update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
model-index:
|
6 |
+
- name: dropoff-utcustom-train-SF-RGB-b5_7
|
7 |
+
results: []
|
8 |
+
---
|
9 |
+
|
10 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
11 |
+
should probably proofread and complete it, then remove this comment. -->
|
12 |
+
|
13 |
+
# dropoff-utcustom-train-SF-RGB-b5_7
|
14 |
+
|
15 |
+
This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the None dataset.
|
16 |
+
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 0.1841
|
18 |
+
- Mean Iou: 0.7025
|
19 |
+
- Mean Accuracy: 0.7532
|
20 |
+
- Overall Accuracy: 0.9721
|
21 |
+
- Accuracy Unlabeled: nan
|
22 |
+
- Accuracy Dropoff: 0.5145
|
23 |
+
- Accuracy Undropoff: 0.9919
|
24 |
+
- Iou Unlabeled: nan
|
25 |
+
- Iou Dropoff: 0.4336
|
26 |
+
- Iou Undropoff: 0.9715
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 5e-05
|
46 |
+
- train_batch_size: 16
|
47 |
+
- eval_batch_size: 16
|
48 |
+
- seed: 42
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- lr_scheduler_warmup_ratio: 0.05
|
52 |
+
- num_epochs: 120
|
53 |
+
|
54 |
+
### Training results
|
55 |
+
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Dropoff | Accuracy Undropoff | Iou Unlabeled | Iou Dropoff | Iou Undropoff |
|
57 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:----------------:|:------------------:|:-------------:|:-----------:|:-------------:|
|
58 |
+
| 0.8255 | 5.0 | 10 | 0.7949 | 0.4128 | 0.7856 | 0.9393 | nan | 0.6179 | 0.9533 | 0.0 | 0.3007 | 0.9377 |
|
59 |
+
| 0.4434 | 10.0 | 20 | 0.4247 | 0.4471 | 0.7066 | 0.9705 | nan | 0.4187 | 0.9944 | 0.0 | 0.3714 | 0.9700 |
|
60 |
+
| 0.2107 | 15.0 | 30 | 0.2726 | 0.6711 | 0.7003 | 0.9715 | nan | 0.4046 | 0.9961 | nan | 0.3713 | 0.9710 |
|
61 |
+
| 0.1678 | 20.0 | 40 | 0.2388 | 0.6801 | 0.7343 | 0.9691 | nan | 0.4782 | 0.9904 | nan | 0.3917 | 0.9685 |
|
62 |
+
| 0.0972 | 25.0 | 50 | 0.1849 | 0.6764 | 0.7096 | 0.9715 | nan | 0.4241 | 0.9952 | nan | 0.3818 | 0.9709 |
|
63 |
+
| 0.0604 | 30.0 | 60 | 0.2019 | 0.4644 | 0.7568 | 0.9704 | nan | 0.5239 | 0.9897 | 0.0 | 0.4236 | 0.9697 |
|
64 |
+
| 0.0497 | 35.0 | 70 | 0.1793 | 0.6838 | 0.7345 | 0.9700 | nan | 0.4775 | 0.9914 | nan | 0.3983 | 0.9694 |
|
65 |
+
| 0.0492 | 40.0 | 80 | 0.2000 | 0.4639 | 0.7567 | 0.9702 | nan | 0.5239 | 0.9896 | 0.0 | 0.4223 | 0.9695 |
|
66 |
+
| 0.0409 | 45.0 | 90 | 0.1893 | 0.7030 | 0.7778 | 0.9696 | nan | 0.5687 | 0.9869 | nan | 0.4372 | 0.9688 |
|
67 |
+
| 0.0328 | 50.0 | 100 | 0.1842 | 0.7040 | 0.7715 | 0.9704 | nan | 0.5545 | 0.9885 | nan | 0.4382 | 0.9697 |
|
68 |
+
| 0.0332 | 55.0 | 110 | 0.1781 | 0.7015 | 0.7563 | 0.9715 | nan | 0.5216 | 0.9910 | nan | 0.4322 | 0.9709 |
|
69 |
+
| 0.0314 | 60.0 | 120 | 0.1732 | 0.6890 | 0.7305 | 0.9717 | nan | 0.4675 | 0.9935 | nan | 0.4068 | 0.9711 |
|
70 |
+
| 0.0318 | 65.0 | 130 | 0.1786 | 0.6971 | 0.7477 | 0.9715 | nan | 0.5037 | 0.9918 | nan | 0.4233 | 0.9709 |
|
71 |
+
| 0.0291 | 70.0 | 140 | 0.1814 | 0.7119 | 0.7687 | 0.9725 | nan | 0.5466 | 0.9909 | nan | 0.4521 | 0.9718 |
|
72 |
+
| 0.0273 | 75.0 | 150 | 0.1755 | 0.7101 | 0.7677 | 0.9722 | nan | 0.5446 | 0.9907 | nan | 0.4487 | 0.9715 |
|
73 |
+
| 0.0274 | 80.0 | 160 | 0.1786 | 0.7006 | 0.7494 | 0.9720 | nan | 0.5066 | 0.9922 | nan | 0.4297 | 0.9714 |
|
74 |
+
| 0.0248 | 85.0 | 170 | 0.1741 | 0.7029 | 0.7526 | 0.9722 | nan | 0.5131 | 0.9921 | nan | 0.4341 | 0.9716 |
|
75 |
+
| 0.0248 | 90.0 | 180 | 0.1832 | 0.7050 | 0.7595 | 0.9719 | nan | 0.5278 | 0.9912 | nan | 0.4387 | 0.9713 |
|
76 |
+
| 0.0242 | 95.0 | 190 | 0.1808 | 0.7028 | 0.7539 | 0.9720 | nan | 0.5160 | 0.9918 | nan | 0.4341 | 0.9714 |
|
77 |
+
| 0.024 | 100.0 | 200 | 0.1796 | 0.7022 | 0.7501 | 0.9723 | nan | 0.5077 | 0.9925 | nan | 0.4327 | 0.9717 |
|
78 |
+
| 0.0231 | 105.0 | 210 | 0.1835 | 0.7137 | 0.7731 | 0.9724 | nan | 0.5557 | 0.9905 | nan | 0.4556 | 0.9717 |
|
79 |
+
| 0.0238 | 110.0 | 220 | 0.1823 | 0.7046 | 0.7565 | 0.9721 | nan | 0.5214 | 0.9917 | nan | 0.4376 | 0.9715 |
|
80 |
+
| 0.0228 | 115.0 | 230 | 0.1833 | 0.7009 | 0.7504 | 0.9720 | nan | 0.5088 | 0.9921 | nan | 0.4305 | 0.9714 |
|
81 |
+
| 0.0255 | 120.0 | 240 | 0.1841 | 0.7025 | 0.7532 | 0.9721 | nan | 0.5145 | 0.9919 | nan | 0.4336 | 0.9715 |
|
82 |
+
|
83 |
+
|
84 |
+
### Framework versions
|
85 |
+
|
86 |
+
- Transformers 4.30.2
|
87 |
+
- Pytorch 2.0.1+cu117
|
88 |
+
- Datasets 2.13.1
|
89 |
+
- Tokenizers 0.13.3
|