salil-malhotra
commited on
Commit
•
f37ff28
1
Parent(s):
195032c
Upload PPO LunarLander-v2 trained agent
Browse files- README.md +2 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +24 -24
- ppo-LunarLander-v2/policy.optimizer.pth +2 -2
- ppo-LunarLander-v2/policy.pth +1 -1
- results.json +1 -1
README.md
CHANGED
@@ -10,7 +10,7 @@ model-index:
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
-
value:
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
@@ -20,6 +20,7 @@ model-index:
|
|
20 |
type: LunarLander-v2
|
21 |
---
|
22 |
|
|
|
23 |
# **PPO** Agent playing **LunarLander-v2**
|
24 |
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
|
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
+
value: 175.56 +/- 103.29
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
|
|
20 |
type: LunarLander-v2
|
21 |
---
|
22 |
|
23 |
+
|
24 |
# **PPO** Agent playing **LunarLander-v2**
|
25 |
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x0000018E4350F430>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x0000018E4350F4C0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x0000018E4350F550>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x0000018E4350F5E0>", "_build": "<function ActorCriticPolicy._build at 0x0000018E4350F670>", "forward": "<function ActorCriticPolicy.forward at 0x0000018E4350F700>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x0000018E4350F790>", "_predict": "<function ActorCriticPolicy._predict at 0x0000018E4350F820>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x0000018E4350F8B0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x0000018E4350F940>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x0000018E4350F9D0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x0000018E4350CE70>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVngEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBXNoYXBllEsIhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSwiFlIwBQ5R0lFKUjARoaWdolGgSKJYgAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSwiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWCAAAAAAAAAAAAAAAAAAAAJRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZRoFXSUUpSMDWJvdW5kZWRfYWJvdmWUaBIolggAAAAAAAAAAAAAAAAAAACUaCFLCIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVgQAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwFc2hhcGWUKYwFZHR5cGWUjAVudW1weZRoB5OUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlE51Yi4=", "n": 4, "shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 65536, "_total_timesteps": 50000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652130427.816553, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVkQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGFDOlxVc2Vyc1xtYWxoc2FsXGRldlxkYmNvbmRhLTIwMjFfMDUtcHkzOC1yMzZcbGliXHNpdGUtcGFja2FnZXNcc3RhYmxlX2Jhc2VsaW5lczNcY29tbW9uXHV0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgNdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAI1Onb3W8tE/OE5qvPytvb3HV/O+CinBvgAAAAAAAAAAmgOKPSztmj96CCs+k5vtvooa0z0ow1U+AAAAAAAAAABzk+09d/GnP+i6hz4Pbeq+uKD0PcmcND4AAAAAAAAAAN3ZMj+IOMg+zO+cPmP6vL/iro8/GRGQPAAAAAAAAAAAM8KfPXEkwz+Wpc8+DF+tPQTdhDz+iQQ9AAAAAAAAAAC2Jma+z5JvPyATMb+A22O/7GYFPv1Grb0AAAAAAAAAAACg0zsGp7U/qEZdPnWoxD1nxxe8cLZVvQAAAAAAAAAAzXHWvXlROz+ekK2+kEtBv9yz0z5gZEM+AAAAAAAAAAAzQoC8bvuyPxYeSr/ddY6+JciVPOzxOz4AAAAAAAAAAO0LGr6l+w0+IJfWPhoGeL8uV/C+wtJ+PQAAAAAAAAAAM+YGvsR3ij8todm+cGEjvzBJjj5YRLg9AAAAAAAAAAAzFje+KMxRP6Bb0L5aKFa/PtHNvc11Lb4AAAAAAAAAAMDhzb1KWpI/TkcXvyqAUL9ms7c9Dt3zPAAAAAAAAAAAAC6BPF1hxz9FCtk9er2XPriJPryiCny7AAAAAAAAAADWRJ++u5OsP6V15L5VVKK+t/WkvkZjZ74AAAAAAAAAAPO/2z5kdl4+WMICP2POb79eBZs882nAugAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.3107200000000001, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI+3lTkQqFasCUhpRSlIwBbJRLg4wBdJRHQDxHOW0JF9d1fZQoaAZoCWgPQwhl4etrXdZRwJSGlFKUaBVLSWgWR0A8S9Zid8RddX2UKGgGaAloD0MIDhZO0vwhNcCUhpRSlGgVS2doFkdAPEzgZTAFgXV9lChoBmgJaA9DCIeMR6mEHFvAlIaUUpRoFUs/aBZHQDxa/5+H8CR1fZQoaAZoCWgPQwjDnKBNDjtHwJSGlFKUaBVLfGgWR0A8YjBEa2nbdX2UKGgGaAloD0MIx/DYz+I5YcCUhpRSlGgVS1hoFkdAPGZVbRneznV9lChoBmgJaA9DCCXpmsk38l/AlIaUUpRoFUtFaBZHQDxtAiV0Lc91fZQoaAZoCWgPQwgCnx9GiMRgwJSGlFKUaBVLYWgWR0A8cq0tyxRmdX2UKGgGaAloD0MIp1g1CHN8XsCUhpRSlGgVS11oFkdAPHR5kbxVhnV9lChoBmgJaA9DCJrtCn2wuEjAlIaUUpRoFUtGaBZHQDx6qYJE6T51fZQoaAZoCWgPQwi29GiqJ4JcwJSGlFKUaBVLUmgWR0A8fNlyzXz2dX2UKGgGaAloD0MIy7p/LESUWMCUhpRSlGgVS4toFkdAPIMpw0fozXV9lChoBmgJaA9DCAosgCkDA2PAlIaUUpRoFUtuaBZHQDyEtYjjaPF1fZQoaAZoCWgPQwiNKsO4G4BYwJSGlFKUaBVLZ2gWR0A8h8Yht+CsdX2UKGgGaAloD0MIiBHCo40TWsCUhpRSlGgVS2poFkdAPI41LrX18XV9lChoBmgJaA9DCG4YBcHjrl/AlIaUUpRoFUthaBZHQDyNL7Gecx11fZQoaAZoCWgPQwhJaMu5FBVWwJSGlFKUaBVLdGgWR0A8lzVtoBaLdX2UKGgGaAloD0MIo+ar5GNXSsCUhpRSlGgVS4xoFkdAPJ09t/FzdXV9lChoBmgJaA9DCJrv4CcOrFHAlIaUUpRoFUtGaBZHQDygcjqv/zd1fZQoaAZoCWgPQwid19glKsJhwJSGlFKUaBVLZ2gWR0A8pZpBX0XhdX2UKGgGaAloD0MIhnKiXQVCY8CUhpRSlGgVS4poFkdAPLRF3IMjNnV9lChoBmgJaA9DCGQfZFkwQV3AlIaUUpRoFUtbaBZHQDy6butwJgN1fZQoaAZoCWgPQwg/jubIyhlbwJSGlFKUaBVLdWgWR0A8u7iQ1aW5dX2UKGgGaAloD0MIoUyjycWtW8CUhpRSlGgVS2hoFkdAPMJrLyMDOnV9lChoBmgJaA9DCHo1QGmocV3AlIaUUpRoFUtXaBZHQDzByT6i0v51fZQoaAZoCWgPQwjUDKmieCdSwJSGlFKUaBVLT2gWR0A8xYPGyX2NdX2UKGgGaAloD0MIUyEeiZctXcCUhpRSlGgVS3xoFkdAPMUEPlMh5nV9lChoBmgJaA9DCPYINUOqjFrAlIaUUpRoFUtxaBZHQDzSIJqqOtJ1fZQoaAZoCWgPQwjcn4uGjOpVwJSGlFKUaBVLZ2gWR0A80uivgWJrdX2UKGgGaAloD0MI+u/Ba5ekUcCUhpRSlGgVS0xoFkdAPNujua4MF3V9lChoBmgJaA9DCGHij6LOjFbAlIaUUpRoFUtWaBZHQDzdkqc3EQ51fZQoaAZoCWgPQwjeWbvtQi8ywJSGlFKUaBVLaWgWR0A83O3lS0jUdX2UKGgGaAloD0MIFOy/zk1BU8CUhpRSlGgVS1loFkdAPOf3rUsnRnV9lChoBmgJaA9DCG6jAbyFumDAlIaUUpRoFUtraBZHQDzm8274BWB1fZQoaAZoCWgPQwiI8gUtJOAIwJSGlFKUaBVLe2gWR0A86sySFGoadX2UKGgGaAloD0MI4EvhQbO1UcCUhpRSlGgVS4loFkdAPOsQEpy6tnV9lChoBmgJaA9DCI/GoX4XKVnAlIaUUpRoFUtXaBZHQDzx/WlMyrR1fZQoaAZoCWgPQwgy422l1+hbwJSGlFKUaBVLR2gWR0A89lf7aZhKdX2UKGgGaAloD0MI7RFqhlT8VcCUhpRSlGgVS1doFkdAPPeg+QlrunV9lChoBmgJaA9DCHjQ7Lq3RlDAlIaUUpRoFUtMaBZHQDz1tEXtSht1fZQoaAZoCWgPQwi0If/MII5cwJSGlFKUaBVLTmgWR0A8+OxjawljdX2UKGgGaAloD0MIi98UViqCVMCUhpRSlGgVS0BoFkdAPP3JYDDCQHV9lChoBmgJaA9DCByygXSx3FTAlIaUUpRoFUtIaBZHQD0DMhX8wYd1fZQoaAZoCWgPQwhRL/g0J01bwJSGlFKUaBVLcWgWR0A9CVyFPBSDdX2UKGgGaAloD0MI2CrB4nCRZsCUhpRSlGgVS0poFkdAPQxwuM+/xnV9lChoBmgJaA9DCLMmFviKZVjAlIaUUpRoFUtvaBZHQD0Phjvuw5h1fZQoaAZoCWgPQwhMN4lBYGJawJSGlFKUaBVLSmgWR0A9GUqQRwqBdX2UKGgGaAloD0MI3smnxzYSZMCUhpRSlGgVS09oFkdAPRzmjj7yhHV9lChoBmgJaA9DCBk6dlCJT03AlIaUUpRoFUteaBZHQD0dJ+UhV2l1fZQoaAZoCWgPQwjGMv0S8SFSwJSGlFKUaBVLT2gWR0A9IL61stTUdX2UKGgGaAloD0MIZFjFG5kZTMCUhpRSlGgVS0JoFkdAPSXgLqlgt3V9lChoBmgJaA9DCOvIkc5ARGPAlIaUUpRoFUtyaBZHQD0qpAD7qIJ1fZQoaAZoCWgPQwi4O2u3XT5SwJSGlFKUaBVLRGgWR0A9Lp5u63AmdX2UKGgGaAloD0MIcCamC7FuU8CUhpRSlGgVSzhoFkdAPTilWOp84XV9lChoBmgJaA9DCJbnwd1ZClXAlIaUUpRoFUttaBZHQD04qTbFjut1fZQoaAZoCWgPQwhpyHiUSsxVwJSGlFKUaBVLPmgWR0A9OrRjSXt0dX2UKGgGaAloD0MIF2GKcmnlW8CUhpRSlGgVS25oFkdAPUGlMyrPt3V9lChoBmgJaA9DCJEm3gEeHG/AlIaUUpRoFUtuaBZHQD1GADq4YrJ1fZQoaAZoCWgPQwhyxcVRuStdwJSGlFKUaBVLb2gWR0A9SoJAt4A0dX2UKGgGaAloD0MI8piByvjbYMCUhpRSlGgVS2FoFkdAPU4+B6KLsXV9lChoBmgJaA9DCCl2NA71HlTAlIaUUpRoFUuFaBZHQD1kXtShrWR1fZQoaAZoCWgPQwifq63YX6xhwJSGlFKUaBVLYWgWR0A9biEQGwA3dX2UKGgGaAloD0MIqOFbWDcHU8CUhpRSlGgVS05oFkdAPXKiCaqjrXV9lChoBmgJaA9DCDwSL0/n5WDAlIaUUpRoFUteaBZHQD1vbEgntv51fZQoaAZoCWgPQwjI7Cx6p5FbwJSGlFKUaBVLaGgWR0A9eXQMQVbidX2UKGgGaAloD0MIg2xZvi7SVMCUhpRSlGgVS2VoFkdAPYLzPKMefnV9lChoBmgJaA9DCIrkK4GU2VHAlIaUUpRoFUtTaBZHQD2IWgvlEJB1fZQoaAZoCWgPQwik4CnkSh9NwJSGlFKUaBVLSGgWR0A9i7QLNOdodX2UKGgGaAloD0MIzNJOzeUCTcCUhpRSlGgVS3loFkdAPZHfdhy8z3V9lChoBmgJaA9DCJVHN8KiqEPAlIaUUpRoFUufaBZHQD2ZVPva11J1fZQoaAZoCWgPQwge4EkLl/1EwJSGlFKUaBVLSmgWR0A9l6iTMaCMdX2UKGgGaAloD0MIPUM4ZtmMbMCUhpRSlGgVS2JoFkdAPZxpg1FYuHV9lChoBmgJaA9DCHHMsicBWGfAlIaUUpRoFUtoaBZHQD2vbEgntv51fZQoaAZoCWgPQwhU5uYb0e1bwJSGlFKUaBVLX2gWR0A9r26TW5H3dX2UKGgGaAloD0MIUG9GzVfFT8CUhpRSlGgVS0poFkdAPa9v4ubqhXV9lChoBmgJaA9DCL0A++jUe2TAlIaUUpRoFUuCaBZHQD22o73fygB1fZQoaAZoCWgPQwj1RxgGLD9FwJSGlFKUaBVLSmgWR0A9vS88La24dX2UKGgGaAloD0MIBvTCnQuxacCUhpRSlGgVS5NoFkdAPbwEQoTfznV9lChoBmgJaA9DCG+5+rFJ+lPAlIaUUpRoFUtOaBZHQD28i0OVgQZ1fZQoaAZoCWgPQwhXQndJnNBVwJSGlFKUaBVLSGgWR0A9vtuUD+zddX2UKGgGaAloD0MI9Bd6xOhnVMCUhpRSlGgVSzxoFkdAPcIxk/bCanV9lChoBmgJaA9DCPTBMjZ0VljAlIaUUpRoFUtFaBZHQD3Im7aqS5l1fZQoaAZoCWgPQwh/Tdaoh9lUwJSGlFKUaBVLYGgWR0A9yBk7OmiydX2UKGgGaAloD0MIqG4u/rayUsCUhpRSlGgVS1JoFkdAPdAQQL/jsHV9lChoBmgJaA9DCN1Dwvf+e1zAlIaUUpRoFUtJaBZHQD3Wfra/RE51fZQoaAZoCWgPQwicwkoFFSZbwJSGlFKUaBVLTGgWR0A91+fRNRFadX2UKGgGaAloD0MI+WabG9NzUcCUhpRSlGgVS0hoFkdAPdoW+GoJiXV9lChoBmgJaA9DCLH8+bbgWm7AlIaUUpRoFUtoaBZHQD3pQWN3np11fZQoaAZoCWgPQwiASSpTzGFUwJSGlFKUaBVLRmgWR0A97zrNW2gGdX2UKGgGaAloD0MI3UHsTKETX8CUhpRSlGgVS05oFkdAPfhYeT3Zf3V9lChoBmgJaA9DCBvWVBaFXdk/lIaUUpRoFUteaBZHQD36ALApKBd1fZQoaAZoCWgPQwioj8AffoBYwJSGlFKUaBVLXmgWR0A99/XGwRoRdX2UKGgGaAloD0MIdv7tsl/0VsCUhpRSlGgVS1FoFkdAPfm/N7jT8nV9lChoBmgJaA9DCJHu5xTk+lvAlIaUUpRoFUtQaBZHQD36SDAaef91fZQoaAZoCWgPQwjY8sr1titXwJSGlFKUaBVLRmgWR0A9/iSJTER8dX2UKGgGaAloD0MIvt798V6OVsCUhpRSlGgVS01oFkdAPgiwOe8PF3V9lChoBmgJaA9DCE6AYfnzw1TAlIaUUpRoFUtzaBZHQD4G5qdpZfV1fZQoaAZoCWgPQwjnHafoSFRhwJSGlFKUaBVLYWgWR0A+BuanaWX1dX2UKGgGaAloD0MI1CgkmdWcVcCUhpRSlGgVS09oFkdAPhVJYkmhNHV9lChoBmgJaA9DCGR2Fr1TaU3AlIaUUpRoFUtUaBZHQD4UxqO938p1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 32, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVkQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGFDOlxVc2Vyc1xtYWxoc2FsXGRldlxkYmNvbmRhLTIwMjFfMDUtcHkzOC1yMzZcbGliXHNpdGUtcGFja2FnZXNcc3RhYmxlX2Jhc2VsaW5lczNcY29tbW9uXHV0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgNdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "target_kl": null, "system_info": {"OS": "Windows-10-10.0.18362-SP0 10.0.18362", "Python": "3.8.8", "Stable-Baselines3": "1.4.0", "PyTorch": "1.11.0", "GPU Enabled": "False", "Numpy": "1.20.1", "Gym": "0.19.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x000002450E751310>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x000002450E7513A0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x000002450E751430>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x000002450E7514C0>", "_build": "<function ActorCriticPolicy._build at 0x000002450E751550>", "forward": "<function ActorCriticPolicy.forward at 0x000002450E7515E0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x000002450E751670>", "_predict": "<function ActorCriticPolicy._predict at 0x000002450E751700>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x000002450E751790>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x000002450E751820>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x000002450E7518B0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x000002450E746F90>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVngEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBXNoYXBllEsIhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSwiFlIwBQ5R0lFKUjARoaWdolGgSKJYgAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSwiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWCAAAAAAAAAAAAAAAAAAAAJRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZRoFXSUUpSMDWJvdW5kZWRfYWJvdmWUaBIolggAAAAAAAAAAAAAAAAAAACUaCFLCIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVgQAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwFc2hhcGWUKYwFZHR5cGWUjAVudW1weZRoB5OUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlE51Yi4=", "n": 