import re
|
4 |
+
import argparse
|
5 |
+
import unicodedata
|
6 |
+
from typing import Dict
|
7 |
+
|
8 |
+
|
9 |
+
def log_results(result: Dataset, args: Dict[str, str]):
|
10 |
+
""" DO NOT CHANGE. This function computes and logs the result metrics. """
|
11 |
+
|
12 |
+
log_outputs = args.log_outputs
|
13 |
+
dataset_id = "_".join(args.dataset.split("/") + [args.config, args.split])
|
14 |
+
|
15 |
+
# load metric
|
16 |
+
wer = load_metric("wer")
|
17 |
+
cer = load_metric("cer")
|
18 |
+
|
19 |
+
pred_string = [element.lower() for element in result["prediction"]]
|
20 |
+
actual = [element.lower() for element in result["target"]]
|
21 |
+
|
22 |
+
# compute metrics
|
23 |
+
wer_result = wer.compute(references=actual, predictions=pred_string)
|
24 |
+
cer_result = cer.compute(references=actual, predictions=pred_string)
|
25 |
+
|
26 |
+
# print & log results
|
27 |
+
result_str = (
|
28 |
+
f"WER: {wer_result}\n"
|
29 |
+
f"CER: {cer_result}"
|
30 |
+
)
|
31 |
+
print(result_str)
|
32 |
+
|
33 |
+
with open(f"{dataset_id}_eval_results.txt", "w") as f:
|
34 |
+
f.write(result_str)
|
35 |
+
|
36 |
+
# log all results in text file. Possibly interesting for analysis
|
37 |
+
if log_outputs is not None:
|
38 |
+
pred_file = f"log_{dataset_id}_predictions.txt"
|
39 |
+
target_file = f"log_{dataset_id}_targets.txt"
|
40 |
+
|
41 |
+
with open(pred_file, "w") as p, open(target_file, "w") as t:
|
42 |
+
|
43 |
+
# mapping function to write output
|
44 |
+
def write_to_file(batch, i):
|
45 |
+
p.write(f"{i}" + "\n")
|
46 |
+
p.write(batch["prediction"] + "\n")
|
47 |
+
t.write(f"{i}" + "\n")
|
48 |
+
t.write(batch["target"] + "\n")
|
49 |
+
|
50 |
+
result.map(write_to_file, with_indices=True)
|
51 |
+
|
52 |
+
|
53 |
+
def normalize_text(text: str) -> str:
|
54 |
+
""" DO ADAPT FOR YOUR USE CASE. this function normalizes the target text. """
|
55 |
+
|
56 |
+
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\'\...\…\–\é\-\„\—\|\/]'
|
57 |
+
|
58 |
+
text = re.sub(r'[ʻʽʼ‘’´`]', r"'", text)
|
59 |
+
text = re.sub(chars_to_ignore_regex, "", text).lower().strip()
|
60 |
+
text = re.sub(r"([b-df-hj-np-tv-z])' ([aeiou])", r"\1'\2", text)
|
61 |
+
text = re.sub(r"(-| '|' | +)", " ", text)
|
62 |
+
|
63 |
+
return text
|
64 |
+
|
65 |
+
|
66 |
+
def main(args):
|
67 |
+
# load dataset
|
68 |
+
dataset = load_dataset(args.dataset, args.config, split=args.split, use_auth_token=True)
|
69 |
+
|
70 |
+
# for testing: only process the first two examples as a test
|
71 |
+
# dataset = dataset.select(range(10))
|
72 |
+
|
73 |
+
# load processor
|
74 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(args.model_id)
|
75 |
+
sampling_rate = feature_extractor.sampling_rate
|
76 |
+
|
77 |
+
# resample audio
|
78 |
+
dataset = dataset.cast_column("audio", Audio(sampling_rate=16_000))
|
79 |
+
|
80 |
+
# load eval pipeline
|
81 |
+
asr = pipeline("automatic-speech-recognition", model=args.model_id)
|
82 |
+
|
83 |
+
# map function to decode audio
|
84 |
+
def map_to_pred(batch):
|
85 |
+
