salbatarni commited on
Commit
0cefafa
1 Parent(s): 84dc0bb

End of training

Browse files
Files changed (1) hide show
  1. README.md +92 -87
README.md CHANGED
@@ -3,20 +3,20 @@ base_model: aubmindlab/bert-base-arabertv02
3
  tags:
4
  - generated_from_trainer
5
  model-index:
6
- - name: arabert_cross_relevance_task1_fold1
7
  results: []
8
  ---
9
 
10
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
  should probably proofread and complete it, then remove this comment. -->
12
 
13
- # arabert_cross_relevance_task1_fold1
14
 
15
  This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset.
16
  It achieves the following results on the evaluation set:
17
- - Loss: 0.2738
18
- - Qwk: 0.0
19
- - Mse: 0.2739
20
 
21
  ## Model description
22
 
@@ -45,88 +45,93 @@ The following hyperparameters were used during training:
45
 
46
  ### Training results
47
 
48
- | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse |
49
- |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|
50
- | No log | 0.125 | 2 | 1.0588 | -0.0001 | 1.0575 |
51
- | No log | 0.25 | 4 | 0.3264 | 0.1085 | 0.3266 |
52
- | No log | 0.375 | 6 | 0.4800 | 0.0711 | 0.4804 |
53
- | No log | 0.5 | 8 | 0.3741 | 0.0242 | 0.3744 |
54
- | No log | 0.625 | 10 | 0.2864 | 0.0 | 0.2865 |
55
- | No log | 0.75 | 12 | 0.2902 | 0.0 | 0.2903 |
56
- | No log | 0.875 | 14 | 0.3836 | -0.0180 | 0.3840 |
57
- | No log | 1.0 | 16 | 0.5708 | 0.0324 | 0.5714 |
58
- | No log | 1.125 | 18 | 0.6465 | 0.0638 | 0.6472 |
59
- | No log | 1.25 | 20 | 0.4891 | -0.0969 | 0.4897 |
60
- | No log | 1.375 | 22 | 0.3947 | 0.0283 | 0.3952 |
61
- | No log | 1.5 | 24 | 0.3523 | 0.0122 | 0.3527 |
62
- | No log | 1.625 | 26 | 0.3225 | 0.0 | 0.3228 |
63
- | No log | 1.75 | 28 | 0.3334 | 0.0 | 0.3337 |
64
- | No log | 1.875 | 30 | 0.3339 | 0.0 | 0.3343 |
65
- | No log | 2.0 | 32 | 0.3405 | 0.0122 | 0.3408 |
66
- | No log | 2.125 | 34 | 0.3476 | 0.0122 | 0.3480 |
67
- | No log | 2.25 | 36 | 0.3276 | 0.0122 | 0.3280 |
68
- | No log | 2.375 | 38 | 0.3178 | 0.0 | 0.3181 |
69
- | No log | 2.5 | 40 | 0.3023 | 0.0 | 0.3026 |
70
- | No log | 2.625 | 42 | 0.2905 | 0.0 | 0.2907 |
71
- | No log | 2.75 | 44 | 0.2841 | 0.0 | 0.2843 |
72
- | No log | 2.875 | 46 | 0.2902 | 0.0 | 0.2904 |
73
- | No log | 3.0 | 48 | 0.3167 | 0.0122 | 0.3170 |
74
- | No log | 3.125 | 50 | 0.3680 | 0.0285 | 0.3684 |
75
- | No log | 3.25 | 52 | 0.3771 | 0.0452 | 0.3775 |
76
- | No log | 3.375 | 54 | 0.3850 | 0.0665 | 0.3854 |
77
- | No log | 3.5 | 56 | 0.3485 | 0.0080 | 0.3489 |
78
- | No log | 3.625 | 58 | 0.3149 | 0.0 | 0.3151 |
79
- | No log | 3.75 | 60 | 0.2939 | 0.0 | 0.2941 |
80
- | No log | 3.875 | 62 | 0.2881 | 0.0 | 0.2883 |
81
- | No log | 4.0 | 64 | 0.2895 | 0.0 | 0.2897 |
82
- | No log | 4.125 | 66 | 0.3127 | 0.0 | 0.3129 |
83
- | No log | 4.25 | 68 | 0.3458 | 0.0245 | 0.3462 |