4, "shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 524288, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652149799.2144806, "learning_rate": 0.0003, "tensorboard_log": "tmp/", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVkQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGFDOlxVc2Vyc1xtYWxoc2FsXGRldlxkYmNvbmRhLTIwMjFfMDUtcHkzOC1yMzZcbGliXHNpdGUtcGFja2FnZXNcc3RhYmxlX2Jhc2VsaW5lczNcY29tbW9uXHV0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgNdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFoaiT3DqU+6rX2PuwBXn7bCpnc69c+oOgAAgD8AAIA/7Y9IPr3ZOzyyOpS8bsRQPOlTED7gHTU9AACAPwAAgD8mm6E9w5VUujse0Dt2HxQ26siFu8nWBjUAAIA/AACAP0MT3L4ETtw+y2zSPJ9pi77KZJC99sCzPQAAAAAAAAAAgPuovmqMcr34A226rpqNuHhanz5ibZM4AACAPwAAgD/NBo+8PWogufIhN7wb+MU10t+8OygON7UAAIA/AACAPy6Kqr70UYq9A+YgO5UZCTqlWbI+kipTugAAgD8AAIA/DYr6vrYHe7zPow0+G3dUvrGKEbxkdJM9AAAAAAAAAABN2wa+CkNROtKsnLqD5wg3YvI8vAGMtDkAAIA/AACAP9OZjz4ce2G8EbXDu2koYTmzeb+94rg0OgAAgD8AAIA/RcmDvjqoGr2gtuy8EKRru96Hhj5vFy48AACAPwAAgD9Nfrk94YaOusJ1gjv3Dqi13m3suiNtk7oAAIA/AACAP7MxKz0piCi6pAcWu3IYn7SapZY6coQXNAAAgD8AAIA/IFSdvh8ZsjpCQxo6esvttZqEabw+gig1AACAPwAAgD9m0b094RyJus96vjklAVO1Zd2BOtDT2rgAAIA/AACAPzNzCzofhYg4nn4HPOsOH7nuK+27YswiuAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIozodyHo5XkCUhpRSlIwBbJRN6AOMAXSUR0CAmvuFYdQwdX2UKGgGaAloD0MI+WpHcY7RXECUhpRSlGgVTegDaBZHQICe1gjQiRp1fZQoaAZoCWgPQwgA/5QqUVZeQJSGlFKUaBVN6ANoFkdAgKQfJV81GnV9lChoBmgJaA9DCNwuNNdpOEJAlIaUUpRoFU3oA2gWR0CArrjLB9CvdX2UKGgGaAloD0MISZ7r+3A5X0CUhpRSlGgVTegDaBZHQICwo4Qz1sd1fZQoaAZoCWgPQwiCqWbWUkQ5QJSGlFKUaBVL3WgWR0CAub08NhE0dX2UKGgGaAloD0MICaaaWUveWkCUhpRSlGgVTegDaBZHQIC7Mr/bTMJ1fZQoaAZoCWgPQwiOc5twr9wTQJSGlFKUaBVLs2gWR0CAvQCbtqpMdX2UKGgGaAloD0MImus00lLPSUCUhpRSlGgVTegDaBZHQIDIw/7iyY51fZQoaAZoCWgPQwg/5C1XP81eQJSGlFKUaBVN6ANoFkdAgNIF+d9Uj3V9lChoBmgJaA9DCKmJPh9lSVVAlIaUUpRoFU3oA2gWR0CA2oreZXuFdX2UKGgGaAloD0MIuyh64GPdXECUhpRSlGgVTegDaBZHQIDl+KO1fE51fZQoaAZoCWgPQwimnZrLDRNZQJSGlFKUaBVN6ANoFkdAgOwrRrrPdHV9lChoBmgJaA9DCEUuOIO/jmJAlIaUUpRoFU3oA2gWR0CA7hvlU6xPdX2UKGgGaAloD0MIyXa+nxpPHECUhpRSlGgVS/RoFkdAgPSEi2UjcHV9lChoBmgJaA9DCPMhqBq93ltAlIaUUpRoFU3oA2gWR0CBCoMc6vJSdX2UKGgGaAloD0MIQdXo1QDiW0CUhpRSlGgVTegDaBZHQIEho79ycTd1fZQoaAZoCWgPQwiIhO/9DThbQJSGlFKUaBVN6ANoFkdAgSfcENe+mHV9lChoBmgJaA9DCMECmDJwqFVAlIaUUpRoFU3oA2gWR0CBLGGPgeijdX2UKGgGaAloD0MIweCaO/qvXMCUhpRSlGgVTaQBaBZHQIEtnta6jFh1fZQoaAZoCWgPQwiRmQtcHlpRQJSGlFKUaBVN6ANoFkdAgS/CGFi8WnV9lChoBmgJaA9DCIgNFk7S3FdAlIaUUpRoFU3oA2gWR0CBPyFxGUfQdX2UKGgGaAloD0MI7e9sj962V0CUhpRSlGgVTegDaBZHQIFBAKF7D2t1fZQoaAZoCWgPQwhc5QmEnZJcQJSGlFKUaBVN6ANoFkdAgUoLn1WbPXV9lChoBmgJaA9DCLB2FOeof01AlIaUUpRoFU3oA2gWR0CBS0WtU4rCdX2UKGgGaAloD0MI2cwhqYVhXECUhpRSlGgVTegDaBZHQIFM+4TbnHN1fZQoaAZoCWgPQwiTADW1bH5dQJSGlFKUaBVN6ANoFkdAgVfiCBf8dnV9lChoBmgJaA9DCEcdHVcjGlhAlIaUUpRoFU3oA2gWR0CB5a1aW5YpdX2UKGgGaAloD0MI+G7zxklh6D+UhpRSlGgVS/loFkdAgefQbuMMqnV9lChoBmgJaA9DCAMJih9jvFpAlIaUUpRoFU3oA2gWR0CB78UQkHD8dX2UKGgGaAloD0MIBRcrarAwYUCUhpRSlGgVTegDaBZHQIH06dBjWkJ1fZQoaAZoCWgPQwgcDHVY4cdXQJSGlFKUaBVN6ANoFkdAgf07qIJqqXV9lChoBmgJaA9DCGNCzCVVuxHAlIaUUpRoFUvyaBZHQIIQTiVB2Oh1fZQoaAZoCWgPQwhq2VpfJJdQQJSGlFKUaBVN6ANoFkdAghLaA4GUwHV9lChoBmgJaA9DCBL5LqUu1l9AlIaUUpRoFU3oA2gWR0CCJ0zt1IRRdX2UKGgGaAloD0MIu/JZngeKWkCUhpRSlGgVTegDaBZHQIIt+qxTsIF1fZQoaAZoCWgPQwjTvrm/elVmQJSGlFKUaBVNTgNoFkdAgjG5rgwXZXV9lChoBmgJaA9DCOZciqvKPmFAlIaUUpRoFU3oA2gWR0CCMs+ajN6gdX2UKGgGaAloD0MIJQNAFTfQSUCUhpRSlGgVTegDaBZHQIIz5h+fAbh1fZQoaAZoCWgPQwgv+grSjLhdQJSGlFKUaBVN6ANoFkdAgjWiAlOXV3V9lChoBmgJaA9DCAkVHF4QmGBAlIaUUpRoFU3oA2gWR0CCRUnv2GqQdX2UKGgGaAloD0MITUpBt5fVXkCUhpRSlGgVTegDaBZHQIJRQf+0gKZ1fZQoaAZoCWgPQwiLFwtD5I5gQJSGlFKUaBVN6ANoFkdAglSI1UEPlXV9lChoBmgJaA9DCKH2WztR81ZAlIaUUpRoFU3oA2gWR0CCYRyDIzWPdX2UKGgGaAloD0MIsDxIT5EHYECUhpRSlGgVTegDaBZHQIJziVdHDrJ1fZQoaAZoCWgPQwju7gG6LzNdQJSGlFKUaBVN6ANoFkdAgnZ9/jKgZnV9lChoBmgJaA9DCHYaaam84F1AlIaUUpRoFU3oA2gWR0CCiJelbeMydX2UKGgGaAloD0MIMEYkCi33XkCUhpRSlGgVTegDaBZHQIKTC4hEBsB1fZQoaAZoCWgPQwhjDRe5p2smwJSGlFKUaBVL4GgWR0CCnAIa99MLdX2UKGgGaAloD0MIokJ1c/EVXUCUhpRSlGgVTegDaBZHQIKog6bONYN1fZQoaAZoCWgPQwhvZB75A2xhQJSGlFKUaBVN6ANoFkdAgqryWZ7Xx3V9lChoBmgJaA9DCA9j0t9Ld0lAlIaUUpRoFUvPaBZHQIKyPIdU83d1fZQoaAZoCWgPQwhpccYwJ45fQJSGlFKUaBVN6ANoFkdAgr8kqc3ERHV9lChoBmgJaA9DCGxdaoR+UFtAlIaUUpRoFU3oA2gWR0CCxRy3kPtldX2UKGgGaAloD0MImzkktVD/XkCUhpRSlGgVTegDaBZHQILIX336AOJ1fZQoaAZoCWgPQwgKL8GpD21fQJSGlFKUaBVN6ANoFkdAgsmHgHeJpHV9lChoBmgJaA9DCAtBDkoYImFAlIaUUpRoFU3oA2gWR0CCysiN83MqdX2UKGgGaAloD0MIQBNhw1MEYECUhpRSlGgVTegDaBZHQILM56nivPl1fZQoaAZoCWgPQwjb/SrAd9tZQJSGlFKUaBVN6ANoFkdAgtvL9ETg23V9lChoBmgJaA9DCI8aE2IuKUdAlIaUUpRoFUvKaBZHQILmKmTC+Dh1fZQoaAZoCWgPQwjggmxZvrRbQJSGlFKUaBVN6ANoFkdAgufN78ejmHV9lChoBmgJaA9DCF3hXS7i41pAlIaUUpRoFU3oA2gWR0CC6uW7e2uxdX2UKGgGaAloD0MIMxe4PFa3YECUhpRSlGgVTegDaBZHQIL3Xbj94u91fZQoaAZoCWgPQwhat0HttwVdQJSGlFKUaBVN6ANoFkdAgwwUtAcDKnV9lChoBmgJaA9DCJ27XS9NzV5AlIaUUpRoFU3oA2gWR0CDsI1JDmbLdX2UKGgGaAloD0MIEVX4MzwfYkCUhpRSlGgVTegDaBZHQIPDRyKekHl1fZQoaAZoCWgPQwjxvb9Be7NfQJSGlFKUaBVN6ANoFkdAg88y2hIvrXV9lChoBmgJaA9DCAHcLF4sR2BAlIaUUpRoFU3oA2gWR0CD0Y13MY/FdX2UKGgGaAloD0MId700RYAuZUCUhpRSlGgVTegDaBZHQIPZeARTS9d1fZQoaAZoCWgPQwgCgjl6fNptQJSGlFKUaBVNpQFoFkdAg96AwGnn+3V9lChoBmgJaA9DCBHHuriNuFdAlIaUUpRoFU3oA2gWR0CD5aWBz3h5dX2UKGgGaAloD0MIRpT2Bl9cW0CUhpRSlGgVTegDaBZHQIPrIosqaw51fZQoaAZoCWgPQwjEQUKUL3xKQJSGlFKUaBVLxGgWR0CD7UxFiKBNdX2UKGgGaAloD0MI66urAjUcYECUhpRSlGgVTegDaBZHQIPt6tRvWH11fZQoaAZoCWgPQwiQh767lUpcQJSGlFKUaBVN6ANoFkdAg+/Vy/9Hc3V9lChoBmgJaA9DCCS3Jt2WbWBAlIaUUpRoFU3oA2gWR0CD8Wz2OAAidX2UKGgGaAloD0MIu18F+G7ZXkCUhpRSlGgVTegDaBZHQIP9hPdl/Yt1fZQoaAZoCWgPQwh2+daH9RJcQJSGlFKUaBVN6ANoFkdAhAZkona37XV9lChoBmgJaA9DCLFtUWaDIGBAlIaUUpRoFU3oA2gWR0CEB8rXlKbsdX2UKGgGaAloD0MIR1m/mZhpYECUhpRSlGgVTegDaBZHQIQLKMxXXAd1fZQoaAZoCWgPQwjgFFYqqC1WQJSGlFKUaBVN6ANoFkdAhBgTSLIgeXV9lChoBmgJaA9DCPT6k/jcETlAlIaUUpRoFUvXaBZHQIQlGknCwbF1fZQoaAZoCWgPQwhpkIKnkJJaQJSGlFKUaBVN6ANoFkdAhEA2oFV1fXV9lChoBmgJaA9DCCk900sMEmBAlIaUUpRoFU3oA2gWR0CEUs83dbgTdX2UKGgGaAloD0MIxZEHIovhW0CUhpRSlGgVTegDaBZHQIRh9GEwnIB1fZQoaAZoCWgPQwiOPBBZpIk4QJSGlFKUaBVN6ANoFkdAhGzR+BpYcXV9lChoBmgJaA9DCPdXj/vWE2FAlIaUUpRoFU3oA2gWR0CEcZdP+GXYdX2UKGgGaAloD0MIjSeCOA/+YECUhpRSlGgVTegDaBZHQIR4jE1l5GB1fZQoaAZoCWgPQwgrbXGNzzpMQJSGlFKUaBVN6ANoFkdAhH5qTB68hHV9lChoBmgJaA9DCPEuF/GdLl9AlIaUUpRoFU3oA2gWR0CEgXaL4vexdX2UKGgGaAloD0MI6C0e3nNLYkCUhpRSlGgVTegDaBZHQISCMnJDE3t1fZQoaAZoCWgPQwjZtb3dklNfQJSGlFKUaBVN6ANoFkdAhIRNrKvFFXV9lChoBmgJaA9DCIogzsOJm2RAlIaUUpRoFU3oA2gWR0CEhg0iyIHkdX2UKGgGaAloD0MI12zlJf+3X0CUhpRSlGgVTegDaBZHQISSnmmtQsR1fZQoaAZoCWgPQwgJpS+EnJdiQJSGlFKUaBVN6ANoFkdAhJ3G8/UvwnV9lChoBmgJaA9DCEd0z7rG7mJAlIaUUpRoFU3oA2gWR0CEoQj1PFefdX2UKGgGaAloD0MIYr8n1qmCLUCUhpRSlGgVTQYBaBZHQISl/2f02+B1fZQoaAZoCWgPQwgR/G8lO0JtQJSGlFKUaBVNVAFoFkdAhKvMV1wHaHV9lChoBmgJaA9DCOJbWDdecmJAlIaUUpRoFU3oA2gWR0CErzCNS619dX2UKGgGaAloD0MI3EduTbpaWECUhpRSlGgVTegDaBZHQIS6tlK9PDZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 128, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVkQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGFDOlxVc2Vyc1xtYWxoc2FsXGRldlxkYmNvbmRhLTIwMjFfMDUtcHkzOC1yMzZcbGliXHNpdGUtcGFja2FnZXNcc3RhYmxlX2Jhc2VsaW5lczNcY29tbW9uXHV0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgNdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "target_kl": null, "system_info": {"OS": "Windows-10-10.0.18362-SP0 10.0.18362", "Python": "3.8.8", "Stable-Baselines3": "1.4.0", "PyTorch": "1.11.0", "GPU Enabled": "False", "Numpy": "1.20.1", "Gym": "0.19.0"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4e4c7d6679f87c9e5546a42014bfa73b714220fe8715aae14194ab8a59d196c6