prediction = asr(batch["audio"]["array"], chunk_length_s=args.chunk_length_s, stride_length_s=args.stride_length_s)
|
86 |
+
|
87 |
+
batch["prediction"] = prediction["text"]
|
88 |
+
batch["target"] = normalize_text(batch["sentence"])
|
89 |
+
return batch
|
90 |
+
|
91 |
+
# run inference on all examples
|
92 |
+
result = dataset.map(map_to_pred, remove_columns=dataset.column_names)
|
93 |
+
|
94 |
+
# compute and log_results
|
95 |
+
# do not change function below
|
96 |
+
log_results(result, args)
|
97 |
+
|
98 |
+
|
99 |
+
if __name__ == "__main__":
|
100 |
+
parser = argparse.ArgumentParser()
|
101 |
+
|
102 |
+
parser.add_argument(
|
103 |
+
"--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers"
|
104 |
+
)
|
105 |
+
parser.add_argument(
|
106 |
+
"--dataset", type=str, required=True, help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets"
|
107 |
+
)
|
108 |
+
parser.add_argument(
|
109 |
+
"--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice"
|
110 |
+
)
|
111 |
+
parser.add_argument(
|
112 |
+
"--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`"
|
113 |
+
)
|
114 |
+
parser.add_argument(
|
115 |
+
"--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to None. For long audio files a good value would be 5.0 seconds."
|
116 |
+
)
|
117 |
+
parser.add_argument(
|
118 |
+
"--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to None. For long audio files a good value would be 1.0 seconds."
|
119 |
+
)
|
120 |
+
parser.add_argument(
|
121 |
+
"--log_outputs", action='store_true', help="If defined, write outputs to log file for analysis."
|
122 |
+
)
|
123 |
+
args = parser.parse_args()
|
124 |
+
|
125 |
+
main(args)
|
126 |
+
|
preprocessor_config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_normalize": true,
|
3 |
+
"feature_extractor_type": "Wav2Vec2FeatureExtractor",
|
4 |
+
"feature_size": 1,
|
5 |
+
"padding_side": "right",
|
6 |
+
"padding_value": 0.0,
|
7 |
+
"processor_class": "Wav2Vec2Processor",
|
8 |
+
"return_attention_mask": true,
|
9 |
+
"sampling_rate": 16000
|
10 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:76cc76958488172b34d28834383efa96c3b7905550074b1413c8fcff6207b8f9
|
3 |
+
size 3850615025
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "[UNK]", "pad_token": "[PAD]"}
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "bos_token": "<s>", "eos_token": "</s>", "pad_token": "[PAD]", "do_lower_case": false, "word_delimiter_token": "|", "tokenizer_class": "Wav2Vec2CTCTokenizer", "processor_class": "Wav2Vec2Processor"}
|
vocab.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"ޚ": 0, "ޛ": 1, "ޮ": 2, "ދ": 3, "ް": 4, "،": 5, "ޤ": 6, "ه": 7, "ޡ": 8, "ޏ": 9, "ޙ": 10, "ީ": 11, "ޢ": 12, "؟": 13, "ށ": 14, "ޘ": 15, "ޭ": 16, "ޓ": 17, "ﷺ": 18, "މ": 19, "ޟ": 20, "ު": 21, "ެ": 22, "ل": 23, "ގ": 24, "ތ": 25, "ލ": 26, "ޔ": 27, "ޯ": 28, "ا": 29, "ޞ": 30, "ޝ": 31, "ޅ": 32, "ޣ": 33, "ّ": 34, "އ": 35, "ވ": 36, "ޠ": 37, "ﷲ": 38, "ޖ": 39, "ހ": 40, "ޕ": 41, "ނ": 42, "ރ": 43, "ފ": 44, "ޒ": 45, "ޥ": 46, "ޑ": 47, "ި": 48, "ަ": 49, "ޗ": 50, "ޫ": 51, "ާ": 52, "ސ": 53, "ބ": 54, "ކ": 56, "|": 55, "[UNK]": 57, "[PAD]": 58}
|