84
- | No log | 4.375 | 70 | 0.3576 | 0.0161 | 0.3580 |
85
- | No log | 4.5 | 72 | 0.3521 | 0.0161 | 0.3525 |
86
- | No log | 4.625 | 74 | 0.3633 | 0.0161 | 0.3637 |
87
- | No log | 4.75 | 76 | 0.3571 | 0.0326 | 0.3575 |
88
- | No log | 4.875 | 78 | 0.3220 | 0.0 | 0.3223 |
89
- | No log | 5.0 | 80 | 0.2971 | 0.0 | 0.2973 |
90
- | No log | 5.125 | 82 | 0.2905 | 0.0 | 0.2906 |
91
- | No log | 5.25 | 84 | 0.2904 | 0.0 | 0.2906 |
92
- | No log | 5.375 | 86 | 0.2948 | 0.0 | 0.2950 |
93
- | No log | 5.5 | 88 | 0.3083 | 0.0 | 0.3085 |
94
- | No log | 5.625 | 90 | 0.3120 | 0.0 | 0.3123 |
95
- | No log | 5.75 | 92 | 0.2947 | 0.0 | 0.2949 |
96
- | No log | 5.875 | 94 | 0.2786 | 0.0 | 0.2786 |
97
- | No log | 6.0 | 96 | 0.2717 | 0.0 | 0.2717 |
98
- | No log | 6.125 | 98 | 0.2685 | 0.0 | 0.2684 |
99
- | No log | 6.25 | 100 | 0.2677 | 0.0 | 0.2677 |
100
- | No log | 6.375 | 102 | 0.2687 | 0.0 | 0.2688 |
101
- | No log | 6.5 | 104 | 0.2689 | 0.0 | 0.2690 |
102
- | No log | 6.625 | 106 | 0.2694 | 0.0 | 0.2695 |
103
- | No log | 6.75 | 108 | 0.2703 | 0.0 | 0.2703 |
104
- | No log | 6.875 | 110 | 0.2742 | 0.0 | 0.2743 |
105
- | No log | 7.0 | 112 | 0.2832 | 0.0 | 0.2833 |
106
- | No log | 7.125 | 114 | 0.2950 | 0.0 | 0.2953 |
107
- | No log | 7.25 | 116 | 0.2962 | 0.0 | 0.2965 |
108
- | No log | 7.375 | 118 | 0.2908 | 0.0 | 0.2910 |
109
- | No log | 7.5 | 120 | 0.2842 | 0.0 | 0.2844 |
110
- | No log | 7.625 | 122 | 0.2800 | 0.0 | 0.2802 |
111
- | No log | 7.75 | 124 | 0.2757 | 0.0 | 0.2758 |
112
- | No log | 7.875 | 126 | 0.2725 | 0.0 | 0.2726 |
113
- | No log | 8.0 | 128 | 0.2720 | 0.0 | 0.2720 |
114
- | No log | 8.125 | 130 | 0.2730 | 0.0 | 0.2730 |
115
- | No log | 8.25 | 132 | 0.2749 | 0.0 | 0.2750 |
116
- | No log | 8.375 | 134 | 0.2761 | 0.0 | 0.2763 |
117
- | No log | 8.5 | 136 | 0.2761 | 0.0 | 0.2762 |
118
- | No log | 8.625 | 138 | 0.2753 | 0.0 | 0.2755 |
119
- | No log | 8.75 | 140 | 0.2739 | 0.0 | 0.2740 |
120
- | No log | 8.875 | 142 | 0.2738 | 0.0 | 0.2739 |
121
- | No log | 9.0 | 144 | 0.2744 | 0.0 | 0.2745 |
122
- | No log | 9.125 | 146 | 0.2747 | 0.0 | 0.2748 |
123
- | No log | 9.25 | 148 | 0.2751 | 0.0 | 0.2752 |
124
- | No log | 9.375 | 150 | 0.2750 | 0.0 | 0.2751 |
125
- | No log | 9.5 | 152 | 0.2745 | 0.0 | 0.2747 |
126
- | No log | 9.625 | 154 | 0.2742 | 0.0 | 0.2743 |
127
- | No log | 9.75 | 156 | 0.2740 | 0.0 | 0.2741 |
128
- | No log | 9.875 | 158 | 0.2739 | 0.0 | 0.2740 |
129
- | No log | 10.0 | 160 | 0.2738 | 0.0 | 0.2739 |
 
 
 
 
 
130
 
131
 
132
  ### Framework versions
 
3
  tags:
4
  - generated_from_trainer
5
  model-index:
6
+ - name: arabert_cross_relevance_task1_fold2
7
  results: []
8
  ---
9
 
10
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
  should probably proofread and complete it, then remove this comment. -->
12
 