|
3 |
+
size 143557
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,19 +4,19 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
14 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
15 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
16 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
17 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
-
"_abc_impl": "<_abc_data object at
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
@@ -42,21 +42,21 @@
|
|
42 |
"_np_random": null
|
43 |
},
|
44 |
"n_envs": 16,
|
45 |
-
"num_timesteps":
|
46 |
-
"_total_timesteps":
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
-
"start_time":
|
51 |
"learning_rate": 0.0003,
|
52 |
-
"tensorboard_log":
|
53 |
"lr_schedule": {
|
54 |
":type:": "<class 'function'>",
|
55 |
":serialized:": "gAWVkQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGFDOlxVc2Vyc1xtYWxoc2FsXGRldlxkYmNvbmRhLTIwMjFfMDUtcHkzOC1yMzZcbGliXHNpdGUtcGFja2FnZXNcc3RhYmxlX2Jhc2VsaW5lczNcY29tbW9uXHV0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgNdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
-
":serialized:": "
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -66,24 +66,24 @@
|
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
-
"_current_progress_remaining": -0.
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
-
":serialized:": "
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
-
"_n_updates":
|
79 |
-
"n_steps":
|
80 |
-
"gamma": 0.
|
81 |
"gae_lambda": 0.98,
|
82 |
"ent_coef": 0.01,
|
83 |
"vf_coef": 0.5,
|
84 |
"max_grad_norm": 0.5,
|
85 |
-
"batch_size":
|
86 |
-
"n_epochs":
|
87 |
"clip_range": {
|
88 |
":type:": "<class 'function'>",
|
89 |
":serialized:": "gAWVkQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGFDOlxVc2Vyc1xtYWxoc2FsXGRldlxkYmNvbmRhLTIwMjFfMDUtcHkzOC1yMzZcbGliXHNpdGUtcGFja2FnZXNcc3RhYmxlX2Jhc2VsaW5lczNcY29tbW9uXHV0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgNdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x000002450E751310>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x000002450E7513A0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x000002450E751430>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x000002450E7514C0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x000002450E751550>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x000002450E7515E0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x000002450E751670>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x000002450E751700>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x000002450E751790>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x000002450E751820>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x000002450E7518B0>",
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x000002450E746F90>"
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
|
|
42 |
"_np_random": null
|
43 |
},
|
44 |
"n_envs": 16,
|
45 |
+
"num_timesteps": 524288,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
+
"start_time": 1652149799.2144806,
|
51 |
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": "tmp/",
|
53 |
"lr_schedule": {
|
54 |
":type:": "<class 'function'>",
|
55 |
