salohnana2018 commited on
Commit
ad26433
1 Parent(s): 9c0bbbb

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +67 -0
README.md ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: qarib/bert-base-qarib
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - precision
7
+ - recall
8
+ - f1
9
+ - accuracy
10
+ model-index:
11
+ - name: OTE-NoDapt-ABSA-bert-base-qarib-OrginalHP-FineTune
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # OTE-NoDapt-ABSA-bert-base-qarib-OrginalHP-FineTune
19
+
20
+ This model is a fine-tuned version of [qarib/bert-base-qarib](https://huggingface.co/qarib/bert-base-qarib) on the None dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.1348
23
+ - Precision: 0.7488
24
+ - Recall: 0.7723
25
+ - F1: 0.7604
26
+ - Accuracy: 0.9532
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 8e-05
46
+ - train_batch_size: 64
47
+ - eval_batch_size: 8
48
+ - seed: 25
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 3
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
56
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
57
+ | 0.1656 | 1.0 | 61 | 0.1196 | 0.7299 | 0.7932 | 0.7603 | 0.9528 |
58
+ | 0.08 | 2.0 | 122 | 0.1176 | 0.7561 | 0.7678 | 0.7619 | 0.9543 |
59
+ | 0.0501 | 3.0 | 183 | 0.1348 | 0.7488 | 0.7723 | 0.7604 | 0.9532 |
60
+
61
+
62
+ ### Framework versions
63
+
64
+ - Transformers 4.31.0
65
+ - Pytorch 2.0.1+cu118
66
+ - Datasets 2.14.4
67
+ - Tokenizers 0.13.3