13
+ # arabert_cross_relevance_task1_fold2
14
 
15
  This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset.
16
  It achieves the following results on the evaluation set:
17
+ - Loss: 0.4917
18
+ - Qwk: -0.0345
19
+ - Mse: 0.4917
20
 
21
  ## Model description
22
 
 
45
 
46
  ### Training results
47
 
48
+ | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse |
49
+ |:-------------:|:------:|:----:|:---------------:|:-------:|:------:|
50
+ | No log | 0.1176 | 2 | 0.5402 | 0.0504 | 0.5402 |
51
+ | No log | 0.2353 | 4 | 0.5522 | 0.1129 | 0.5522 |
52
+ | No log | 0.3529 | 6 | 0.4760 | 0.1129 | 0.4760 |
53
+ | No log | 0.4706 | 8 | 0.2772 | 0.0 | 0.2772 |
54
+ | No log | 0.5882 | 10 | 0.2693 | 0.0 | 0.2693 |
55
+ | No log | 0.7059 | 12 | 0.2659 | -0.0235 | 0.2659 |
56
+ | No log | 0.8235 | 14 | 0.3218 | -0.0448 | 0.3218 |
57
+ | No log | 0.9412 | 16 | 0.3400 | -0.1260 | 0.3400 |
58
+ | No log | 1.0588 | 18 | 0.3031 | -0.0764 | 0.3031 |
59
+ | No log | 1.1765 | 20 | 0.3006 | -0.0235 | 0.3006 |
60
+ | No log | 1.2941 | 22 | 0.3269 | 0.0 | 0.3269 |
61
+ | No log | 1.4118 | 24 | 0.3005 | 0.0 | 0.3005 |
62
+ | No log | 1.5294 | 26 | 0.2883 | -0.0374 | 0.2883 |
63
+ | No log | 1.6471 | 28 | 0.3040 | -0.0764 | 0.3040 |
64
+ | No log | 1.7647 | 30 | 0.2964 | -0.0374 | 0.2964 |
65
+ | No log | 1.8824 | 32 | 0.2940 | -0.0235 | 0.2940 |
66
+ | No log | 2.0 | 34 | 0.2905 | -0.0473 | 0.2905 |
67
+ | No log | 2.1176 | 36 | 0.2906 | -0.0473 | 0.2906 |
68
+ | No log | 2.2353 | 38 | 0.2973 | 0.0 | 0.2973 |
69
+ | No log | 2.3529 | 40 | 0.3635 | 0.0 | 0.3635 |
70
+ | No log | 2.4706 | 42 | 0.4742 | -0.0268 | 0.4742 |
71
+ | No log | 2.5882 | 44 | 0.4561 | -0.0185 | 0.4561 |
72
+ | No log | 2.7059 | 46 | 0.3327 | 0.0 | 0.3327 |
73
+ | No log | 2.8235 | 48 | 0.2840 | 0.0 | 0.2840 |
74
+ | No log | 2.9412 | 50 | 0.2878 | -0.0235 | 0.2878 |
75
+ | No log | 3.0588 | 52 | 0.2902 | -0.0235 | 0.2902 |
76
+ | No log | 3.1765 | 54 | 0.2821 | -0.0473 | 0.2821 |
77
+ | No log | 3.2941 | 56 | 0.2813 | 0.0 | 0.2813 |
78
+ | No log | 3.4118 | 58 | 0.3125 | 0.0 | 0.3125 |
79
+ | No log | 3.5294 | 60 | 0.3580 | 0.0 | 0.3580 |
80
+ | No log | 3.6471 | 62 | 0.3412 | 0.0 | 0.3412 |
81
+ | No log | 3.7647 | 64 | 0.3136 | 0.0 | 0.3136 |
82
+ | No log | 3.8824 | 66 | 0.2971 | -0.0235 | 0.2971 |
83
+ | No log | 4.0 | 68 | 0.2918 | -0.0135 | 0.2918 |
84
+ | No log | 4.1176 | 70 | 0.2894 | -0.0235 | 0.2894 |
85
+ | No log | 4.2353 | 72 | 0.2973 | 0.0 | 0.2973 |
86
+ | No log | 4.3529 | 74 | 0.3060 | 0.0 | 0.3060 |
87
+ | No log | 4.4706 | 76 | 0.3066 | 0.0 | 0.3066 |
88
+ | No log | 4.5882 | 78 | 0.3086 | 0.0 | 0.3086 |
89
+ | No log | 4.7059 | 80 | 0.3207 | 0.0 | 0.3207 |