":serialized:": "gAWVkQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGFDOlxVc2Vyc1xtYWxoc2FsXGRldlxkYmNvbmRhLTIwMjFfMDUtcHkzOC1yMzZcbGliXHNpdGUtcGFja2FnZXNcc3RhYmxlX2Jhc2VsaW5lczNcY29tbW9uXHV0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgNdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFoaiT3DqU+6rX2PuwBXn7bCpnc69c+oOgAAgD8AAIA/7Y9IPr3ZOzyyOpS8bsRQPOlTED7gHTU9AACAPwAAgD8mm6E9w5VUujse0Dt2HxQ26siFu8nWBjUAAIA/AACAP0MT3L4ETtw+y2zSPJ9pi77KZJC99sCzPQAAAAAAAAAAgPuovmqMcr34A226rpqNuHhanz5ibZM4AACAPwAAgD/NBo+8PWogufIhN7wb+MU10t+8OygON7UAAIA/AACAPy6Kqr70UYq9A+YgO5UZCTqlWbI+kipTugAAgD8AAIA/DYr6vrYHe7zPow0+G3dUvrGKEbxkdJM9AAAAAAAAAABN2wa+CkNROtKsnLqD5wg3YvI8vAGMtDkAAIA/AACAP9OZjz4ce2G8EbXDu2koYTmzeb+94rg0OgAAgD8AAIA/RcmDvjqoGr2gtuy8EKRru96Hhj5vFy48AACAPwAAgD9Nfrk94YaOusJ1gjv3Dqi13m3suiNtk7oAAIA/AACAP7MxKz0piCi6pAcWu3IYn7SapZY6coQXNAAAgD8AAIA/IFSdvh8ZsjpCQxo6esvttZqEabw+gig1AACAPwAAgD9m0b094RyJus96vjklAVO1Zd2BOtDT2rgAAIA/AACAPzNzCzofhYg4nn4HPOsOH7nuK+27YswiuAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.04857599999999995,
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVdxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIozodyHo5XkCUhpRSlIwBbJRN6AOMAXSUR0CAmvuFYdQwdX2UKGgGaAloD0MI+WpHcY7RXECUhpRSlGgVTegDaBZHQICe1gjQiRp1fZQoaAZoCWgPQwgA/5QqUVZeQJSGlFKUaBVN6ANoFkdAgKQfJV81GnV9lChoBmgJaA9DCNwuNNdpOEJAlIaUUpRoFU3oA2gWR0CArrjLB9CvdX2UKGgGaAloD0MISZ7r+3A5X0CUhpRSlGgVTegDaBZHQICwo4Qz1sd1fZQoaAZoCWgPQwiCqWbWUkQ5QJSGlFKUaBVL3WgWR0CAub08NhE0dX2UKGgGaAloD0MICaaaWUveWkCUhpRSlGgVTegDaBZHQIC7Mr/bTMJ1fZQoaAZoCWgPQwiOc5twr9wTQJSGlFKUaBVLs2gWR0CAvQCbtqpMdX2UKGgGaAloD0MImus00lLPSUCUhpRSlGgVTegDaBZHQIDIw/7iyY51fZQoaAZoCWgPQwg/5C1XP81eQJSGlFKUaBVN6ANoFkdAgNIF+d9Uj3V9lChoBmgJaA9DCKmJPh9lSVVAlIaUUpRoFU3oA2gWR0CA2oreZXuFdX2UKGgGaAloD0MIuyh64GPdXECUhpRSlGgVTegDaBZHQIDl+KO1fE51fZQoaAZoCWgPQwimnZrLDRNZQJSGlFKUaBVN6ANoFkdAgOwrRrrPdHV9lChoBmgJaA9DCEUuOIO/jmJAlIaUUpRoFU3oA2gWR0CA7hvlU6xPdX2UKGgGaAloD0MIyXa+nxpPHECUhpRSlGgVS/RoFkdAgPSEi2UjcHV9lChoBmgJaA9DCPMhqBq93ltAlIaUUpRoFU3oA2gWR0CBCoMc6vJSdX2UKGgGaAloD0MIQdXo1QDiW0CUhpRSlGgVTegDaBZHQIEho79ycTd1fZQoaAZoCWgPQwiIhO/9DThbQJSGlFKUaBVN6ANoFkdAgSfcENe+mHV9lChoBmgJaA9DCMECmDJwqFVAlIaUUpRoFU3oA2gWR0CBLGGPgeijdX2UKGgGaAloD0MIweCaO/qvXMCUhpRSlGgVTaQBaBZHQIEtnta6jFh1fZQoaAZoCWgPQwiRmQtcHlpRQJSGlFKUaBVN6ANoFkdAgS/CGFi8WnV9lChoBmgJaA9DCIgNFk7S3FdAlIaUUpRoFU3oA2gWR0CBPyFxGUfQdX2UKGgGaAloD0MI7e9sj962V0CUhpRSlGgVTegDaBZHQIFBAKF7D2t1fZQoaAZoCWgPQwhc5QmEnZJcQJSGlFKUaBVN6ANoFkdAgUoLn1WbPXV9lChoBmgJaA9DCLB2FOeof01AlIaUUpRoFU3oA2gWR0CBS0WtU4rCdX2UKGgGaAloD0MI2cwhqYVhXECUhpRSlGgVTegDaBZHQIFM+4TbnHN1fZQoaAZoCWgPQwiTADW1bH5dQJSGlFKUaBVN6ANoFkdAgVfiCBf8dnV9lChoBmgJaA9DCEcdHVcjGlhAlIaUUpRoFU3oA2gWR0CB5a1aW5YpdX2UKGgGaAloD0MI+G7zxklh6D+UhpRSlGgVS/loFkdAgefQbuMMqnV9lChoBmgJaA9DCAMJih9jvFpAlIaUUpRoFU3oA2gWR0CB78UQkHD8dX2UKGgGaAloD0MIBRcrarAwYUCUhpRSlGgVTegDaBZHQIH06dBjWkJ1fZQoaAZoCWgPQwgcDHVY4cdXQJSGlFKUaBVN6ANoFkdAgf07qIJqqXV9lChoBmgJaA9DCGNCzCVVuxHAlIaUUpRoFUvyaBZHQIIQTiVB2Oh1fZQoaAZoCWgPQwhq2VpfJJdQQJSGlFKUaBVN6ANoFkdAghLaA4GUwHV9lChoBmgJaA9DCBL5LqUu1l9AlIaUUpRoFU3oA2gWR0CCJ0zt1IRRdX2UKGgGaAloD0MIu/JZngeKWkCUhpRSlGgVTegDaBZHQIIt+qxTsIF1fZQoaAZoCWgPQwjTvrm/elVmQJSGlFKUaBVNTgNoFkdAgjG5rgwXZXV9lChoBmgJaA9DCOZciqvKPmFAlIaUUpRoFU3oA2gWR0CCMs+ajN6gdX2UKGgGaAloD0MIJQNAFTfQSUCUhpRSlGgVTegDaBZHQIIz5h+fAbh1fZQoaAZoCWgPQwgv+grSjLhdQJSGlFKUaBVN6ANoFkdAgjWiAlOXV3V9lChoBmgJaA9DCAkVHF4QmGBAlIaUUpRoFU3oA2gWR0CCRUnv2GqQdX2UKGgGaAloD0MITUpBt5fVXkCUhpRSlGgVTegDaBZHQIJRQf+0gKZ1fZQoaAZoCWgPQwiLFwtD5I5gQJSGlFKUaBVN6ANoFkdAglSI1UEPlXV9lChoBmgJaA9DCKH2WztR81ZAlIaUUpRoFU3oA2gWR0CCYRyDIzWPdX2UKGgGaAloD0MIsDxIT5EHYECUhpRSlGgVTegDaBZHQIJziVdHDrJ1fZQoaAZoCWgPQwju7gG6LzNdQJSGlFKUaBVN6ANoFkdAgnZ9/jKgZnV9lChoBmgJaA9DCHYaaam84F1AlIaUUpRoFU3oA2gWR0CCiJelbeMydX2UKGgGaAloD0MIMEYkCi33XkCUhpRSlGgVTegDaBZHQIKTC4hEBsB1fZQoaAZoCWgPQwhjDRe5p2smwJSGlFKUaBVL4GgWR0CCnAIa99MLdX2UKGgGaAloD0MIokJ1c/EVXUCUhpRSlGgVTegDaBZHQIKog6bONYN1fZQoaAZoCWgPQwhvZB75A2xhQJSGlFKUaBVN6ANoFkdAgqryWZ7Xx3V9lChoBmgJaA9DCA9j0t9Ld0lAlIaUUpRoFUvPaBZHQIKyPIdU83d1fZQoaAZoCWgPQwhpccYwJ45fQJSGlFKUaBVN6ANoFkdAgr8kqc3ERHV9lChoBmgJaA9DCGxdaoR+UFtAlIaUUpRoFU3oA2gWR0CCxRy3kPtldX2UKGgGaAloD0MImzkktVD/XkCUhpRSlGgVTegDaBZHQILIX336AOJ1fZQoaAZoCWgPQwgKL8GpD21fQJSGlFKUaBVN6ANoFkdAgsmHgHeJpHV9lChoBmgJaA9DCAtBDkoYImFAlIaUUpRoFU3oA2gWR0CCysiN83MqdX2UKGgGaAloD0MIQBNhw1MEYECUhpRSlGgVTegDaBZHQILM56nivPl1fZQoaAZoCWgPQwjb/SrAd9tZQJSGlFKUaBVN6ANoFkdAgtvL9ETg23V9lChoBmgJaA9DCI8aE2IuKUdAlIaUUpRoFUvKaBZHQILmKmTC+Dh1fZQoaAZoCWgPQwjggmxZvrRbQJSGlFKUaBVN6ANoFkdAgufN78ejmHV9lChoBmgJaA9DCF3hXS7i41pAlIaUUpRoFU3oA2gWR0CC6uW7e2uxdX2UKGgGaAloD0MIMxe4PFa3YECUhpRSlGgVTegDaBZHQIL3Xbj94u91fZQoaAZoCWgPQwhat0HttwVdQJSGlFKUaBVN6ANoFkdAgwwUtAcDKnV9lChoBmgJaA9DCJ27XS9NzV5AlIaUUpRoFU3oA2gWR0CDsI1JDmbLdX2UKGgGaAloD0MIEVX4MzwfYkCUhpRSlGgVTegDaBZHQIPDRyKekHl1fZQoaAZoCWgPQwjxvb9Be7NfQJSGlFKUaBVN6ANoFkdAg88y2hIvrXV9lChoBmgJaA9DCAHcLF4sR2BAlIaUUpRoFU3oA2gWR0CD0Y13MY/FdX2UKGgGaAloD0MId700RYAuZUCUhpRSlGgVTegDaBZHQIPZeARTS9d1fZQoaAZoCWgPQwgCgjl6fNptQJSGlFKUaBVNpQFoFkdAg96AwGnn+3V9lChoBmgJaA9DCBHHuriNuFdAlIaUUpRoFU3oA2gWR0CD5aWBz3h5dX2UKGgGaAloD0MIRpT2Bl9cW0CUhpRSlGgVTegDaBZHQIPrIosqaw51fZQoaAZoCWgPQwjEQUKUL3xKQJSGlFKUaBVLxGgWR0CD7UxFiKBNdX2UKGgGaAloD0MI66urAjUcYECUhpRSlGgVTegDaBZHQIPt6tRvWH11fZQoaAZoCWgPQwiQh767lUpcQJSGlFKUaBVN6ANoFkdAg+/Vy/9Hc3V9lChoBmgJaA9DCCS3Jt2WbWBAlIaUUpRoFU3oA2gWR0CD8Wz2OAAidX2UKGgGaAloD0MIu18F+G7ZXkCUhpRSlGgVTegDaBZHQIP9hPdl/Yt1fZQoaAZoCWgPQwh2+daH9RJcQJSGlFKUaBVN6ANoFkdAhAZkona37XV9lChoBmgJaA9DCLFtUWaDIGBAlIaUUpRoFU3oA2gWR0CEB8rXlKbsdX2UKGgGaAloD0MIR1m/mZhpYECUhpRSlGgVTegDaBZHQIQLKMxXXAd1fZQoaAZoCWgPQwjgFFYqqC1WQJSGlFKUaBVN6ANoFkdAhBgTSLIgeXV9lChoBmgJaA9DCPT6k/jcETlAlIaUUpRoFUvXaBZHQIQlGknCwbF1fZQoaAZoCWgPQwhpkIKnkJJaQJSGlFKUaBVN6ANoFkdAhEA2oFV1fXV9lChoBmgJaA9DCCk900sMEmBAlIaUUpRoFU3oA2gWR0CEUs83dbgTdX2UKGgGaAloD0MIxZEHIovhW0CUhpRSlGgVTegDaBZHQIRh9GEwnIB1fZQoaAZoCWgPQwiOPBBZpIk4QJSGlFKUaBVN6ANoFkdAhGzR+BpYcXV9lChoBmgJaA9DCPdXj/vWE2FAlIaUUpRoFU3oA2gWR0CEcZdP+GXYdX2UKGgGaAloD0MIjSeCOA/+YECUhpRSlGgVTegDaBZHQIR4jE1l5GB1fZQoaAZoCWgPQwgrbXGNzzpMQJSGlFKUaBVN6ANoFkdAhH5qTB68hHV9lChoBmgJaA9DCPEuF/GdLl9AlIaUUpRoFU3oA2gWR0CEgXaL4vexdX2UKGgGaAloD0MI6C0e3nNLYkCUhpRSlGgVTegDaBZHQISCMnJDE3t1fZQoaAZoCWgPQwjZtb3dklNfQJSGlFKUaBVN6ANoFkdAhIRNrKvFFXV9lChoBmgJaA9DCIogzsOJm2RAlIaUUpRoFU3oA2gWR0CEhg0iyIHkdX2UKGgGaAloD0MI12zlJf+3X0CUhpRSlGgVTegDaBZHQISSnmmtQsR1fZQoaAZoCWgPQwgJpS+EnJdiQJSGlFKUaBVN6ANoFkdAhJ3G8/UvwnV9lChoBmgJaA9DCEd0z7rG7mJAlIaUUpRoFU3oA2gWR0CEoQj1PFefdX2UKGgGaAloD0MIYr8n1qmCLUCUhpRSlGgVTQYBaBZHQISl/2f02+B1fZQoaAZoCWgPQwgR/G8lO0JtQJSGlFKUaBVNVAFoFkdAhKvMV1wHaHV9lChoBmgJaA9DCOJbWDdecmJAlIaUUpRoFU3oA2gWR0CErzCNS619dX2UKGgGaAloD0MI3EduTbpaWECUhpRSlGgVTegDaBZHQIS6tlK9PDZ1ZS4="
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
+
"_n_updates": 128,
|
79 |
+
"n_steps": 2048,
|
80 |
+
"gamma": 0.99,
|
81 |
"gae_lambda": 0.98,
|
82 |
"ent_coef": 0.01,
|
83 |
"vf_coef": 0.5,
|
84 |
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 8,
|
87 |
"clip_range": {
|
88 |
":type:": "<class 'function'>",
|
89 |
":serialized:": "gAWVkQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGFDOlxVc2Vyc1xtYWxoc2FsXGRldlxkYmNvbmRhLTIwMjFfMDUtcHkzOC1yMzZcbGliXHNpdGUtcGFja2FnZXNcc3RhYmxlX2Jhc2VsaW5lczNcY29tbW9uXHV0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgNdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:583d282480d2c4791e2c1c2e7af4a689874b1787af0ff9ec8d367e1aac3240e3
|
3 |
+
size 84637
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43073
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:82497b9c37e2f47b6b863be21f00c01c73cf778c85c4ba3cbea3d16ec9b20473
|
3 |
size 43073
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 175.56018175651224, "std_reward": 103.28542744136597, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-09T22:41:59.220603"}
|