Delete Get_Correct_Batch_Img.py
Browse files- Get_Correct_Batch_Img.py +0 -171
Get_Correct_Batch_Img.py
DELETED
|
@@ -1,171 +0,0 @@
|
|
| 1 |
-
import torch
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
class Get_Correct_Batch_Img:
|
| 5 |
-
"""
|
| 6 |
-
Given a batch of RGBA images, selects:
|
| 7 |
-
- the sprite with the widest visible span along a given Y row (max_img)
|
| 8 |
-
- the sprite with the thinnest visible span along that same row (min_img)
|
| 9 |
-
- the sprite whose width is closest to the midpoint between min/max widths (avg_img)
|
| 10 |
-
|
| 11 |
-
Visibility is determined from the alpha channel (A > 0).
|
| 12 |
-
Only images within [start_index, end_index] (inclusive) are considered.
|
| 13 |
-
"""
|
| 14 |
-
|
| 15 |
-
# Where this node appears in the right-click menu:
|
| 16 |
-
CATEGORY = "image/batch"
|
| 17 |
-
|
| 18 |
-
@classmethod
|
| 19 |
-
def INPUT_TYPES(s):
|
| 20 |
-
return {
|
| 21 |
-
"required": {
|
| 22 |
-
# RGBA image batch: torch.Tensor [B, H, W, 4]
|
| 23 |
-
"images": ("IMAGE",),
|
| 24 |
-
|
| 25 |
-
# Sub-batch start index (inclusive, 0-based)
|
| 26 |
-
"start_index": (
|
| 27 |
-
"INT",
|
| 28 |
-
{
|
| 29 |
-
"default": 0,
|
| 30 |
-
"min": 0,
|
| 31 |
-
"max": 2_147_483_647,
|
| 32 |
-
"step": 1,
|
| 33 |
-
},
|
| 34 |
-
),
|
| 35 |
-
|
| 36 |
-
# Sub-batch end index (inclusive, 0-based)
|
| 37 |
-
"end_index": (
|
| 38 |
-
"INT",
|
| 39 |
-
{
|
| 40 |
-
"default": 0,
|
| 41 |
-
"min": 0,
|
| 42 |
-
"max": 2_147_483_647,
|
| 43 |
-
"step": 1,
|
| 44 |
-
},
|
| 45 |
-
),
|
| 46 |
-
|
| 47 |
-
# Y coordinate (row) used for the horizontal scan
|
| 48 |
-
"y_coord": (
|
| 49 |
-
"INT",
|
| 50 |
-
{
|
| 51 |
-
"default": 0,
|
| 52 |
-
"min": 0,
|
| 53 |
-
"max": 2_147_483_647,
|
| 54 |
-
"step": 1,
|
| 55 |
-
},
|
| 56 |
-
),
|
| 57 |
-
}
|
| 58 |
-
}
|
| 59 |
-
|
| 60 |
-
# Three RGBA images out now
|
| 61 |
-
RETURN_TYPES = ("IMAGE", "IMAGE", "IMAGE")
|
| 62 |
-
RETURN_NAMES = ("max_img", "min_img", "avg_img")
|
| 63 |
-
FUNCTION = "select"
|
| 64 |
-
|
| 65 |
-
def select(self, images, start_index, end_index, y_coord):
|
| 66 |
-
# Basic sanity checks
|
| 67 |
-
if not isinstance(images, torch.Tensor):
|
| 68 |
-
raise TypeError(f"Expected IMAGE tensor, got {type(images)}")
|
| 69 |
-
|
| 70 |
-
if images.ndim != 4:
|
| 71 |
-
raise ValueError(
|
| 72 |
-
f"Expected IMAGE of shape [B,H,W,C], got {tuple(images.shape)}"
|
| 73 |
-
)
|
| 74 |
-
|
| 75 |
-
batch_size, height, width, channels = images.shape
|
| 76 |
-
|
| 77 |
-
if channels != 4:
|
| 78 |
-
raise ValueError(
|
| 79 |
-
f"Expected RGBA image with 4 channels, got {channels}. "
|
| 80 |
-
"Make sure your input batch is RGBA (not RGB)."
|
| 81 |
-
)
|
| 82 |
-
|
| 83 |
-
if batch_size == 0:
|
| 84 |
-
raise ValueError("Empty image batch passed to Get_Correct_Batch_Img.")
