ppo-LunarLander-v2 / config.json
samardhouib's picture
Upload PPO LunarLander-v2 trained agent
03fcc36 verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e1709ad77f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e1709ad7880>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e1709ad7910>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e1709ad79a0>", "_build": "<function ActorCriticPolicy._build at 0x7e1709ad7a30>", "forward": "<function ActorCriticPolicy.forward at 0x7e1709ad7ac0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e1709ad7b50>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e1709ad7be0>", "_predict": "<function ActorCriticPolicy._predict at 0x7e1709ad7c70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e1709ad7d00>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e1709ad7d90>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e1709ad7e20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e16ab18ef80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1730820757348468774, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACowTb6oj/8+mw7nPcSB474xz6C8n6K9PQAAAAAAAAAAgAqoPbAANT8AwWK8YfG3vmrdED1OzJ28AAAAAAAAAABm8i68AgayP9oYTr6TLW2+rfilu/Fohr0AAAAAAAAAABreO72Fo7+5wgC1sxnL/y+LDcu7I/i0MwAAgD8AAIA/AN1yPdG4rT++Dcg+MFywvpq+eD3mH00+AAAAAAAAAAC6wKU+O+UQP6N4yLqEcZ2+XU8zPj1C6b0AAAAAAAAAAPMm6D2J/ak/UGy+Pu+B0b5Nrh4+tr8OPgAAAAAAAAAAAAHqPUXhCT6F6DS+uVRPvufDFjwawie9AAAAAAAAAACAKP89pAEfuy2G/bMgX7EyRj9avBJqKjQAAIA/AACAPzNX9bsc3yA9PWlKPs/zl70BJ8E9Tcc/vQAAAAAAAAAAOmkGvt/Jmzws2Yk9PlvMvechG7w2PpW7AAAAAAAAAABoycO+0SINP2DM3rwJavi+Pxe6via2Qz4AAAAAAAAAAJqoqDxcG3u6CjOmOmE/PTl0pUO6SiJAuQAAgD8AAIA/s/kHPew/v7tCGM87Agt7PF0WGr3iHlY9AACAPwAAgD+aluy8qfU0vGSWAryj9ZA8ei6avdLObj0AAIA/AACAP01eYr7lRJg+DmEWPqRGVb6alli8PlE6PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVKwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG9Wpxeb/fiMAWyUS/+MAXSUR0CRaLKO1fE5dX2UKGgGR0BObGdqcmShaAdLu2gIR0CRaLovzvqkdX2UKGgGR0ByTfUnXumaaAdNBQFoCEdAkWk0aESM+HV9lChoBkdAcsw1klNUO2gHTSoBaAhHQJFp66bvw3J1