90
+ | No log | 4.8235 | 82 | 0.3228 | 0.0 | 0.3228 |
91
+ | No log | 4.9412 | 84 | 0.3232 | 0.0 | 0.3232 |
92
+ | No log | 5.0588 | 86 | 0.3306 | 0.0 | 0.3306 |
93
+ | No log | 5.1765 | 88 | 0.3322 | 0.0 | 0.3322 |
94
+ | No log | 5.2941 | 90 | 0.3595 | 0.0 | 0.3595 |
95
+ | No log | 5.4118 | 92 | 0.3659 | 0.0 | 0.3659 |
96
+ | No log | 5.5294 | 94 | 0.3968 | 0.0 | 0.3968 |
97
+ | No log | 5.6471 | 96 | 0.4325 | -0.0185 | 0.4325 |
98
+ | No log | 5.7647 | 98 | 0.4240 | -0.0185 | 0.4240 |
99
+ | No log | 5.8824 | 100 | 0.3886 | -0.0096 | 0.3886 |
100
+ | No log | 6.0 | 102 | 0.3688 | -0.0096 | 0.3688 |
101
+ | No log | 6.1176 | 104 | 0.3669 | -0.0096 | 0.3669 |
102
+ | No log | 6.2353 | 106 | 0.3824 | -0.0096 | 0.3824 |
103
+ | No log | 6.3529 | 108 | 0.3765 | -0.0323 | 0.3765 |
104
+ | No log | 6.4706 | 110 | 0.3534 | -0.0235 | 0.3534 |
105
+ | No log | 6.5882 | 112 | 0.3724 | -0.0235 | 0.3724 |
106
+ | No log | 6.7059 | 114 | 0.4165 | -0.0323 | 0.4165 |
107
+ | No log | 6.8235 | 116 | 0.4596 | -0.0533 | 0.4596 |
108
+ | No log | 6.9412 | 118 | 0.4708 | -0.0591 | 0.4708 |
109
+ | No log | 7.0588 | 120 | 0.4502 | -0.0405 | 0.4502 |
110
+ | No log | 7.1765 | 122 | 0.4102 | -0.0323 | 0.4102 |
111
+ | No log | 7.2941 | 124 | 0.4035 | -0.0323 | 0.4035 |
112
+ | No log | 7.4118 | 126 | 0.4253 | -0.0323 | 0.4253 |
113
+ | No log | 7.5294 | 128 | 0.4225 | -0.0323 | 0.4225 |
114
+ | No log | 7.6471 | 130 | 0.4086 | -0.0323 | 0.4086 |
115
+ | No log | 7.7647 | 132 | 0.4280 | -0.0260 | 0.4280 |
116
+ | No log | 7.8824 | 134 | 0.4752 | -0.0233 | 0.4752 |
117
+ | No log | 8.0 | 136 | 0.4963 | -0.0193 | 0.4963 |
118
+ | No log | 8.1176 | 138 | 0.5295 | -0.0104 | 0.5295 |
119
+ | No log | 8.2353 | 140 | 0.5401 | -0.0104 | 0.5401 |
120
+ | No log | 8.3529 | 142 | 0.5096 | -0.0193 | 0.5096 |
121
+ | No log | 8.4706 | 144 | 0.4677 | -0.0279 | 0.4677 |
122
+ | No log | 8.5882 | 146 | 0.4416 | -0.0135 | 0.4416 |
123
+ | No log | 8.7059 | 148 | 0.4452 | -0.0135 | 0.4452 |
124
+ | No log | 8.8235 | 150 | 0.4725 | -0.0279 | 0.4725 |
125
+ | No log | 8.9412 | 152 | 0.4991 | -0.0233 | 0.4991 |
126
+ | No log | 9.0588 | 154 | 0.5151 | -0.0251 | 0.5151 |
127
+ | No log | 9.1765 | 156 | 0.5160 | -0.0251 | 0.5160 |
128
+ | No log | 9.2941 | 158 | 0.5242 | -0.0251 | 0.5242 |
129
+ | No log | 9.4118 | 160 | 0.5189 | -0.0251 | 0.5189 |
130
+ | No log | 9.5294 | 162 | 0.5080 | -0.0193 | 0.5080 |
131
+ | No log | 9.6471 | 164 | 0.4972 | -0.0233 | 0.4972 |
132
+ | No log | 9.7647 | 166 | 0.4929 | -0.0167 | 0.4929 |
133
+ | No log | 9.8824 | 168 | 0.4916 | -0.0345 | 0.4916 |
134
+ | No log | 10.0 | 170 | 0.4917 | -0.0345 | 0.4917 |
135
 
136
 
137
  ### Framework versions