|
| 85 |
-
|
| 86 |
-
# Clamp and normalize indices
|
| 87 |
-
start = max(0, min(int(start_index), batch_size - 1))
|
| 88 |
-
end = max(0, min(int(end_index), batch_size - 1))
|
| 89 |
-
if start > end:
|
| 90 |
-
start, end = end, start # swap so start <= end
|
| 91 |
-
|
| 92 |
-
# Clamp Y coordinate into image bounds
|
| 93 |
-
y = max(0, min(int(y_coord), height - 1))
|
| 94 |
-
|
| 95 |
-
# Track widest and thinnest sprite
|
| 96 |
-
max_width = None
|
| 97 |
-
min_width = None
|
| 98 |
-
max_idx = start
|
| 99 |
-
min_idx = start
|
| 100 |
-
|
| 101 |
-
# For AVG: store (index, width_px) for all valid sprites
|
| 102 |
-
widths = []
|
| 103 |
-
|
| 104 |
-
# Small alpha threshold; alpha > 0 is "visible"
|
| 105 |
-
alpha_threshold = 0.0
|
| 106 |
-
any_visible = False
|
| 107 |
-
|
| 108 |
-
# Loop over the requested sub-batch only
|
| 109 |
-
for i in range(start, end + 1):
|
| 110 |
-
# row_alpha shape: [W]
|
| 111 |
-
row_alpha = images[i, y, :, 3]
|
| 112 |
-
visible = row_alpha > alpha_threshold
|
| 113 |
-
|
| 114 |
-
if not torch.any(visible):
|
| 115 |
-
# No visible pixels on this row for this image; skip it
|
| 116 |
-
continue
|
| 117 |
-
|
| 118 |
-
any_visible = True
|
| 119 |
-
|
| 120 |
-
# Indices of visible pixels along X
|
| 121 |
-
visible_indices = torch.nonzero(visible, as_tuple=False).squeeze(1)
|
| 122 |
-
left_x = int(visible_indices[0])
|
| 123 |
-
right_x = int(visible_indices[-1])
|
| 124 |
-
width_px = right_x - left_x + 1 # inclusive distance
|
| 125 |
-
|
| 126 |
-
widths.append((i, width_px))
|
| 127 |
-
|
| 128 |
-
# Update max width (widest sprite)
|
| 129 |
-
if max_width is None or width_px > max_width:
|
| 130 |
-
max_width = width_px
|
| 131 |
-
max_idx = i
|
| 132 |
-
|
| 133 |
-
# Update min width (thinnest sprite)
|
| 134 |
-
if min_width is None or width_px < min_width:
|
| 135 |
-
min_width = width_px
|
| 136 |
-
min_idx = i
|
| 137 |
-
|
| 138 |
-
# If nothing had visible pixels on that Y, just return the first image
|
| 139 |
-
# in the sub-batch as all three outputs (so the node never crashes).
|
| 140 |
-
if not any_visible:
|
| 141 |
-
base_img = images[start].unsqueeze(0)
|
| 142 |
-
return (base_img, base_img, base_img)
|
| 143 |
-
|
| 144 |
-
# Compute midpoint between MIN and MAX widths
|
| 145 |
-
center_width = (min_width + max_width) / 2.0
|
| 146 |
-
|
| 147 |
-
# Find sprite whose width is closest to this center_width
|
| 148 |
-
avg_idx = max_idx # default
|
| 149 |
-
closest_diff = None
|
| 150 |
-
for idx, w in widths:
|
| 151 |
-
diff = abs(w - center_width)
|
| 152 |
-
if closest_diff is None or diff < closest_diff:
|
| 153 |
-
closest_diff = diff
|
| 154 |
-
avg_idx = idx
|
| 155 |
-
|
| 156 |
-
# Extract chosen sprites as batch size 1 (B=1, H, W, C)
|
| 157 |
-
max_img = images[max_idx].unsqueeze(0)
|
| 158 |
-
min_img = images[min_idx].unsqueeze(0)
|
| 159 |
-
avg_img = images[avg_idx].unsqueeze(0)
|
| 160 |
-
|
| 161 |
-
return (max_img, min_img, avg_img)
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
# Register node with ComfyUI
|
| 165 |
-
NODE_CLASS_MAPPINGS = {
|
| 166 |
-
"Get_Correct_Batch_Img": Get_Correct_Batch_Img,
|
| 167 |
-
}
|
| 168 |
-
|
| 169 |
-
NODE_DISPLAY_NAME_MAPPINGS = {
|
| 170 |
-
"Get_Correct_Batch_Img": "Get_Correct_Batch_Img (Salia)",
|
| 171 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|