fZQoaAZHQGA1Yrz5GjNoB03oA2gIR0CRbGRHww0wdX2UKGgGR0BvKhobn5i3aAdL/2gIR0CRbM6vaDf4dX2UKGgGR0BudNmSQo1DaAdNAAFoCEdAkWz6iCaqj3V9lChoBkdAcWqh60IC2mgHS/9oCEdAkW0jQAuIynV9lChoBkdAcKTbaRISUWgHTRQBaAhHQJFth13dKul1fZQoaAZHQG5AKtYB/7VoB00TAWgIR0CRbvVnmJWOdX2UKGgGR0BxN9wvQF9saAdNBAFoCEdAkW+eizsyBXV9lChoBkdAcR9ijtXxOWgHTQgBaAhHQJFvnT1CgK51fZQoaAZHQHIztjgAIY5oB00mAWgIR0CRb7Vu76HkdX2UKGgGR0Byamee4Cp4aAdNQgFoCEdAkW/XPqs2enV9lChoBkdAcRrwFkhA4WgHTTcBaAhHQJFwCPzWf9R1fZQoaAZHQHEYLXg9/z9oB00MAWgIR0CRcPJWeYlZdX2UKGgGR0BwmQ+JP69CaAdL+2gIR0CRcPj8UEgXdX2UKGgGR0Bwyx7eEZivaAdL8GgIR0CRcVGnXNC7dX2UKGgGR0BdDxcu8K5TaAdN6ANoCEdAkXF0lqrR0HV9lChoBkdAcDAs2NvOyGgHTTcBaAhHQJFx+LBKtgd1fZQoaAZHQHFtHq3VkMFoB00RAWgIR0CRdGlLOAy3dX2UKGgGR0BsGeWKMvRJaAdNEAFoCEdAkXSLgXMyJ3V9lChoBkdAb6ZqGlANX2gHTR8BaAhHQJF1mKYRdyF1fZQoaAZHQHAeeTvAoG9oB01DAWgIR0CRdaS3solVdX2UKGgGR0Bw8uez2OABaAdNBQFoCEdAkXYrI1cdHXV9lChoBkdAbY4A7PppvmgHTT8BaAhHQJF2NJ5E+gV1fZQoaAZHQHF0pG4I8hdoB00FAWgIR0CRdsOaOPvKdX2UKGgGR0Bw/gy8BdUsaAdNCAFoCEdAkXbXhfjS5XV9lChoBkdAcDlVuaWonGgHTSUBaAhHQJF4KL876pJ1fZQoaAZHQHCBqS9ugpVoB001AWgIR0CReEeokzGhdX2UKGgGR0ByS9ObiIcjaAdNXAFoCEdAkXmRiobXH3V9lChoBkdAcSvq0MPSUmgHTS4BaAhHQJF58gJTl1d1fZQoaAZHQG/zcpb2UStoB01QAWgIR0CReotix3V1dX2UKGgGR0ByA5ePaL4vaAdNUgFoCEdAkXqTzRQaaXV9lChoBkdAcZ1TKDCgsmgHTVUBaAhHQJF7RFjNILB1fZQoaAZHQHA4Q97ngYRoB01AAWgIR0CRe1UnG828dX2UKGgGR0BwYMnTiKixaAdL+WgIR0CRe+LP2PDHdX2UKGgGR0Bvm0TnJT2naAdL92gIR0CRe/MSsbNsdX2UKGgGR0BxIbhtLteEaAdL9mgIR0CRfWHCoCMhdX2UKGgGR0BLxxfF72L6aAdL/2gIR0CRfZ3vQWvbdX2UKGgGR0Btg4NgBtDVaAdL/GgIR0CRkIe1KGtZdX2UKGgGR0ByoGtQsPJ8aAdNIwFoCEdAkZCQIIF/x3V9lChoBkdAcjY4UN8VpWgHTSQBaAhHQJGQpRxcVxl1fZQoaAZHQG9OLeQ+2VpoB00QAWgIR0CRkUD6Fds0dX2UKGgGR0Bv5Kr/82rGaAdNAQFoCEdAkZJPJRwZO3V9lChoBkdAcGu5AQg9vGgHS99oCEdAkZNVUQ04znV9lChoBkdAbODFmWdEs2gHS+9oCEdAkZN00rK/23V9lChoBkdAb/cvYe1a4mgHTTkBaAhHQJGUs1CPZIx1fZQoaAZHQG/BpiqhlDpoB0vwaAhHQJGV2WGATZh1fZQoaAZHQG7V/bblA/toB0vmaAhHQJGWRCu2ZzB1fZQoaAZHQHIrEpNKyv9oB00oAWgIR0CRlwF/x2B8dX2UKGgGR0BxTjGT9sJqaAdNKgFoCEdAkZcfzOHFgnV9lChoBkdAcL9ATqSowWgHTSYBaAhHQJGX7In0Cih1fZQoaAZHQG6UTlcQiA5oB00RAWgIR0CRmAQv6CUYdX2UKGgGR0BwSK7aqS5iaAdL+mgIR0CRmYvpyIYWdX2UKGgGR0Bw9wGZ/kNnaAdNLQFoCEdAkZpeMERranV9lChoBkdAcDfbBXS0B2gHTSUBaAhHQJGaXko4MnZ1fZQoaAZHQHCR3zg/C69oB00dAWgIR0CRmqVT72tddX2UKGgGR0Bv/djVhCtzaAdNDwFoCEdAkZriuuA7P3V9lChoBkdAcMpbCJoCdWgHTUgBaAhHQJGb9NRFZxJ1fZQoaAZHQGz6Dx0+1ShoB00MAWgIR0CRnIHDaXa8dX2UKGgGR0Bxg5HAh0QsaAdNDwFoCEdAkZx/Tb349HV9lChoBkdAcCjQxesxPGgHTTkBaAhHQJGc5lZowmF1fZQoaAZHwCTGxMWXTmZoB0u4aAhHQJGdOfywwCd1fZQoaAZHQHA3RPKuB+ZoB00AAWgIR0CRngXnhbW3dX2UKGgGR0ByZ8FvAGjcaAdNPAFoCEdAkZ6PnB+F13V9lChoBkdAb1p8QZn+Q2gHTRMBaAhHQJGfH3sXzlN1fZQoaAZHQHARObNKRMhoB00OAWgIR0CRn51Oj7AMdX2UKGgGR0Byl99Tgl4UaAdNLQFoCEdAkZ/A/TsponV9lChoBkdAcmpi1AqusGgHTXYBaAhHQJGg+FtbcGl1fZQoaAZHQG/QukLx7RhoB00LAWgIR0CRoQZeiSJTdX2UKGgGR0BwWvGFSKm9aAdNCQFoCEdAkaGpNj9XLnV9lChoBkdAbZNltCRfW2gHTQ4BaAhHQJGhy0w8GLV1fZQoaAZHQHHk1h9b5dpoB00IAWgIR0CRoeNG3F1kdX2UKGgGR0BxO4YAKfFraAdNDwFoCEdAkaJBl18stnV9lChoBkdAcUVVNYbKimgHTQcBaAhHQJGjhAZ88cN1fZQoaAZHQG94knLJSzhoB00JAWgIR0CRo5XfqHGkdX2UKGgGR0Bu2jcO9WZJaAdNDAFoCEdAkaQOgL7XQXV9lChoBkdAccouxbB42WgHTTABaAhHQJGkHxwyZa51fZQoaAZHQHC5e0TlDF9oB00iAWgIR0CRpPejVQQ+dX2UKGgGR0BwE0QnQY1paAdNDgFoCEdAkaU8KLKmsXV9lChoBkdAcSp0GNaQm2gHS/xoCEdAkaaCEYfnwHV9lChoBkdAbTCGFBY3emgHTQQBaAhHQJGml1SwW311fZQoaAZHQHCUFf3N9phoB00bAWgIR0CRprruYx+KdX2UKGgGR0BGlSYXwb2laAdLvWgIR0CRp1Hjp9qldX2UKGgGR0BxFzlkpZwGaAdL82gIR0CRp3+eOGTLdX2UKGgGR0BxKOLMs6JZaAdL42gIR0CRp9K8L8aXdX2UKGgGR0BxYNHEuQIVaAdL6WgIR0CRqBAGB4D+dX2UKGgGR0ByeZU5uIhyaAdNawFoCEdAkahBMi8nNXV9lChoBkdAcRtOy3Td+GgHTRsBaAhHQJGpEEZBLPF1fZQoaAZHQEwoIDYAbQ1oB0vCaAhHQJGpIwJw84h1fZQoaAZHQHJJU6cRUWFoB01OAWgIR0CRqbUpNKywdX2UKGgGR0Bug1M7EHdHaAdNFQFoCEdAkarO3hGYr3V9lChoBkdAb2iCA+Y+jmgHS+NoCEdAkarmUnogWHV9lChoBkdAcLhGPPszEmgHTTQBaAhHQJGrmbRWtEJ1fZQoaAZHQHL9RWLgn+hoB00sAWgIR0CRrATnJT2ndX2UKGgGR0ByKS8pTdcjaAdNAgFoCEdAkawIL9deIHV9lChoBkdAcLS8c+7lJmgHTQABaAhHQJGtTXUYsNF1fZQoaAZHQHBj6c3EQ5FoB00SAWgIR0CRrb1KoQ4CdX2UKGgGR0BuZu0G/vfCaAdL4WgIR0CRrf8BuGbkdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.0+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}