samchain commited on
Commit
ba48672
·
1 Parent(s): 7a9fd3c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +9 -3
README.md CHANGED
@@ -5,14 +5,20 @@ tags:
5
  - feature-extraction
6
  - sentence-similarity
7
  - transformers
8
-
 
 
 
 
 
 
9
  ---
10
 
11
  # econosentence
12
 
13
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
14
 
15
- <!--- Describe your model here -->
16
 
17
  ## Usage (Sentence-Transformers)
18
 
@@ -75,7 +81,7 @@ print(sentence_embeddings)
75
 
76
  ## Evaluation Results
77
 
78
- <!--- Describe how your model was evaluated -->
79
 
80
  For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=econosentence)
81
 
 
5
  - feature-extraction
6
  - sentence-similarity
7
  - transformers
8
+ datasets:
9
+ - samchain/econo-pairs
10
+ language:
11
+ - en
12
+ metrics:
13
+ - pearsonr
14
+ library_name: sentence-transformers
15
  ---
16
 
17
  # econosentence
18
 
19
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
20
 
21
+ Econosentence can be used fro various tasks in NLP applied to economics. The main one is to use embeddings for topic modeling purpose.
22
 
23
  ## Usage (Sentence-Transformers)
24
 
 
81
 
82
  ## Evaluation Results
83
 
84
+ The Pearson correlation for the train test is : 0.83
85
 
86
  For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=econosentence)
87